Seminar 17 Sep 10:00, 2012
Security analysis in probabilistic distributed protocols via bounded reachability
Probabilistic model checking computes the probability values of a given property quantifying over all possible schedulers (also known as adversaries or policies). It turns out that maximum and minimum probabilities calculated in such a way are overestimations on models of distributed systems in which components are loosely coupled and share little information with each other. The problem exacerbates, if in addition the system is intended to protect private information.
In this talk, we will (1) discuss the problem, (2) give a characterization for the set of schedulers that respect the distributed nature of process and the idea of secrecy, (3) report of some important properties of this class of schedulers, and (4) present an algorithm to analyze time-bounded reachability properties based on polynomial optimization. We will briefly discuss a prototype implementation and report some case studies.
Probabilistic model checking computes the probability values of a given property quantifying over all possible schedulers (also known as adversaries or policies). It turns out that maximum and minimum probabilities calculated in such a way are overestimations on models of distributed systems in which components are loosely coupled and share little information with each other. The problem exacerbates, if in addition the system is intended to protect private information.
In this talk, we will (1) discuss the problem, (2) give a characterization for the set of schedulers that respect the distributed nature of process and the idea of secrecy, (3) report of some important properties of this class of schedulers, and (4) present an algorithm to analyze time-bounded reachability properties based on polynomial optimization. We will briefly discuss a prototype implementation and report some case studies.

