
Introduction
Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 15, 2009

c© JPK

Advanced model checking

Model checking

• Automated model-based verification and debugging technique

– model of system = Kripke structure ≈ labeled transition system
– properties expressed in temporal logic like LTL or CTL
– provides counterexamples in case of property refutation

• Various striking examples

– Needham-Schroeder security protocol, storm surge barrier, C code

• 2008: Pioneers awarded prestigious ACM Turing Award

c© JPK 1

Advanced model checking

Course topics

• Abstraction

– bisimulation, simulation, minimization algorithms
– stutter-bisimulation, stutter trace-equivalence, divergence
– preservation of temporal logical formulae

• Partial-order reduction

– independence, ample set method, branching-time POR

c© JPK 2

Advanced model checking

Course topics

• Reduced binary decision diagrams

– Boolean functions, operations, CTL model checking with ROBDDs

• Timed automata

– semantics, region equivalence, timed reachability, zone automata, DBMs

• Probabilistic model checking

– Markov chains, probabilistic CTL, model-checking algorithms

c© JPK 3

Advanced model checking

Course organization

• Lectures: twice per week (AH6/5056, Wed + Fri; check web-page!)

• Exercises: once per week (AH2, Mon, start: April 27)

– marked exercises (50% of points needed + one example on board)
– assistent: Alexandru Mereacre and Haidi Yue

• Course material:

– book “Principles of Model Checking” (Baier & Katoen)
– several copies are available in CS library
– coverage: chapters 6.7, 7, 8, 9, and 10

• Exam: week 32 and (repetition in) week 39

c© JPK 4

Advanced model checking

Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany

“This book offers one of the most comprehensive introductions to logic model checking techniques

available today. The authors have found a way to explain both basic concepts and foundational theory

thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this

important new field, or brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)

c© JPK 5

Advanced model checking

Milestones in formal verification

• Mathematical approach towards program correctness (Turing, 1949)

• Syntax-based technique for sequential programs (Hoare, 1969)

– for a given input, does a computer program generate the correct output?
– based on compositional proof rules expressed in predicate logic

• Syntax-based technique for concurrent programs (Pnueli, 1977)

– can handle properties referring to situations during the computation
– based on proof rules expressed in temporal logic

• Automated verification of concurrent programs (Emerson & Clarke, 1981)

– model-based instead of proof-rule based approach
– does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

c© JPK 6

Advanced model checking

Model checking overview

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient
memory

counterexample
Simulation location

error

system

violated +

Model Checking

requirements

Formalizing Modeling

system model
property

specification

c© JPK 7

Advanced model checking

Models := transition systems

A transition system TS is a tuple (S, Act,→, I, AP, L) where

• S is a set of states

• Act is a set of actions

• −→ ⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−→ s′ instead of
`
s, α, s′

´ ∈ −→

c© JPK 8

Advanced model checking

Paths

• An infinite path fragment π is an infinite state sequence:

s0 s1 s2 . . . such that si ∈ Post(si−1) for all i > 0

• Notations for path fragment π = s0 s1 s2 . . .:

– first(π) = s0 = π[0]; let π[j] = sj denote the j-th state of π
– j-th prefix π[..j] = s0 s1 . . . sj and j-th suffix π[j..] = sj sj+1 . . .

• A path of TS is an initial, maximal path fragment

– a maximal path fragment cannot be prolonged
– a path fragment is initial if s0 ∈ I

• Paths(s) is the set of maximal path fragments π with first(π) = s

c© JPK 9

Advanced model checking

Example

c© JPK 10

Advanced model checking

Traces

• Actions are mainly used to model the (possibility of) interaction

– synchronous or asynchronous communication

• Here, focus on the states that are visited during executions

– the states themselves are not “observable”, but just their atomic propositions

• Traces are sequences of the form L(s0) L(s1) L(s2) . . .

– just register the (set of) atomic propositions that are valid along the execution

• For transition systems without terminal states:

– traces are infinite words over the alphabet 2AP, i.e., they are in
“
2AP

”ω
– we will (mostly) assume that there are no terminal states

c© JPK 11

Advanced model checking

Traces

• Let transition system TS = (S, Act,→, I, AP, L) without terminal
states

• The trace of π = s0 s1 . . . is trace(π) = L(s0)L(s1) . . .

– the trace of path fragment bπ = s0 s1 . . . sn is trace(bπ) = L(s0)L(s1) . . . L(sn).

• For set Π of paths: trace(Π) = { trace(π) | π ∈ Π }

• The traces of a state s: Traces(s) = trace(Paths(s))

• And the traces of a transition system: Traces(TS) =
⋃
s∈I Traces(s)

c© JPK 12

Advanced model checking

Linear-time properties

• Linear-time properties specify the traces that a TS must exhibit

– LT-property specifies the admissible behaviour of the system
– later, a logical formalism will be introduced for specifying LT properties

• A linear-time property (LT property) over AP is a subset of
(
2AP

)ω
– finite words are not needed, as it is assumed that there are no terminal states

• TS (over AP) satisfies LT-property P (over AP):

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its “observable” behaviors are admissible

c© JPK 13

Advanced model checking

LTL: a logic for LT properties

[Pnueli 1977]

• Propositional logic

– a ∈ AP atomic proposition
– ¬φ and φ ∧ ψ negation and conjunction

• Temporal operators

– ©φ neXt state fulfills φ
– φUψ φ holds Until a ψ-state is reached

• Auxiliary temporal operators

– �φ ≡ true Uφ eventually φ
– �φ ≡ ¬�¬φ always φ

c© JPK 14

Advanced model checking

Semantics over words

The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{

σ ∈ (
2AP)ω | σ |= ϕ

}
, where |= is the smallest relation satisfying:

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ �|= ϕ

σ |= ©ϕ iff σ[1..] = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j � 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, 0 � i < j

c© JPK 15

Advanced model checking

Semantics over paths and states

Let TS = (S, Act,→, I, AP, L) be a transition system and ϕ be an LTL-
formula over AP.

• For infinite path fragment π of TS:

π |= ϕ iff trace(π) |= ϕ

• For state s ∈ S:

s |= ϕ iff ∀π ∈ Paths(s). π |= ϕ

• TS satisfies ϕ, denoted TS |= ϕ, if Traces(TS) ⊆ Words(ϕ)

c© JPK 16

Advanced model checking

Trace equivalence, LT properties, and LTL

For TS and TS′ be finite transition systems (over AP):

Traces(TS) = Traces(TS′)

if and only if`∀LT property P. TS |= P iff TS′ |= P
´

Traces(TS) = Traces(TS′)

implies`∀LTL formula ϕ. TS |= ϕ iff TS′ |= ϕ
´

c© JPK 17

Advanced model checking

Model-checking time complexities

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity O((N+M)·2|Φ |)

– linear in the size of TS and exponential in the size of Φ

• Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ |)
– linear in the size of TS and in the size of Φ

• Can TS be made smaller prior or during model checking?

– Yes. This is the main idea behind abstraction.

c© JPK 18

Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) T̂S prior or during model checking

Relevant issues:

• What is the formal relationship between TS and T̂S?

• Can T̂S be obtained algorithmically and efficiently?

• Which logical fragment (of LTL, CTL, CTL∗) is preserved?

• And in what sense?

– “strong” preservation: positive and negative results carry over
– “weak” preservation: only positive results carry over
– “match”: logic equivalence coincides with formal relation

c© JPK 19

Advanced model checking

Checking trace equivalence is PSPACE-complete

c© JPK 20

