
Symbolic CTL Model Checking
Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 27, 2009

c© JPK

Advanced model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃©Φ

∣∣∣ ∃(Φ1 UΦ2)
∣∣∣ ∃� Φ

For each CTL formula, there exists an equivalent CTL formula in ENF

c© JPK 1

Advanced model checking

CTL model checking

• Convert the formula Φ′ into an equivalent Φ in ENF

• How to check whether state TS satisfies Φ?

– compute recursively the set Sat(Φ) of states that satisfy Φ

– check whether all initial states belong to Sat(Φ)

• Recursive bottom-up computation:

– consider the parse-tree of Φ

– start to compute Sat(a), for all leafs in the tree
– then go one level up in the tree and check the formula of these nodes
– then go one level up and check the formula of these nodes
– and so on....... until the root of the tree (i.e., Φ) is checked

c© JPK 2

Advanced model checking

Example

∧ Sat(Φ)

∃©Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃� Sat(Ψ′′)

¬

c

Φ = ∃© a︸ ︷︷ ︸
Ψ

∧ ∃(bU ∃�¬c)︸ ︷︷ ︸
Ψ′′︸ ︷︷ ︸

Ψ′

.

c© JPK 3

Advanced model checking

Characterization of Sat (1)

For all CTL formulas Φ, Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) �= ∅ }

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 4

Advanced model checking

Characterization of Sat (2)

For all CTL formulas Φ, Ψ over AP it holds:

• Sat(∃(Φ UΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and

(2) s ∈ Sat(Φ) and Post(s) ∩ T �= ∅ implies s ∈ T

• Sat(∃�Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and

(4) s ∈ T implies Post(s) ∩ T �= ∅

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 5

Advanced model checking

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . :
∃©Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) �= ∅ };
∃(Φ1 U Φ2) : T := Sat(Φ2); (* compute the smallest fixed point *)

while Sat(Φ1) \ T ∩ Pre(T) �= ∅ do
let s ∈ Sat(Φ1) \ T ∩ Pre(T);
T := T ∪ { s };

od;
return T ;

∃� Ψ : T := Sat(Ψ); (* compute the greatest fixed point *)
while ∃s ∈ T. Post(s) ∩ T = ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 6

Advanced model checking

Symbolic model checking

• Represent sets of states and of transitions symbolically

– this set-based approach is very natural for CTL

• Prominent symbolic approach:

– encode states as binary strings, e.g., s0 = 0000

– and identify subsets of states and the transition relation by switching functions

• How to represent switching functions?

– DNF, truth tables, binary decision trees,

– CNF — this is used in SAT-based model checking
– binary decision diagrams (ROBDDs)

c© JPK 7

Advanced model checking

Basic approach

• let TS = (S,→, I, AP, L) be a “large” finite transition system

– the set of actions is irrelevant here and has been omitted, i.e.,→⊆ S × S

• For n � �log |S|	, let injective function enc : S → { 0, 1 }n
– note: enc(S) = {0, 1}n is no restriction, as all elements { 0, 1 }n \ enc(S)

can be treated as the encoding of pseudo states that are unreachable

• Identify the states s ∈ S = enc−1({ 0, 1 }n) with enc(s) ∈ {0, 1}n

• And T ⊆ S by its characteristic function χT : { 0, 1 }n → { 0, 1 }
– that is χT(enc(s)) = 1 if and only if s ∈ T

• And→⊆ S × S by the Boolean function ∆ : { 0, 1 }2n→ { 0, 1 }
– such that ∆

`
enc(s), enc(s′)

´
= 1 if and only if s→ s′

c© JPK 8

Advanced model checking

Switching functions

• Let Var = {z1, . . . , zm} be a finite set of Boolean variables

• An evaluation is a function η : Var→ { 0, 1 }
– let Eval(z1, . . . , zm) denote the set of evaluations for z1, . . . , zm

– shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm

• Notations:

– z denotes the variable tuple (z1, . . . , zm)

– b denotes the bit tuple (b1, . . . , bm) ∈ {0, 1}m

– [z = b] denotes [z1 = b1, . . . , zm = bm]

• f : Eval(Var)→ { 0, 1 } is a switching function for Var = {z1, . . . , zm}
– the switching functions for the empty variable set are just constants 0 or 1

c© JPK 9

Advanced model checking

Logical operations on switching functions

• Boolean connectives for switching functions are straightforward

– e.g., let switching function f1 for { z1, . . . , zn, . . . , zm } and
– switching function f2 for { zn, . . . , zm, . . . , zk } with 0 � n � m � k

– then the switching function f1∨f2 and f1∧f2 for {z1, . . . , zk} are defined by:

(f1∨ f2)([z1 = b1, . . . , zk = bk])

= max
n

f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk])
o

and

(f1∧ f2)([z1 = b1, . . . , zk = bk])

= min
n

f1([z1 = b1, . . . , zm = bm]), f2([zn = bn, . . . , zk = bk])
o

• Let zi denote the projection function przi : Eval(z)→ { 0, 1 } with

przi([z = b]) = bi and 0 or 1 for constant switching functions

c© JPK 10

Advanced model checking

Cofactors

Let f : Eval(z , y1, . . . , ym)→ { 0, 1 } be a switching function

• The positive cofactor of f for variable z is the switching function f |z=1:

f |z=1(c, b1, . . . , bm) = f(1, b1, . . . , bm)

• The negative cofactor of f for z is the switching function f |z=0:

f |z=0(c, b1, . . . , bm) = f(0, b1, . . . , bm)

• For switching function f for { z1, . . . , zk, y1, . . . , ym }, the iterated
cofactor of f is

f |z1=b1,...,zk=bk
= (. . . (f |z1=b1)|z2=b2 . . .) |zk=bk

c© JPK 11

Advanced model checking

Example

c© JPK 12

Advanced model checking

Shannon expansion

• If f is a switching function for Var, then for each variable z ∈ Var:

f = (¬z ∧ f |z=0) ∨ (z ∧ f |z=1)︸ ︷︷ ︸
Shannon expansion

• Variable z is essential for f if f |z=0 �= f |z=1; else it is not essential

c© JPK 13

Advanced model checking

Binary decision tree

• Let Var be a set of Boolean variables and < a total order on Var

• Binary decision tree (BDT) is a complete binary tree over 〈Var, <〉
– each leaf v is labeled with a boolean value val(v) ∈ { 0, 1 }
– non-leaf v is labeled by a boolean variable Var(v) ∈ Var
– such that for each non-leaf v and vertex w:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ On each path from root to leaf, variables occur in the same order

c© JPK 14

Advanced model checking

Binary decision tree

z1

z2 z2

z3 z3 z3 z3

1 0 1 1 0 0 0 0

binary decision tree (BDT) for z1 ∧ (¬z2 ∨ z3)

satisfying assignments [z1 = 1, z2 = 0, z3 = 0], [z1 = 1, z2 = 0, z3 = 1] and
[z1 = 1, z2 = 1, z3 = 1]

c© JPK 15

Advanced model checking

Binary decision tree

• The BDT for function f on Var = { z1, . . . , zm } has depth m

– outgoing edges for node at level i stand for zi = 0 (dashed) and zi = 1 (solid)

• For evaluation s = [z1 = b1, . . . , zm = bm], f(s) is the value of the leaf

– reached by traversing the BDT from the root using branch zi = bi for at level i

• The subtree of node v at level i for variable ordering z1 < . . . < zm

represents
the iterated cofactor f |z1=b1,...,zi−1=bi−1

– which is a switching function over { zi, . . . , zm } and
– where z1 = b1, . . . , zi−1 = bi−1 is the sequence of decisions made along the

path from the root to node v

c© JPK 16

Advanced model checking

Existential and universal quantification

Let f be a switching function for Var and z ∈ Var

• ∃z .f is the switching function given by ∃z .f = f |z=0∨ f |z=1

– if z = (z1, . . . , zk), then ∃z .f abbreviates ∃z1.∃z2. . . . ∃zk.f

• ∀z .f is the switching function given by ∀z .f = f |z=0∧ f |z=1

– if z = (z1, . . . , zk), then ∀z .f abbreviates ∀z1.∀z2. . . . ∀zk.f

• Let f(z , y1, y2) = (z ∨ y1) ∧ (¬z ∨ y2). Then:

– ∃z .f = f |z=0 ∨ f |z=1 = y1 ∨ y2, and
– ∀z .f = f |z=0 ∧ f |z=1 = y1 ∧ y2

c© JPK 17

Advanced model checking

Renaming

Let z = (z1, . . . , zm), y = (y1, . . . , ym) and x = (x1, . . . , xk) such that no zi and yi

occur in x

• For evaluation s = [y = b] ∈ Eval(y , x), evaluation s{z ← y}
– agrees with s for the variables in x
– and assigns the same value b ∈ { 0, 1 } to variable zi as s to variable yi

• For f on Eval(y , x), f{z ← y} on Eval(z , x) is given by

f{z ← y}(s) = f(s{z ← y})

– that is, f{z ← y}([y = b, x = c]) = f([z = b, x = c])

c© JPK 18

Advanced model checking

Transition systems as switching functions

• Encode state s by n � �log |S|	 Boolean variables x1, . . . , xn

– identify [x1 = b1, . . . , xn = bn] with s ∈ S such that enc(s) = (b1, . . . , bn)

– assume S = Eval(x)

• Represent I ⊆ S by the characteristic function χI : Eval(x)→ { 0, 1 }

• Represent labeling L by a family (fa)a∈AP of switching functions for x

– where for a ∈ AP, fa = χSat(a) represents the set Sat(a)

• Represent→⊆ S × S by its characteristic function

c© JPK 19

Advanced model checking

Encoding the transition relation

• Represent→⊆ S × S by its characteristic function

– identify→ with a function ∆ : S×S → { 0, 1 } such that ∆(s, t) = 1 iff s→ t

• Encode start and target state by x = (x1, . . . , xn) and x ′ = (x ′1, . . . , x
′
n)

– that is, for each variable xi introduce a (copy) variable x ′i

• Represent the transition relation→ by the switching function

∆ : Eval(x , x ′)→ { 0, 1 } with ∆(s, t{x ′ ← x}) =

(
1 if s→ t

0 otherwise

c© JPK 20

Advanced model checking

Example encoding transition relation

• Let S = { s0, s1 } and s0→ s0, s0→ s1, and s1→ s0

• Use a single Boolean variable x1 = x for the encoding

– say enc(s0) = 0 and enc(s1) = 1

• → is represented by switching function ∆ : Eval(x , x ′)→ { 0, 1 } with

∆ = ¬x ∨ ¬x ′

– satisfying assignments are: [x = 0, x ′ = 0]| {z }
s0→s0

, [x = 0, x ′ = 1]| {z }
s0→s1

, and [x = 1, x ′ = 0]| {z }
s1→s0

c© JPK 21

Advanced model checking

Explicitly representing transition systems

TS = (S,→, I, AP, L) with |S| = n and |AP| = k:

• Identify the n states by numbers

• Represent the set of initial states I as boolean vector i

– i(sj) = 1 if and only if state sj ∈ I

• Represent→ by a boolean matrix T of size n×n

– T(si, sj) = 1 if and only if si → sj

• Represent L by an n×k-boolean matrix L

– L(si, aj) = 1 if and only if aj ∈ L(si)

⇒ Use sparse matrix representations for T and L

c© JPK 22

Advanced model checking

Explicit representation: an example

s0 s1

s3 s2

a

b{ a, b }

∅

i =




1

0

1

0


 and T =




0 1 0 1

0 1 1 0

0 1 1 1

1 0 1 1


 and L =




0 0

0 1

1 0

1 1




c© JPK 23

Advanced model checking

Symbolic representation: an example (1)

s0 s1

s3 s2

a

b{ a, b }

∅

• States:

state enc(si) switching function
s0 (0, 0) ¬ x1∧ ¬x2

s1 (0, 1) ¬x1∧ x2

s2 (1, 0) x1∧ ¬ x2

s3 (1, 1) x1∧x2

• Initial states: χI(x1, x2) = (¬x1∧ ¬x2) ∨ (x1∧ ¬x2)

c© JPK 24

Advanced model checking

Symbolic representation: an example (2)

• Transition relation:

∆ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 1 0 1
(0, 1) 0 1 1 0
(1, 0) 0 1 1 1
(1, 1) 1 0 1 1

• Switching function: ∆(x1, x2| {z }
s

, x′1, x′2| {z }
s′

) = 1 if and only if s→ s′

∆(x1, x2, x′1, x′2) = (¬ x1 ∧ ¬x2 ∧ ¬x′1 ∧ x′2)
∨ (¬ x1 ∧ ¬x2 ∧ x′1 ∧ x′2)
∨ (¬ x1 ∧ x2 ∧ x′1 ∧ ¬ x′2)
∨ . . .

∨ (x1 ∧ x2 ∧ x′1 ∧ x′2)

c© JPK 25

Advanced model checking

Transition relation as a BDT

1 0 1 0 1 1 0 0 1 1 1 01 1 10

x′2 x′2 x′2 x′2

x′1 x′1

x2

x1

x′1

x′2 x′2

x′1

x2

x′2x′2

A BDT representing ∆ for our example using ordering x1 < x2 < x′1 < x′2

c© JPK 26

Advanced model checking

Successor sets

• A switching function for Post(s) = { s′ ∈ S | s→ s′ } is obtained by:

χPost(s) = (∆|x1=b1,...,xn=bn) {x ′ ← x}

• Example for our two-state transition system: Post(s0) = { s0, s1 }
(∆|x=0) {x′ ← x} = ((¬x ∨ ¬x′)|x=0)︸ ︷︷ ︸

=1

{x′ ← x} = 1

• And for Post(s1) = { s0 } we obtain

(∆|x=1) {x′ ← x} = ((¬x ∨ ¬x′)|x=1)︸ ︷︷ ︸
=¬x′

{x′ ← x} = ¬x

c© JPK 27

Advanced model checking

Symbolic model checking (1)

• For the propositional fragment of CTL, Sat can be computed
symbolically

• What about the temporal operators ∃© , ∃U and ∃� ?

• Enumeratively:

Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) �= ∅ }

• Symbolically:

χSat(∃©Φ) = ∃x ′. (∆(x , x ′)︸ ︷︷ ︸
s′ ∈ Post(s)

∧ χSat(Φ)(x ′)︸ ︷︷ ︸
s′∈Sat(Φ)

)

c© JPK 28

Advanced model checking

Symbolic model checking (2)
Computation of Sat(∃(Φ UΨ)):

T0 := Sat(Ψ); j := 0;
repeat

Tj+1 := Tj(x) ∪
“

Sat(Φ) ∩ { s ∈ S | ∃s′ ∈ S. s′ ∈ Post(s) ∩ Tj }
”

;
j := j + 1;

until Tj = Tj−1

return Tj.

Symbolic computation of Sat(∃(Φ UΨ)):
f0(x) := χSat(Ψ)(x); j := 0;
repeat

fj+1(x) := fj(x) ∨
“

χSat(Φ)(x) ∧ ∃x ′. (∆(x , x ′)| {z }
s′ ∈ Post(s)

∧ fj(x
′)| {z }

s′∈Tj

)
”

;

j := j + 1;
until fj(x) = fj−1(x)

return fj(x).

c© JPK 29

Advanced model checking

Symbolic model checking (3)

Computation of Sat(∃�Φ):
T0 := Sat(Φ); j := 0;
repeat

Tj+1 := Tj ∩ { s ∈ S | Post(s) ∩ Tj �= ∅ };
j := j + 1

until Tj = Tj−1;
return Tj.

Symbolic computation of Sat(∃�Φ):
f0(x) := χSat(Φ)(x); j := 0;
repeat

fj+1(x) := fj(x) ∧ ∃x ′. (∆(x , x ′) ∧ fj(x ′));
j := j + 1

until fj(x) = fj−1(x);
return fj(x).

c© JPK 30

