
Accelerating
Parametric Probabilistic Verification ?

Nils Jansen1, Florian Corzilius1, Matthias Volk1, Ralf Wimmer2,
Erika Ábrahám1, Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
{nils.jansen | corzilius | volk | abraham | katoen}@cs.rwth-aachen.de

2 Albert-Ludwigs-University Freiburg, Germany
{wimmer | becker}@informatik.uni-freiburg.de

Abstract. We present a novel method for computing reachability prob-
abilities of parametric discrete-time Markov chains whose transition
probabilities are fractions of polynomials over a set of parameters. Our
algorithm is based on two key ingredients: a graph decomposition into
strongly connected subgraphs combined with a novel factorization strat-
egy for polynomials. Experimental evaluations show that these approaches
can lead to a speed-up of up to several orders of magnitude in comparison
to existing approaches.

1 Introduction

Discrete-time Markov chains (DTMCs) are a widely used modeling formalism
for systems exhibiting probabilistic behavior. Their applicability ranges from
distributed computing to security and systems biology. Efficient algorithms exist
to compute measures like: “What is the probability that our communication
protocol terminates successfully if messages are lost with probability 0.05?”.
However, often actual system parameters like costs, faultiness, reliability and
so on are not given explicitly. For the design of systems incorporating random
behavior, this might even not be possible at an early design stage. In model-
based performance analysis, the research field of fitting [1], where—intuitively—
probability distributions are generated from experimental measurements, mirrors
the difficulties in obtaining such concrete values.

This calls for treating probabilities as parameters and motivates to consider
parametric DTMCs, PDTMCs for short, where transition probabilities are (ratio-
nal) functions in terms of the system’s parameters. Using these functions one can,
e. g., find appropriate values of the parameters such that certain properties are
satisfied or analyze the sensitivity of reachability probabilities to small changes

? This work was partly supported by the German Research Council (DFG) as part of
the Research Training Group AlgoSyn (1298) and the Transregional Collaborative
Research Center AVACS (SFB/TR 14), the EU FP7-project MoVeS, the FP7-IRSES
project MEALS and by the Excellence Initiative of the German federal and state
government.

in the parameters. Computing reachability probabilities for DTMCs is typically
done by solving a linear equation system. This is not feasible for PDTMCs, since
the resulting equation system is non-linear. Instead, approaches based on state
elimination have been proposed [2,3]. The idea is to replace states and their
incident transitions by direct transitions from each predecessor to each successor
state. Eliminating states this way iteratively leads to a model having only initial
and absorbing states, where transitions from the initial states to the absorbing
states carry—as rational functions over the model parameters—the probability
of reaching the absorbing states from the initial states. The efficiency of such
elimination methods strongly depends on the order in which states are eliminated
and on the representation of the rational functions.

Related work The idea of constructing a regular expression representing a DTMC’s
behavior originates from Daws [2]. He uses state elimination to generate regular
expressions describing the paths from the initial states to the absorbing states of
a DTMC. Hahn et al. [3] apply this idea to PDTMCs to obtain rational functions
for reachability and expected reward properties. They improve the efficiency of
the construction by heuristics for the transformation of finite automata to regular
expressions [4] to guide the elimination of states. Additionally, they reduce the
polynomials to simplify the rational functions. These ideas have been extended
to Markov decision processes [5]. The main problem there is that the reachability
probabilities depend on the chosen scheduler to resolve the nondeterminism. When
maximizing or minimizing these probabilities, the optimal scheduler generally
depends on the values of the parameters. Their algorithms are implemented in
PARAM [6], the—to the best of our knowledge—only available tool for computing
reachability probabilities of PDTMCs.

Several authors have considered the related problem of parameter synthesis:
for which parameter instances does a given (LTL or PCTL) formula hold? To
mention a few, Han et al. [7] considered this problem for timed reachability in
continuous-time Markov chains, Pugelli et al. [8] for Markov decision processes,
and Benedikt et al. [9] for ω-regular properties of interval Markov chains.

Contributions of this paper In this paper we improve the computation of reacha-
bility probabilities for PDTMCs [2,3] in two important ways. We introduce a state
elimination strategy based on a recursive graph decomposition of the PDTMC
into strongly connected subgraphs and give a novel method to efficiently factorize
polynomials. Although presented in the context of parametric Markov chains,
this constitutes a generic method for representing and manipulating rational
functions and is well-suited for other applications as well. The experiments show
that using our techniques yield a speed-up of up to three orders of magnitude
compared to [3] on many benchmarks.

2 Preliminaries

Definition 1 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, I, P) with a non-empty finite set S of states, an

initial distribution I : S → [0, 1] ⊆ R with
∑
s∈S I(s) = 1, and a transition

probability matrix P : S × S → [0, 1] ⊆ R with
∑
s′∈S P (s, s′) = 1 for all s ∈ S.

The states SI = {sI ∈ S | I(sI) > 0} are called initial states. A transition leads
from a state s ∈ S to a state s′ ∈ S iff P (s, s′) > 0. The set of successor states
of s ∈ S is succ(s) = {s′ ∈ S |P (s, s′) > 0}. A path of D is a finite sequence
π = s0s1 . . . sn of states si ∈ S such that P (si, si+1) > 0 for all 0 ≤ i < n.
The set PathsD contains all paths of D, PathsD(s) those starting in s ∈ S,
and PathsD(s, t) those starting in s and ending in t. We generalize this to sets
S′, S′′ ⊆ S of states by PathsD(S′, S′′) =

⋃
s′∈S′

⋃
s′′∈S′′ PathsD(s′, s′′). A state

t is reachable from s iff PathsD(s, t) 6= ∅.
The probability measure PrD for paths satisfies

PrD(s0. . .sn) =
n−1∏
i=0

P (si, si+1)

and PrD
(
{π1, π2}

)
= PrD(π1) + PrD(π2) for all π1, π2 ∈ PathsD not being the

prefix of each other. In general, for R ⊆ PathsD we have PrD(R) =
∑
π∈R′ PrD(π)

with R′ = {π ∈ R | ∀π′ ∈ R. π′ is not a proper prefix of π}. We often omit the
superscript D if it is clear from the context. For more details see, e. g., [10].

For a DTMC D = (S, I, P) and some K ⊆ S we define the set of input states
of K by Inp(K) = {s ∈ K | I(s) > 0 ∨ ∃s′ ∈ S \K. P (s′, s) > 0}, i. e., the states
inside K that have an incoming transition from outside K. Analogously, we define
the set of output states of K by Out(K) = {s ∈ S \K | ∃s′ ∈ K. P (s′, s) > 0},
i. e., the states outside K that have an incoming transition from a state inside K.
The set of inner states of K is given by K \ Inp(K).

We call a state set S′ ⊆ S absorbing iff there is a state s′ ∈ S′ from which
no state outside S′ is reachable in D, i. e., iff PathsD({s′}, S \ S′) = ∅. A state
s ∈ S is absorbing if {s} is absorbing.

A set S′ ⊆ S induces a strongly connected subgraph (SCS) of D iff for all
s, t ∈ S′ there is a path from s to t visiting only states from S′. A strongly
connected component (SCC) of D is a maximal (w. r. t. ⊆) SCS of S. An SCC S′

is called bottom if Out(S′) = ∅ holds. The probability of eventually reaching a
bottom SCC in a finite DTMC is always 1 [10, Chap. 10.1].

We consider probabilistic reachability properties, putting bounds on the proba-
bility

∑
sI∈SI

I(sI) ·PrD
(
PathsD(sI, T)

)
to eventually reach a set T ⊆ S of states

from the initial states. It is well-known that this suffices for checking arbitrary
ω-regular properties, see [10, Chap. 10.3] for the details.

Note that the probability of reaching a state in a bottom SCC equals the
probability of reaching one of the input states of the bottom SCC. Therefore, we
can make all input states of bottom SCCs absorbing, without loss of information.
Furthermore, if we are interested in the probability to reach a given state, also this
state can be made absorbing without modifying the reachability probability of
interest. Therefore, in the following we consider only models whose bottom SCCs
are single absorbing states forming the set T of target states, whose reachability
probabilities are of interest.

2.1 Parametric Markov Chains

To add parameters to DTMCs, we follow [6] by allowing arbitrary rational
functions in the definition of probability distributions.

Definition 2 (Polynomial and rational function). Let V = {x1, . . . , xn}
be a finite set of variables with domain R. A polynomial g over V is a sum of
monomials, which are products of variables in V and a coefficient in Z:

g = a1 · x
e1,1
1 · . . . · xe1,nn + · · · + am · x

em,1

1 · . . . · xem,n
n ,

where ei,j ∈ N0 = N ∪ {0} and ai ∈ Z for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Z[x1, . . . , xn] denotes the set of polynomials over V = {x1, . . . , xn}. A rational
function over V is a quotient f = g1

g2
of two polynomials g1, g2 over V with

g2 6= 03. We use FV =
{
g1
g2
| g1, g2 ∈ Z[x1, . . . , xn] ∧ g2 6= 0

}
to denote the set of

rational functions over V .

Definition 3 (PDTMC). A parametric discrete-time Markov chain (PDTMC)
is a tuple M = (S, V , I, P) with a finite set of states S, a finite set of parameters
V = {x1, . . . , xn} with domain R, an initial distribution I : S → FV , and a
parametric transition probability matrix P : S × S → FV .

The underlying graph GM = (S,DP) of a (P)DTMC M = (S, V , I, P) is
given by DP =

{
(s, s′) ∈ S × S

∣∣P (s, s′) 6= 0
}

. As for DTMCs, we assume that
all bottom SCCs of considered PDTMCs are single absorbing states.

Definition 4 (Evaluated PDTMC). An evaluation u of V is a function
u : V → R. The evaluation g[u] of a polynomial g ∈ Z[x1, . . . , xn] under u : V → R
substitutes each x ∈ V by u(x), using the standard semantics for + and ·. For

f = g1
g2
∈ FV we define f [u] = g1[u]

g2[u]
∈ R if g2[u] 6= 0.

For a PDTMC M = (S, V , I, P) and an evaluation u, the evaluated PDTMC
is the DTMC D = (Su, Iu, Pu) given by Su = S and for all s, s′ ∈ Su, Iu(s) =
I(s)[u] and Pu(s, s′) = P (s, s′)[u] if the evaluations are defined and 0 otherwise.

An evaluation u substitutes each parameter by a real number. This induces a
well-defined probability measure on the evaluated PDTMC under the following
conditions.

Definition 5 (Well-defined evaluation). An evaluation u is well-defined for
a PDTMC M = (S, V , I, P) if for the evaluated PDTMC D = (Su, Iu, Pu) it
holds that

– Iu : Su → [0, 1] with
∑
s∈Su

Iu(s) = 1, and
– Pu : Su × Su → [0, 1] with

∑
s′∈Su

Pu(s, s′) = 1 for all s ∈ Su.

An evaluation u is called graph preserving if is well-defined and it holds that

∀s, s′ ∈ S : P (s, s′) 6= 0 =⇒ P (s, s′)[u] > 0.

3 g2 6= 0 means that g2 cannot be simplified to 0.

sI

s2out

s1outK

(a) Initial PDTMC

sI

s1out

s2out

K

(b) Abstraction of K
with abstract loop

sI

s1out

s2out

K

(c) Abstraction of K

Fig. 1. The concept of PDTMC abstraction

Note that P (s, s′)[u] > 0 implies that no division by 0 will occur. This will be
ensured during the model checking algorithm, requiring the evaluation u to be
graph preserving, i. e., GM = GMu . This is necessary, otherwise altering the
graph could make reachable states unreachable, thereby changing reachability
probabilities.

Definition 6. Given a PDTMC M = (S, V , I, P) with absorbing states T ⊆ S,
the parametric probabilistic model checking problem is to find for each initial
state sI ∈ SI and each t ∈ T a rational function fsI,t ∈ FV such that for all graph-
preserving evaluations u : V → R and the evaluated PDTMC D = (Su, Iu, Pu) it
holds that fsI,t[u] = PrMu

(
PathsMu(sI, t)

)
.

Given the functions fsI,t for sI ∈ SI and t ∈ T , the probability of reaching a

state in T from an initial state is
∑
sI∈SI

I(sI) ·
(∑

t∈T fsI,t

)
.

3 Parametric Model Checking by SCC Decomposition

In this section we present our algorithmic approach to apply model checking to
PDTMCs. In the following let M = (S, V , I, P) be a PDTMC with absorbing
state set T ⊆ S. For each initial state sI ∈ SI and each target state t ∈ T we
compute a rational function fsI,t over the set of parameters V which describes
the probability of reaching t from sI as in [3]. We do this using hierarchical
graph decomposition, inspired by a former method for computing reachability
probabilities in the non-parametric case [11].

3.1 PDTMC Abstraction

The basic concept of our model checking approach is to replace a non-absorbing
subset K ⊆ S of states and all transitions between them by transitions directly

s1

s2 s3

s4 s5

s6 s7

s8 s9

0.4

0.2

0.4

0.8

0.2

1
q

1− q
1

0.2

0.8
0.2

0.5

0.3 p

1− p
1

S1

S1.1

S1.2
S1.2.1

Fig. 2. Example PDTMC and its SCC decomposition

leading from the input states Inp(K) of K to the output states Out(K) of K,
carrying the accumulated probabilities of all paths between the given input and
output states inside K. This concept is illustrated in Figure 1: In Figure 1(a),
K has one input state sI and two output states s1out, s

2
out. The abstraction in

Figure 1(c) hides every state of K except for sI; all transitions are directly leading
to the output states.

As we need a probability measure for arbitrary subsets of states, we first
define sub-PDTMCs induced by such subsets.

Definition 7 (Induced PDTMC). Given a PDTMC M = (S, V , I, P) and
a non-absorbing subset K ⊆ S of states, the PDTMC induced by M and K is
given by MK = (SK , V K , IK , PK) with SK = K ∪ Out(K), V K = V , and for
all s, s′ ∈ SK , IK(s) 6= 0 ⇐⇒ s ∈ Inp(K) and

PK(s, s′) =


P (s, s′), if s ∈ K, s′ ∈ SK ,

1, if s = s′ ∈ Out(K),

0, otherwise.

Intuitively, all incoming and outgoing transitions are preserved for inner states
of K while the output states are made absorbing. We allow an arbitrary input
distribution IK with the only constraint that IK(s) 6= 0 iff s is an input state of
K.

Example 1. Consider the PDTMCM in Figure 2 and the state set K = {s7, s8}
with input states Inp(K) = {s7} and output states Out(K) = {s5, s6, s9}. The
PDTMCMK = (SK , V K , IK , PK) induced byM and K is shown in Figure 3(a).

Note that, since K is non-absorbing, the probability of eventually reaching one
of the output states is 1. The probability of reaching an output state t from an
input state s is determined by the accumulated probability of all paths Paths(s, t)

s6

s7 s5

s8 s9

1

0.2

0.5

0.3 p

1− p

1

1

(a) Induced PDTMC

s6

s7 s5

s9

1

1

fs7,s5

fs7,s6

fs7,s9
fs7,s7

1

(b) Abstracted PDTMC

s6

s7 s5

s9

1

1

f̂s7,s5

f̂s7,s6

f̂s7,s9

1

(c) Scaled functions

Fig. 3. PDTMC Abstraction

from s to t. Those paths are composed by a (possibly empty) prefix looping on s
and a postfix leading from s to t without returning back to s. In our abstraction
this is reflected by abstracting the prefixes by an abstract self-loop on s with
probability fs,s and the postfixes by abstract transitions from the input states s
to the output states t with probability fs,t (see Figure 1(b)). If all loops in K
are loops on s then fs,t can be easily computed as the sum of the probabilities of
all loop-free paths from s to t. In the final abstraction shown in Figure 1(c), we
make use of the fact that all paths from s to t can be extended with the same
loops on s as a prefix. Therefore we do not need to compute the probability of
looping on s, but can scale the probabilities fs,t such that they sum up to 1.

Definition 8 (Abstract PDTMC). Let M = (S, V , I, P) be a PDTMC with
absorbing states T ⊆ S. The abstract PDTMC Mabs = (Sabs, Vabs, Iabs, Pabs) is
given by Sabs = {s ∈ S | I(s) 6= 0 ∨ s ∈ T}, Vabs = V , and for all s, s′ ∈ Sabs we
define Iabs(s) = I(s) and

Pabs(s, s
′) =


pMabs(s, s

′)∑
s′′∈T p

M
abs(s, s

′′)
, if I(s) > 0 ∧ s′ ∈ T ,

1, if s = s′ ∈ T ,

0, otherwise.

with

pMabs(s, s
′) = PrM

(
{π = s0 . . . sn ∈ PathsM(s, s′) | si 6= s ∧ si 6= s′, 0 < i < n}

)
.

Example 2. Consider the PDTMCM′ = (S′, V ′, I ′, P ′) of Figure 3(a) with initial
state s7 and target states T ′ = {s5, s6, s9}. The first abstraction step regarding
the probabilities pMabs(s, s

′) is depicted in Figure 3(b) and refers to the following

probabilities:

fs7,s5 = pM
′

abs(s7, s5) = 0.2 fs7,s6 = pM
′

abs(s7, s6) = 0.5

fs7,s7 = pM
′

abs(s7, s7) = 0.3 · p fs7,s9 = pM
′

abs(s7, s9) = 0.3 · (1− p)

The total probabilities of reaching the output states in M′abs are given by paths
which first use the loop on s7 arbitrarily many times (including zero times) and
then take a transition to an output state. For example, using the geometric series,
the probability of the set of paths leading from s7 to s5 is given by

∞∑
i=0

(fs7,s7)i · fs7,s5 =
1

1− fs7,s7
· fs7,s5 .

As the probability of finally reaching the set of absorbing states in M′ is 1, we
can directly scale the probabilities of the outgoing edges such that their sum is
equal to 1. This is achieved by dividing each of these probabilities by the sum of
all probabilities of outgoing edges, fout = 0.2 + 0.5 + 0.3 · (1− p) = 1− 0.3p.

Thus the abstract PDTMC M′abs = (S′abs, V
′
abs, I

′
abs, P

′
abs) depicted in Fig-

ure 3(c) has states S′abs = {s5, s6, s7, s9} and edges from s7 to all other states
with the following probabilities:

f̂s7,s5 = 0.2 /fout f̂s7,s6 = 0.5 /fout

f̂s7,s9 =
(
0.3 · (1− p)

)
/fout

Theorem 1. Assume a PDTMC M = (S, V , I, P) with absorbing states T ⊆ S,
and let Mabs be the abstraction of M. Then for all sI ∈ SI and t ∈ T it holds
that

PrM
(
PathsM(sI, t)

)
= PrMabs

(
PathsMabs(sI, t)

)
.

The proof of this theorem can be found in the appendix. It remains to define the
substitution of subsets of states by their abstractions. Intuitively, a subset of states
is replaced by the abstraction as in Definition 8, while the incoming transitions
of the initial states of the abstraction as well as the outgoing transitions of the
absorbing states of the abstraction remain unmodified.

Definition 9 (Substitution). Assume a PDTMC M = (S, V , I, P), a non-
absorbing set K ⊆ S of states, the induced PDTMC MK = (SK , V K , IK , PK)
and the abstractionMK

abs = (SKabs, V
K
abs, I

K
abs, P

K
abs). The substitution ofMK by its

abstractionMK
abs inM is given byMK 7→abs = (SK 7→abs, VK 7→abs, IK 7→abs, PK 7→abs)

with SK 7→abs = (S \ K) ∪ SKabs, VK 7→abs = V and for all s, s′ ∈ SK 7→abs,
IK 7→abs(s) = I(s) and

PK 7→abs(s, s
′) =


P (s, s′), if s /∈ K,
PKabs(s, s

′), if s ∈ K ∧ s′ ∈ Out(K),

0, otherwise.

Algorithm 1 Model Checking PDTMCs

abstract(PDTMC M)
begin

for all non-bottom SCCs K in MS\Inp(M) do (1)
MK

abs := abstract(MK) (2)
M :=MK 7→abs (3)

end for (4)
K := {non-absorbing states inM} (5)
M :=MK 7→abs (6)
returnM (7)

end

model check(PDTMC M = (S, V , I, P), T ⊆ {t ∈ S |P (t, t) = 1})
begin
Mabs = (Sabs, Vabs, Iabs, Pabs) := abstract(M) (8)

return
∑

sI∈SI

I(sI) ·
(∑
t∈T

Pabs(sI, t)
)

(9)

end

Due to Theorem 1, it directly follows that this substitution does not change
reachability properties from the initial states to the absorbing states of a PDTMC.

Corollary 1. Given a PDTMC M and a non-absorbing subset K ⊆ S of states,
it holds for all initial states sI ∈ SI and absorbing states t ∈ T that

PrM
(
PathsM(sI, t)

)
= PrMK 7→abs

(
PathsMK 7→abs(sI, t)

)
.

3.2 Model Checking Parametric Markov Chains

In the previous section we gave the theoretical background for our model checking
algorithm. Now we describe how to compute the abstractions efficiently.

As a heuristic for forming the sets of states to be abstracted, we choose an
SCC-based decomposition of the graph. Algorithmically, Tarjan’s algorithm [12] is
used to determine the SCC structure of the graph while we do not consider bottom
SCCs. We hierarchically determine also sub-SCCs inside the SCCs without their
input states, until no non-trivial sub-SCCs exist any more.

Example 3. In Figure 2, the dashed rectangles indicate the decomposition into
the SCC S1 = {1, 2, 3, 4, 6, 7, 8} and the sub-SCSs S1.1 = {2, 3, 4}, S1.2 = {6, 7, 8},
and S1.2.1 = {7, 8} with S1.1 ⊂ S1 and S1.2.1 ⊂ S1.2 ⊂ S1.

The general model checking algorithm is depicted in Algorithm 1. The recursive
method abstract(PDTMC M) computes the abstraction Mabs by iterating over
all SCCs of the graph without the input states of M (line 1). For each SCC K,
the abstraction MK

abs of the induced PDTMC MK is computed by a recursive

call of the method (line 2, Definitions 7,8). Afterwards, MK is substituted by
its abstraction inside M (line 3, Definition 9). Finally, the abstraction Mabs

is computed and returned (line 7, Definition 8). This method is called by the
model checking method (line 8) which yields the abstract system Mabs, in
which transitions lead only from the initial states to the absorbing states. All
transitions are labeled with a rational function for the reachability probability, as
in Definition 6. Then the whole reachability probability is computed by building
the sum of these transitions (line 9).

What remains to be explained is the computation of the abstract probabilities
pMabs. We distinguish the cases where the set K has one or multiple input states.

One input state Consider a PDTMC MK induced by K with one initial state
sI and the set of absorbing states T = {t1, . . . , tn}, such that K \ {sI} has no
non-trivial SCCs. If there is only one absorbing state, i. e., n = 1, we have

pM
K

abs (sI, t
1) = 1. This is directly exploited without further computations.

Otherwise we determine the probabilities pM
K

abs (sI, t
i) for all 1 ≤ i ≤ n. As

K \ {sI} has no non-trivial SCSs, the set of those paths from sI to ti that do not
return to sI consists of finitely many loop-free paths. The probability is computed
recursively for all s ∈ SK by:

pM
K

abs (s, ti) =

1, if s = ti,∑
s′∈(succ(s)∩K)\Inp(K)

PK(s, s′) · pMK

abs (s′, ti), otherwise. (1)

These probabilities can also be computed by direct or indirect methods for solving
linear equation systems, see, e. g., [13, Chapters 3,4]. Note that state elimination
as in [3] can be applied here, too.

The probabilities of the abstract PDTMC MK
abs = (Sabs, Vabs, Iabs, Pabs) as

in Definition 8 can now directly be computed, while an additional constraint is
added in order to avoid divisions by zero:

PM
K

abs (sI, t
i) =


pM

K

abs (sI,t
i)∑n

j=1 p
MK

abs (sI,tj)
, if

∑n
j=1 p

MK

abs (sI, t
j) 6= 0,

0, otherwise.
(2)

Multiple input states Given a PDTMCMK with initial states SI = {s1I , . . . , smI },
m > 1, such that IK(siI) > 0 for all 1 ≤ i ≤ m, and absorbing states T =
{t1, . . . , tn}. The intuitive idea would be to maintain a copy of MK for each
initial state and handle the other initial states as inner states in this copy. Then,
the method as described in the previous paragraph can be used. However, this
would be expensive in terms of both time and memory. Therefore, we first

formulate the linear equation system as in Equation (1). All variables pM
K

abs (s, ti)
with s ∈ K \ Inp(K) are eliminated from the equation system. Then for each
initial state siI the equation system is solved separately by eliminating all variables

pM
K

abs (sjI , t
k), j 6= i.

Algorithm 1 returns the rational functions PM
K

abs (sI, t) for all sI ∈ SI and t ∈ T
as in Equation (2). To allow only graph-preserving evaluations of the parameters,
we perform preprocessing where conditions are collected according to Definition 5
as well as the ones from Equation (2). These constraints can be evaluated by a
SAT-modulo- theories (SMT) solver for non-linear real arithmetic [14]. In case
the solver returns an evaluation which satisfies the resulting constraint set, the
reachability property is satisfied. Otherwise, the property is violated.

4 Factorization of Polynomials

Both the SCC-based procedure as introduced in the last section as well as mere
state-elimination [3] build rational functions representing reachability probabili-
ties. These rational functions might grow rapidly in both algorithms and thereby
form one of the major bottlenecks of this methodology. As already argued in [3],
the best way to stem this blow-up is the cancellation of the rational functions in
every computation step, which involves—apart from addition, multiplication, and
division of rational functions—the rather expensive calculation of the greatest
common divisor (gcd) of two polynomials.

In this section we present a new way of handling this problem: An addi-
tional maintenance and storage of (partial) polynomial factorizations can lead
to remarkable speed-ups in the gcd computation, especially when dealing with
symmetrically structured benchmarks where many similar polynomials occur.
We present an optimized algorithm called gcd which operates on the (partial)
factorizations of the polynomials to compute their gcd. During the calculations,
the factorizations are also refined. On this account we reformulate the arithmetic
operations on rational functions such that they preserve their numerator’s and
denominator’s factorizations, if it is possible with reasonable effort.

Factorizations. In the following we assume that polynomials are normalized, that
is they are of the form g = a1 · x

e1,1
1 · . . . · xe1,nn + · · · + am · x

em,1

1 · . . . · xem,n
n

with (ej,1, . . . , ej,n) 6= (ek,1, . . . , ek,n) for all j, k ∈ {1, . . . ,m} with j 6= k and the
monomials are ordered, e. g., according to the reverse lexicographical ordering.

Definition 10 (Factorization). A factorization Fg = {ge11 , . . . , genn } of a poly-
nomial g 6= 0 is a non-empty set4 of factors geii , where the bases gi are pairwise
different polynomials and the exponents are ei ∈ N such that g =

∏n
i=1 g

ei
i . We

additionally set F0 = ∅.
For polynomials g, h and a factorization Fg = {ge11 , . . . , genn } of g let bases(Fg) =

{g1, . . . , gn} and exp(h,Fg) be ei if gi = h and 0 if h /∈ bases(Fg). As the bases
are not required to be irreducible, factorizations are not unique.

We assume that bases and exponents are non-zero, F1 = {11}, and 1k /∈ Fg for
g 6= 1. For Fg = {ge11 , . . . , genn }, this is expressed by the reduction F red

g = {11} if

n > 0 and gi = 1 or ei = 0 for all 1 ≤ i ≤ n, and F red
g = Fg\{geii | gi = 1∨ei = 0}

otherwise.
4 We represent a factorization of a polynomial as a set; however, in the implementation

we use a more efficient binary search tree instead.

Operations on factorizations. Instead of applying arithmetic operations on two
polynomials g1 and g2 directly, we operate on their factorizations Fg1 and Fg2 .
We use the following operations on factorizations: Fg1 ∪F Fg2 factorizes a (not
necessarily least) common multiple of g1 and g2, Fg1 ∩F Fg2 a (not necessarily
greatest) common divisor, whereas the binary operations ·F , :F and +F correspond
to multiplication, division5 and addition, respectively. Due to space limitations,
we omit in the remaining of this paper the trivial cases involving F0. Therefore
we define

Fg1 ∪F Fg2 = {hmax(exp(h,Fg1
),exp(h,Fg2

)) | h ∈ bases(Fg1) ∪ bases(Fg2)}red
Fg1 ∩F Fg2 = {hmin(exp(h,Fg1),exp(h,Fg2)) | h=1 ∨ h∈bases(Fg1)∩bases(Fg2)}red
Fg1 ·F Fg2 = {hexp(h,Fg1

)+exp(h,Fg2
) | h ∈ bases(Fg1) ∪ bases(Fg2)}red

Fg1 :F Fg2 = {hmax(0,e−exp(h,Fg2
)) | he ∈ Fg1}red

Fg1 +F Fg2 = D ·F
{(∏

g′1∈(Fg1
:FD) g

′
1

)
+
(∏

g′2∈(Fg2
:FD) g

′
2

)}red
where D = Fg1 ∩F Fg2 and max(a, b) (min(a, b)) equals a if a ≥ b (a ≤ b) and b
otherwise. Example 4 illustrates the application of the above operations.

Operations on rational functions. We represent a rational function g1
g2

by sepa-
rate factorizations Fg1 and Fg2 for the numerator g1 and the denominator g2,
respectively. For multiplication g1

g2
= h1

h2
· q1q2 , we compute Fg1 = Fh1 ·F Fq1 and

Fg2 = Fh2
·F Fq2 . Division is reduced to multiplication according to h1

h2
: q1
q2

=
h1

h2
· q2q1 .

For the addition g1
g2

= h1

h2
+ q1

q2
, we compute g2 with Fg2 = Fh2 ∪F Fq2 as a

common multiple of h2 and q2, such that g2 = h2 · h′2 with Fh′
2

= Fg2 :F Fh2
,

and g2 = q2 · q′2 with Fq′2 = Fg2 :F Fq2 . For the numerator g1 we first determine
a common divisor d of h1 and q1 by Fd = Fh1 ∩F Fq1 , such that h1 = d · h′1
with Fh′

1
= Fh1 :F Fd, and q1 = d · q′1 with Fq′1 = Fq1 :F Fd. The numerator g1 is

d · (h′1 · h′2 + q′1 · q′2) with factorization Fd ·F (Fh′
1
·F Fh′

2
+F Fq′1 ·F Fq′2).

The rational function g1
g2

resulting from the addition is further simplified by

cancellation, i. e., dividing g1 and g2 by their greatest common divisor (gcd) g.
Given the factorizations Fg1 and Fg2 , Algorithm 2 calculates the factorizations
Fg, F g1

g
, and F g2

g
.

Intuitively, the algorithm maintains the fact that G ·F F1 ·F F ′1 is a factorization
of g1, where G contains common factors of g1 and g2, F1 is going to be checked
whether it contains further common factors, and F ′1 does not contain any common
factors. In the outer while-loop, an element re11 to be checked is taken from F1.
In the inner while-loop, a factorization G ·F F2 ·F F ′2 of g2 is maintained such that
F ′2 does not contain any common factors with r1, and F2 is still to be checked.

Now we explain the algorithm in more detail. Initially, a factorization G
of a common divisor of g1 and g2 is set to Fg1 ∩F Fg2 (line 2). The remaining
factors of g1 and g2 are stored in F1 resp. F2. The sets F ′1 and F ′2 contain

5 Fg1 :F Fg2 is a factorization of g1/g2 only if Fg1 and Fg2 are sufficiently refined and
g2 divides g1.

Algorithm 2 gcd computation with factorization refinement

GCD(factorization Fg1 , factorization Fg2)
begin

G := (Fg1 ∩F Fg2) (1)
Fi := Fgi :F G and F ′i := {11} for i = 1, 2 (2)
while exists re11 ∈ F1 with r1 6= 1 do (3)

F1 := F1 \ {re11 } (4)
while r1 6= 1 and exists re22 ∈ F2 with r2 6= 1 do (5)

F2 := F2 \ {re22 } (6)
if ¬irreducible(r1) ∨ ¬irreducible(r2) then g := gcd(r1, r2) (7)
else g := 1 (8)
if g = 1 then (9)

F ′2 := F ′2 ·F {re22 } (10)
else (11)

r1 := r1
g

(12)

Fi := Fi ·F {gei−min(e1,e2)} for i = 1, 2 (13)
F ′2 := F ′2 ·F {(r2

g
)e2} (14)

G := G ·F {gmin(e1,e2)} (15)
end if (16)

end while (17)
F ′1 := F ′1 ·F {re11 } (18)
F2 := F2 ·F F ′2 (19)
F ′2 := {11} (20)

end while (21)
return (F ′1, F2, G) (22)

end

factors of g1 resp. g2 whose greatest common divisor is 1 (line 4). The algorithm
now iteratively adds further common divisors of g1 and g2 to G until it is a
factorization of their gcd. For this purpose, we consider for each factor in F1 all
factors in F2 and calculate the gcd of their bases using standard gcd computation
for polynomials (line 14). Note that the main concern of Algorithm 2 is to avoid
the application of this expensive operation as far as possible and to apply it to
preferably simple polynomials otherwise. Where the latter is entailed by the idea
of using factorizations, the former can be achieved by excluding pairs of factors
for which we can cheaply decide that both are irreducible, i. e., they have no
non-trivial divisors. If factors re11 ∈ F1 and re22 ∈ F2 with g := gcd(r1, r2) = 1 are
found, we just shift re22 from F2 to F ′2 (line 17). Otherwise, we can add gmin(e1,e2),
which is the gcd of re11 and re22 , to G and extend the factors F1 resp. F2, which
could still contain common divisors, by ge1−min(e1,e2) resp. ge2−min(e1,e2) (line 21).
Furthermore, F ′2 obtains the new factor (r2g)e2 , which has certainly no common

divisor with any factor in F ′1. Finally, we set the basis r1 to r1
g , excluding the

just found common divisor. If all factors in F2 have been considered for common
divisors with r1, we can add it to F ′1 and continue with the next factor in F1,
for which we must reconsider all factors in F ′2 and, therefore, shift them to

F2 (line 35-39). The algorithm terminates, if the last factor of F1 has been
processed, returning the factorizations Fg, F g1

g
and F g2

g
, which we can use to

refine the factorizations of g1 and g2 via Fg1 := F g1
g
·F G and Fg2 := F g2

g
·F G.

Example 4. Assume we want to apply Algorithm 2 to the factorizations Fxyz =
{(xyz)1} and Fxy = {(x)1, (y)1}. We initialize G = F ′1 = F ′2 = {(1)1}, F1 = Fxyz
and F2 = Fxy. First, we choose the factors (r1)e1 = (xyz)1 and (x)1 and remove
them from F1 resp. F2. The gcd of their bases is x, hence we only update
r1 to (yz)1 and G to {(x)1}. Then we remove the next and last element (y)1

from F2. Its basis and r1 have the gcd y and we therefore update r1 to (z)1

and G to {(x)1, (y)1}. Finally, we add (z)1 to F ′1 and return the expected
result ({(z)1}, {(1)1}, {(x)1, (y)1}). Using these results, we can also refine
Fxyz = F ′1 ·F G = {(x)1, (y)1, (z)1} and Fxy = F2 ·F G = {(x)1, (y)1}.

Theorem 2. Let p1 and p2 be two polynomials with factorizations Fp1 resp.
Fp2 . Applying Algorithm 2 to these factorizations results in gcd(Fp1 , Fp2) =
(Fr1 , Fr2 , G) with G being a factorization of the greatest common divisor g of p1
and p2, and Fr1 and Fr2 being factorizations of p1

g resp. p2
g .

The proof of this theorem can be found in the appendix.

5 Experiments

We developed a C++ prototype implementation of our approach using the arith-
metic library GiNaC [15]. The prototype is available on the project homepage6.
Moreover, we implemented the state-elimination approach used by PARAM [6]
using our optimized factorization approach to provide a more distinct comparison.
All experiments were run on an Intel Core 2 Quad CPU 2.66 GHz with 4 GB of
memory. We defined a timeout (TO) of 14 hours (50400 seconds) and a memory
bound (MO) of 4 GB. We report on three case studies; a more distinct description
and the specific instances we used are available at our homepage.

The bounded retransmission protocol (BRP) [16] models the sending of files
via an unreliable network, manifested in two lossy channels for sending and
acknowledging the reception. This model is parametrized in the probability of
reliability of those channels. The crowds protocol (CROWDS) [17] is designed
for anonymous network communication using random routing, parametrized in
how many members are “good” or “bad” and the probability if a good member
delivers a message or randomly routes it to another member. NAND multiplexing
(NAND) [18] models how reliable computations are obtained using unreliable
hardware by having a certain number of copies of a NAND unit all doing the same
job. Parameters are the probabilities of faultiness of the units and of erroneous
inputs. The experimental setting includes our SCC-based approach as described
in Section 3 using the optimized factorization of polynomials as in Section 4 (SCC
MC), the state elimination as in PARAM but also using the approach of Section 4

6 http://goo.gl/nS378q

http://goo.gl/nS378q

(STATE ELIM) and the PARAM tool itself.7 For all instances we list the number
of states and transitions; for each tool we give the running time in seconds and
the memory consumption in MB; the best time is boldfaced. Moreover, for our
approaches we list the number of polynomials which are intermediately stored.

Graph SCC MC STATE ELIM PARAM

Model States Trans. Time Poly Mem Time Poly Mem Time Mem

BRP 3528 4611 29.05 3283 48.10 4.33 8179 61.17 98.99 32.90
BRP 4361 5763 511.50 4247 501.71 6.87 9520 78.49 191.52 58.43
BRP 7048 9219 548.73 6547 281.86 25.05 16435 216.05 988.28 142.66
BRP 10759 13827 147.31 9231 176.89 85.54 26807 682.24 3511.96 304.07
BRP 21511 27651 1602.53 18443 776.48 718.66 53687 3134.59 34322.60 1757.12
CROWDS 198201 348349 60.90 13483 140.15 243.07 27340 133.91 46380.00 227.66
CROWDS 482979 728677 35.06 35916 478.85 247.75 65966 297.40 TO —
CROWDS 726379 1283297 223.24 36649 515.61 1632.63 73704 477.10 TO —
CROWDS 961499 1452537 81.88 61299 1027.78 646.76 112452 589.21 TO —
CROWDS 1729494 2615272 172.59 97655 2372.35 1515.63 178885 1063.15 TO —
CROWDS 2888763 5127151 852.76 110078 2345.06 12326.80 224747 2123.96 TO —
NAND 7393 11207 8.35 15688 114.60 17.02 140057 255.13 5.00 10.67
NAND 14323 21567 39.71 25504 366.79 59.60 405069 926.33 15.26 16.89
NAND 21253 31927 100.32 35151 795.31 121.40 665584 2050.67 29.51 24.45
NAND 28183 42287 208.41 44799 1405.16 218.85 925324 3708.27 50.45 30.47
NAND 78334 121512 639.29 184799 3785.11 — — MO 1138.82 111.58

For BRP, STATE ELIM always outperforms PARAM and SCC MC by up to
two orders of magnitude. On larger instances, SCC MC is faster than PARAM
while on smaller ones PARAM is faster and has a smaller memory consumption.

In contrast, the crowds protocol always induces a nested SCC structure,
which is very hard for PARAM since many divisions of polynomials have to be
carried out. On larger benchmarks, it is therefore outperformed by more than
three orders of magnitude while SCC MC performs best. Please note that this is
measured by the timeout. In fact, we were not able to retrieve results for PARAM
on the larger crowds instances.

To give an example where PARAM performs mostly better than our ap-
proaches, we consider NAND. Its graph consists of single paths, inducing a high
number of polynomials we store. Our implementation offers the possibility to limit
the number of stored polynomials, which decreases the memory consumption at
the price of losing information about the factorizations. However, an efficient
strategy to manage this bounded pool of polynomials is not yet implemented.
Therefore, we refrain from presenting experimental results for this scenario.

6 Conclusion and Future Work

We presented a new approach to verify parametric Markov chains together with
an improved factorization of polynomials. We were able to highly improve the

7 Note that no bisimulation reduction was applied to any of the input models, which
would improve the feasibility of all approaches likewise.

scalability in comparison to existing approaches. Future work will be dedicated to
the actual parameter synthesis. First, we want to incorporate interval constraint
propagation [19] in order to provide reasonable intervals for the parameters where
properties are satisfied or violated. Moreover, we are going to investigate the
possibility of extending our approaches to models with costs.

References

1. Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of
perturbed probabilistic systems. In: Proc. of ICFEM. Volume 8144 of LNCS,
Springer (2013) 297–312

2. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Proc. of ICTAC. Volume 3407 of LNCS, Springer (2004) 280–294

3. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Software Tools for Technology Transfer 13(1) (2010) 3–19

4. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: Proc. of FOSSACS. Volume 4962 of LNCS, Springer
(2008) 273–286

5. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Proc. of NFM. Volume 6617 of LNCS, Springer (2011) 146–161

6. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker
for parametric Markov models. In: Proc. of CAV. Volume 6174 of LNCS, Springer
(2010) 660–664

7. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: Proc. of RTSS, IEEE CS (2008) 173–182

8. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Proc. of
CAV. Volume 8044 of LNCS, Springer (2013) 527–542

9. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Proc. of TACAS. Volume 7795 of LNCS, Springer (2013) 32–46

10. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
11. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model

checking by SCC reduction. In: Proc. of QEST, IEEE CS (2010) 37–46
12. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1(2) (1972) 146–160
13. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer (2000)
14. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: Proc. of IJCAR.

Volume 7364 of LNCS, Springer (2012) 339–354
15. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic

computation within the C++ programming language. J. Symb. Comput. 33(1)
(2002) 1–12

16. Helmink, L., Sellink, M., Vaandrager, F.: Proof-checking a data link protocol. In:
Proc. of TYPES. Volume 806 of LNCS, Springer (1994) 127–165

17. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1) (1998) 66–92

18. Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic
devices. IEEE Transactions on Nanotechnology 1 (2002) 201–208

19. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling, and Computation 1(3-4) (2007) 209–236

Appendix

Theorem 1 Assume a PDTMC M = (S, V , I, P) with absorbing states T ⊆ S,
and let Mabs be the abstraction of M. Then for all sI ∈ SI and t ∈ T it holds
that

PrM
(
PathsM(sI, t)

)
= PrMabs

(
PathsMabs(sI, t)

)
.

Proof. First note that all initial states and absorbing states in M are also states
of the abstraction.

As the bottom SCCs are the absorbing states in T , the probability of reaching
a state in T is 1. The probability pMabs(sI, sI) can therefore be expressed w. r. t.
the probabilities of reaching an absorbing state without revisiting sI:

pMabs(sI, sI) = 1−
∑
t∈T

pMabs(sI, t). (3)

To reduce notation, we define the set of paths Rloop looping on sI and the set of
paths Rout going to some t ∈ T without revisiting sI.

Rloop = {sIs1 . . . snsI ∈ PathsM | si /∈ {sI} ∪ T, 1 ≤ i ≤ n} (4)

Rout = {sIs1 . . . snt ∈ PathsM | si /∈ {sI} ∪ T, 1 ≤ i ≤ n, t ∈ T} (5)

As the self-loop on sI represents the paths of Rloop, it holds that

pMabs(sI, sI) = Pr(Rloop). (6)

We now have:

PrM
(
PathsM(sI, t)

)
= PrM

(∞⋃
i=0

{π1 · · · · · πi · πout | πj ∈ Rloop, 1 ≤ j ≤ i; πout ∈ Rout}
)

=

∞∑
i=0

PrM
(
{π1 · · · · · πi · πout | πj ∈ Rloop, 1 ≤ j ≤ i; πout ∈ Rout}

)
=

∞∑
i=0

(
PrM(Rloop)

)i · PrM(Rout)

=

∞∑
i=0

(
pMabs(sI, sI)

)i · PrM(Rout) (Equation (6))

=
1

1− pMabs(sI, sI)
· PrM(Rout) (Geometric Series)

=
1∑

sout∈T
pMabs(sI, sout)

· PrM(Rout) (Equation (3))

=
1∑

sout∈T
pMabs(sI, sout)

· pMabs(sI, t) (Definition 8)

= Pabs(sI, t) (Definition 8)

= PrMabs
(
PathsMabs(sI, t)

)
.

As the probabilities of reaching the absorbing states from initial states coincide
in M and Mabs, our abstraction is valid.

Theorem 2 Let p1 and p2 be two polynomials with factorizations Fp1 resp.
Fp2 . Applying Algorithm 2 to these factorizations results in gcd(Fp1 , Fp2) =
(Fr1 , Fr2 , G) with G being a factorization of the greatest common divisor g of p1
and p2, and Fr1 and Fr2 being factorizations of p1

g resp. p2
g .

Proof. We denote the product of a factorization Fp by P(Fp) =
∏
qe∈Fp

qe and
the standard greatest common divisor computation for polynomials by gcd.

We define the following Hoare-style assertion network:

GCD(factorization Fg1 , factorization Fg2)
begin
{true} (1)

G := (Fg1 ∩F Fg2) (2)

{G = Fg1
∩F Fg2

} (3)

Fi := Fgi :F G and F ′i := {11} for i = 1, 2 (4)

{Fg1
= G ·F F1 ·F F ′

1 ∧ Fg2
= G ·F F2 ·F F ′

2 ∧ P(F
′
1) = 1 ∧ P(F ′

2) = 1} (5)

while exists re11 ∈ F1 with r1 6= 1 do (6)

{Fg1
= G ·F F1 ·F F ′

1 ∧ Fg2
= G ·F F2 ·F F ′

2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1 ∧ re11 ∈ F1} (7)

F1 := F1 \ {re11 } (8)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1} (9)

while r1 6= 1 and exists re22 ∈ F2 with r2 6= 1 do (10)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 } ∧ Fg2

= G ·F F2 ·F F ′
2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1 ∧ re22 ∈ F2} (11)

F2 := F2 \ {re22 } (12)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ·F {r
e2
2 } ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {r
e2
2 })) = 1 ∧ gcd(r

e1
1 ,P(F ′

2)) = 1} (13)

if ¬irreducible(r1) ∨ ¬irreducible(r2) then g := gcd(r1, r2) (14)

else g := 1 (15)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 } ∧ Fg2

= G ·F F2 ·F F ′
2 ·F {r

e2
2 } ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {r
e2
2 })) = 1 ∧ gcd(r

e1
1 ,P(F ′

2)) = 1 ∧ g = gcd(r1, r2)} (16)

if g = 1 then (17)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ·F {r
e2
2 } ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {r
e2
2 })) = 1 ∧ gcd(r

e1
1 ,P(F ′

2)) = 1 ∧ gcd(r1, r2) = 1} (18)

F ′2 := F ′2 ·F {r
e2
2 } (19)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 } ∧ Fg2

= G ·F F2 ·F F ′
2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1} (20)

else (21)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ·F {r
e2
2 } ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {r
e2
2 })) = 1 ∧ gcd(r

e1
1 ,P(F ′

2)) = 1 ∧ g = gcd(r1, r2)} (22)

r1 := r1
g (23)

{Fg1
= G ·F F1 ·F F ′

1 ·F {(r1 · g)
e1} ∧ Fg2

= G ·F F2 ·F F ′
2 ·F {r

e2
2 } ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {r
e2
2 })) = 1 ∧ gcd((r1 · g)e1 ,P(F ′

2)) = 1 ∧ g = gcd((r1 · g), r2)} (24)

Fi := Fi ·F {gei−min(e1,e2)} for i = 1, 2 (25)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 , gmin(e1,e2)} ∧ Fg2

= G ·F F2 ·F F ′
2 ·F {(

r2
g)e2 , gmin(e1,e2)} ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {(
r2
g)e2 , gmin(e1,e2)})) = 1 ∧ gcd((r1 · g)e1 ,P(F ′

2)) = 1 ∧

g = gcd((r1 · g), r2)} (26)

F ′2 := F ′2 ·F {(r2g)e2} (27)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 , gmin(e1,e2)} ∧ Fg2

= G ·F F2 ·F F ′
2 ·F {g

min(e1,e2)} ∧

gcd(P(F ′
1),P(F2 ·F F ′

2 ·F {g
min(e1,e2)})) = 1 ∧ gcd((r1 · g)e1 ,P(F ′

2)) = 1} (28)

G := G ·F {gmin(e1,e2)} (29)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1} (30)

end if (31)

{Fg1
= G ·F F1 ·F F ′

1 ·F {r
e1
1 } ∧ Fg2

= G ·F F2 ·F F ′
2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1} (32)

end while (33)

{Fg1 = G ·F F1 ·F F ′
1 ·F {r

e1
1 } ∧ Fg2 = G ·F F2 ·F F ′

2 ∧

gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1 ∧ gcd(r
e1
1 ,P(F ′

2)) = 1 ∧ (r1 = 1 ∨ P(F2) = 1) (34)

F ′1 := F ′1 ·F {r
e1
1 } (35)

{Fg1
= G ·F F1 ·F F ′

1 ∧ Fg2
= G ·F F2 ·F F ′

2 ∧ gcd(P(F ′
1),P(F2 ·F F ′

2)) = 1} (36)

F2 := F2 ·F F ′2 (37)

{Fg1 = G ·F F1 ·F F ′
1 ∧ Fg2 = G ·F F2 ∧ gcd(P(F ′

1),P(F2)) = 1} (38)

F ′2 := {11} (39)

{Fg1
= G ·F F1 ·F F ′

1 ∧ Fg2
= G ·F F2 ∧ gcd(P(F ′

1),P(F2)) = 1 ∧ P(F ′
2) = 1} (40)

end while (41)

{Fg1
= G ·F F ′

1 ∧ Fg2
= G ·F F2 ∧ gcd(P(F ′

1),P(F2)) = 1} (42)

return (F ′1, F2, G) (43)

end

The above assertion network is inductive.

– For the assignments, their preconditions imply their postconditions after
substituting the assigned expression for the assigned variables. (For simplicity,
we handle the first if-then-else statement in lines (14)-(15) also as atomic
assignment.)

– For the if-then-else statement in lines (17)-(31), its precondition (16) implies
the precondition (18) of the if-branch if the branching condition holds, and
the precondition (22) of the else-branch if the condition does not hold. The
postconditions (20) and (30) of both branches imply the postcondition (32)
of the if-then-else statement.

– For the outer while-loop (6)-(41), its precondition (5) as well as the postcon-
dition (40) of its body imply the precondition (7) of the body if the loop

condition holds, and they both imply the postcondition (42) of the while
loop if the loop condition does not hold.

– The inner while loop’s inductivity can be shown similarly.

That means, the assertion (42) always holds before returning, implying the
correctness of the algorithm.

The algorithm is also complete, since it always terminates: We can use as
ranking function the sum of the degrees of all polynomials in F1 for the outer
loop and in F2 for the inner loop to show their termination.

	Accelerating Parametric Probabilistic Verification

