© JPK

Introduction
Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

April 15, 2009

Advanced model checking

Model checking

e Automated model-based verification and debugging technique

— model of system = Kripke structure =~ labeled transition system
— properties expressed in temporal logic like LTL or CTL
— provides counterexamples in case of property refutation

e Various striking examples

— Needham-Schroeder security protocol, storm surge barrier, C code

e 2008: Pioneers awarded prestigious ACM Turing Award

© JPK

Advanced model checking

Course topics

e Abstraction

— bisimulation, simulation, minimization algorithms
— stutter-bisimulation, stutter trace-equivalence, divergence
— preservation of temporal logical formulae

e Partial-order reduction

— independence, ample set method, branching-time POR

© JPK

Advanced model checking

Course topics

e Reduced binary decision diagrams

— Boolean functions, operations, CTL model checking with ROBDDs

e Timed automata

— semantics, region equivalence, timed reachability, zone automata, DBMs

e Probabilistic model checking

— Markov chains, probabilistic CTL, model-checking algorithms

© JPK

Advanced model checking

Course organization

e Lectures: twice per week (AH6/5056, Wed + Fri; check web-page!)

e Exercises: once per week (AH2, Mon, start: April 27)

— marked exercises (50% of points needed + one example on board)
— assistent: Alexandru Mereacre and Haidi Yue

e Course material:

— book “Principles of Model Checking” (Baier & Katoen)
— several copies are available in CS library
— coverage: chapters 6.7, 7, 8, 9, and 10

e Exam: week 32 and (repetition in) week 39

© JPK 4

Advanced model checking Mm

Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

“This book offers one of the most comprehensive introductions to logic model checking techniques
available today. The authors have found a way to explain both basic concepts and foundational theory
thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this
important new field, or brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)

© JPK 5

Advanced model checking

Milestones in formal verification

e Mathematical approach towards program correctness (Turing, 1949)

e Syntax-based technique for sequential programs (Hoare, 1969)

— for a given input, does a computer program generate the correct output?
— based on compositional proof rules expressed in predicate logic

e Syntax-based technique for concurrent programs (Pnueli, 1977)

— can handle properties referring to situations during the computation
— based on proof rules expressed in temporal logic

e Automated verification of concurrent programs (Emerson & Clarke, 1981)

— model-based instead of proof-rule based approach
— does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

© JPK 6

Advanced model checking RWTH=

Model checking overview

.
“‘not biased towards the

l most probable scenarios'”’

Formalizing

Modeling

property

specification system model

™| Model Checking [+

violated +
counterexample

insufficient
memory

S
; ; location
Simulation |——= ETeT,

© JPK

Advanced model checking

Models :=transition systems

A transition system TS is a tuple (S, Act,—, I, AP, L) where

e S is a set of states
Act is a set of actions
—— C § x Act x S'is a transition relation

o

o

e | C Sisa set of initial states

e AP is a set of atomic propositions
o

L:S—2°Pisa labeling function

S and Act are either finite or countably infinite

Notation: s - s’ instead of (s, o, s') € —

© JPK 8

Advanced model checking

Paths

e An infinite path fragment = is an infinite state sequence:

SpS182... such that s; € POSt(Si_l) forallz > 0O

e Notations for path fragment 7 = sg s155...:
— first(m) = so = 7[0]; let w[j] = s; denote the j-th state of =

- j-th prefix 7T[j] = S9S81.--8j and]-th suffix 7'('[]] = S Sj+1. - -

e A path of TS is an initial, maximal path fragment

— a maximal path fragment cannot be prolonged
— a path fragment is initial if sg € I

e Paths(s) is the set of maximal path fragments 7 with first(7) = s

© JPK

Advanced model checking

Example

© JPK

10

Advanced model checking

Traces

e Actions are mainly used to model the (possibility of) interaction

— synchronous or asynchronous communication

e Here, focus on the states that are visited during executions

— the states themselves are not “observable”, but just their atomic propositions

e Traces are sequences of the form L(sg) L(s1) L(s2) . ..

— just register the (set of) atomic propositions that are valid along the execution

e For transition systems without terminal states:

— traces are infinite words over the alphabet 2P e, they are in (QAP)
— we will (mostly) assume that there are no terminal states

© JPK 11

Advanced model checking

Traces

e Let transition system TS = (S,Act,—, I, AP, L) without terminal
states

e The trace of m = sps1... IS trace(w) = L(sg) L(s1) . --

— thetrace of path fragment @ = sgs1 ... spistrace(w) = L(sg) L(s1) ... L(sy).
e For set II of paths: trace(Il) = {trace(r) | 7 € I1 }
e The traces of a state s: Traces(s) = trace(Paths(s))

e And the traces of a transition system: Traces(TS) = J,.; Traces(s)

© JPK 12

Advanced model checking

Linear-time properties

e Linear-time properties specify the traces that a TS must exhibit

— LT-property specifies the admissible behaviour of the system
— later, a logical formalism will be introduced for specifying LT properties

e Alinear-time property (LT property) over AP is a subset of (2AP)"

— finite words are not needed, as it is assumed that there are no terminal states
e TS (over AP) satisfies LT-property P (over AP):

TS =P ifandonlyif Traces(TS) C P

— TS satisfies the LT property P if all its “observable” behaviors are admissible

© JPK 13

Advanced model checking

LTL: a logic for LT properties

e Propositional logic

— a € AP
— mgpand o A Y

e Temporal operators

- O9
- ¢oU%y

e Auxiliary temporal operators

— O =truelU ¢
— ngE —|<>—|¢

[Pnueli 1977]

atomic proposition
negation and conjunction

neXt state fulfills ¢
¢ holds Until a -state is reached

eventually ¢
always ¢

© JPK

14

Advanced model checking

Semantics over words

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {O‘ S (QAP)w | o = gp},where = is the smallest relation satisfying:

o = true

o = a iff ac Ay (e, Ag =a)

o E piApy iff oFEpiando = g

o = - Iff o~

o E QOp iff of[l.]=A14A45... =¢p

o E opiUpy iff 3520.0[j..] Ews and oli.] E 1, 0<i<j

© JPK 15

Advanced model checking

Semantics over paths and states

Let TS = (S, Act, —, I, AP, L) be a transition system and ¢ be an LTL-
formula over AP.

e For infinite path fragment = of TS:

TE iff trace(n) = ¢

e For state s € S

s Ep iff VmePaths(s). m =

e TS satisfies p, denoted TS ¢, if Traces(TS) C Words(y)

© JPK 16

Advanced model checking

Trace equivalence, LT properties, and LTL

For TS and TS’ be finite transition systems (over AP):

Traces(TS) = Traces(TS’)
if and only if
(VLT property P. TS = P iff TS' = P)

Traces(TS) = Traces(TS’)
implies

(VLTL formula . TS = @ iff TS' =)

© JPK

17

Advanced model checking

Model-checking time complexities

e Let TS be a transition system with IV states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2/®1)

— linear in the size of TS and exponential in the size of &

e Model-checking CTL-formula ® has time-complexity O((N+M)-| ®|)

— linear in the size of TS and in the size of &

e Can TS be made smaller prior or during model checking?

— Yes. This is the main idea behind abstraction.

© JPK 18

Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) TS prior or during model checking

Relevant issues:

e What is the formal relationship between TS and TS?

e Can TS be obtained algorithmically and efficiently?

e Which logical fragment (of LTL, CTL, CTL*) is preserved?

e And in what sense?

— “strong” preservation: positive and negative results carry over
— “weak” preservation: only positive results carry over
— “match”: logic equivalence coincides with formal relation

© JPK 19

Advanced model checking

Checking trace equivalence is PSPACE-complete

© JPK

20

