© JPK

Symbolic CTL Model Checking
Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

May 27, 2009

Advanced model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

o

L= true ‘ a ‘ O1 A Do | - | 30 @ | 3@, Ud,) | 300

For each CTL formula, there exists an equivalent CTL formula in ENF

© JPK

Advanced model checking

CTL model checking

e Convert the formula @’ into an equivalent ® in ENF

e How to check whether state TS satisfies ¢?

— compute recursively the set Sat(®) of states that satisfy &
— check whether all initial states belong to Sat(®)

e Recursive bottom-up computation:

— consider the parse-tree of $

— start to compute Sat(a), for all leafs in the tree

— then go one level up in the tree and check the formula of these nodes
— then go one level up and check the formula of these nodes

— and so on....... until the root of the tree (i.e., ®) is checked

© JPK

Advanced model checking

g N
N

© JPK 3

Advanced model checking

Characterization of Sat (1)

For all C'T'L formulas ®, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {seS|aeL(s)}, foranya e AP
Sat(® A¥) = Sat(®) N Sat(V¥)
Sat(—-®) = S\ Sat(®)
Sat(30O®) = {se€ S| Post(s)NSat(®) # <}

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 4

Advanced model checking

Characterization of Sat (2)

For all C'T'L formulas ¢, ¥ over AP it holds:

e Sat(d(P UW)) is the smallest subset T" of S, such that:
(1) Sat(w) C T and

(2) s € Sat(®) and Post(s) NI # @ impliess € T

e Sat(dO ®) is the largest subset T" of S, such that:

(3) T C Sat(®) and

(4) s € T implies Post(s) N T # @

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 5

Advanced model checking

switch(®):

a
30 W
(P, U Do)

J10 W

end switch

Computation of Sat

return {s € S| a € L(s) };

return { s € S | Post(s) N Sat(V) # @ };

T := Sat(®Ps); (* compute the smallest fixed point *)
while Sat(®q) \ T"N Pre(T") # @ do
let s € Sat(®1) \ 7' N Pre(T);
T:=T U {s}
od;
return 1+

T := Sat(V); (* compute the greatest fixed point *)
while 3s € T. Post(s) N T = @ do

let s€ {se& T |Post(s)NT =2 };
T :=T\{s};
od;
return T+

© JPK

Advanced model checking

Symbolic model checking

e Represent sets of states and of transitions symbolically

— this set-based approach is very natural for CTL

e Prominent symbolic approach:

— encode states as binary strings, e.g., sp = 0000

— and identify subsets of states and the transition relation by switching functions
e How to represent switching functions?

— DNF, truth tables, binary decision trees,
— CNF — this is used in SAT-based model checking
— binary decision diagrams (ROBDDSs)

© JPK .

Advanced model checking

Basic approach

e let TS = (5,—,I,AP, L) be a “large” finite transition system

— the set of actions is irrelevant here and has been omitted, i.e., -C S x S

e Forn > [log|S

|, let injective functionenc : S — {0,1}"

— note: enc(S) = {0, 1}" is no restriction, as all elements { 0,1 }™ \ enc(S)
can be treated as the encoding of pseudo states that are unreachable

e Identify the states s € S = enc™!({ 0,1 }") with enc(s) € {0,1}"

e And T C S by its characteristic function xyo: {0,1}" — {0,1}

— thatis xr(enc(s)) = 1ifandonlyifs € T
e And — C S x S by the Boolean function A : {0,1}°" — {0,1}

— such that A (enc(s),enc(s’)) = lifandonly if s — s

© JPK 8

Advanced model checking

Switching functions

e LetVar = {z,...,z2,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(zy, . . ., z,) denote the set of evaluations for zy, . . ., z,
— shorthand [z; = b1, ..., 2, = bp] forn(z) = b1, ..., m(2m) = by
e Notations:
-z denotes the variable tuple (z1, ..., zn)
— b denotes the bit tuple (b4, . .., b,) € {0, 1}™
— [z = b] denotes [z1 = b1, ..., zZm = b
e f:Eval(Var) — {0,1} is a switching function for Var = {z, ..., 2z}

the switching functions for the empty variable set are just constants O or 1

© JPK

Advanced model checking

Logical operations on switching functions

e Boolean connectives for switching functions are straightforward

— e.g., let switching function f; for { z1, ..., 24, ..., 2z } and
— switching function fofor { z,, ..., zm, - - ., 2z fWIthO < n < m < k
— then the switching function f1V fo and fiA fo for {z, ..., 2} are defined by:

(fiV fo)([sa =b1,..., 2 = b))

- max{ Fillzr = b1y ooy 2m = bl)y Fo([2m = by e v vy 26 = bk])} and
(fiNf2)([21 = b1, ooy 2 = b))

- min{ Fillz = bu, ooy 2 = bn]), Fo([2m = by ooy 2 = b)) }

e Let z; denote the projection function pr, : Eval(z) — { 0,1 } with

pr.([z = b]) = b; and 0 or 1 for constant switching functions

© JPK

Advanced model checking

Cofactors
Let f : Eval(z, y1,...,ym) — {0,1} be a switching function

e The positive cofactor of f for variable z is the switching function f|,—_:

flo=1(c,b1,. .. b)) = f(1,01,...,bm)

e The negative cofactor of f for z is the switching function f|,_:

f‘zzo(c, bl, cee bm) — f(O, bl, cee bm)

e For switching function f for {z;,...,2k,v1,-..,ym }, the iterated
cofactor of f is

f‘Z1=bl,---,Zk:bk — (. (f‘z1=bl>‘Z2=bz .) |Zk;:bk

© JPK 11

Advanced model checking

Example

© JPK

12

Advanced model checking

Shannon expansion

e If fis a switching function for Var, then for each variable z € Var:

[= £—|Z A fli=0) V (2 A f‘zzll

~
Shannon expansion

e Variable z is essential for f if f|,—o # f|.=1; else it is not essential

© JPK

13

Advanced model checking

Binary decision tree

e Let Var be a set of Boolean variables and < a total order on Var

e Binary decision tree (BDT) is a complete binary tree over (Var, <)

— each leaf v is labeled with a boolean value val(v) € { 0,1}
— non-leaf v is labeled by a boolean variable Var(v) € Var
— such that for each non-leaf v and vertex w:

w € {left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)

= On each path from root to leaf, variables occur in the same order

© JPK 14

Advanced model checking

Binary decision tree

binary decision tree (BDT) for z; A (-2 V 23)

satisfying assignments [z = 1,2 = 0,23 = 0], [z1 = 1, 22 = 0, z3 = 1] and
[Zl = 1,22 = 1,Z3 = 1]

© JPK

15

Advanced model checking

Binary decision tree

e The BDT for function f on Var = { 2, ..., z,, } has depth m

— outgoing edges for node at level ¢ stand for z; = 0 (dashed) and z; = 1 (solid)

e For evaluation s = [y = by, ..., 2 = by, f(s) Is the value of the leaf

— reached by traversing the BDT from the root using branch z; = b, for at level ¢

e The subtree of node v at level ¢ for variable ordering z; < ... < z,,
represents

the iterated cofactor f|, —p,... . ,=b;, ,

— which is a switching function over { z;, . . ., z,, } and

— where z; = by,...,2_1 = b;_1 Is the sequence of decisions made along the
path from the root to node v

© JPK 16

Advanced model checking

Existential and universal quantification

Let f be a switching function for Var and z € Var

e Jz.f is the switching function given by Jz.f = f|.—oV f|.=1

— ifz = (2z,...,2), then 3z. f abbreviates 3z;.32. ... 3z. f

e Vz.f is the switching function given by Vz.f = fl.—o A fl.=1

—ifz = (2z,...,2), then Vz. f abbreviates Vz;.Vz. ... Vz.f

o Let f(z,y1,42) = (#Vy) A(—2 V). Then:

— dz.f = f|z:O\/f|z:1 = 1 V 12, and
- Vz.f = f|z:0/\f|z:1 = U1 N\ Y2

© JPK 17

Advanced model checking

Renaming

letz = (z1,-+-5,20), 0 = (Y1, .-+, yn)andz = (1, ..., x,) Such that no z; and y;
occurinz

e For evaluation s = [y = b] € Eval(7, z), evaluation s{z « 7}

— agrees with s for the variables in =
— and assigns the same value b € { 0, 1 } to variable z; as s to variable y;

e For f on Eval(y,7), f{Z «— 7} on Eval(Z,) is given by

fiZ =7i(s) = f(siZ = 7})

— thatis, f{z — 7} ([y=b,2=7]) = f([z=0,T =7)

© JPK 18

Advanced model checking

Transition systems as switching functions

e Encode state s by n > [log |S|| Boolean variables z1, ..., x,

— identify [z; = by, ..., x, = b,] with s € S such thatenc(s) = (b1, ..., by,)
— assume S = Eval(7)

e Represent I C S by the characteristic function y; : Eval(z) — { 0,1}

e Represent labeling L by a family (f,).cap Of switching functions for =

— Where for a € AP, fo = Xgat(q) represents the set Sat(a)

e Represent — C S x S by its characteristic function

© JPK 19

Advanced model checking

Encoding the transition relation

e Represent — C S x S by its characteristic function

— identify — with a function A : S xS — {0,1 } suchthat A(s,t) = 1iffs — ¢

e Encode startand targetstateby 7 = (z1,...,2,) and 7’ = (z{,...,z))

— that is, for each variable z; introduce a (copy) variable z;

e Represent the transition relation — by the switching function

, _) 1 ifs — ¢t
A :Eval(z, 7)) — {0,1} with A(s,t{z «—7}) =
0 otherwise

© JPK 20

Advanced model checking

Example encoding transition relation

[LetS:{SO,sl}and So — So, S()—>81,and S1 — 8o

e Use a single Boolean variable z; = x for the encoding

— say enc(sp) = 0andenc(s;) =1
e — is represented by switching function A : Eval(z,z’) — {0, 1 } with
A= —-xV 1

— satisfying assignmentsare: [z = 0,z' = 0], [z = 0,2’ = 1],and [z = 1,2" = 0]
SO‘—:SO SO‘—:Sl Sl‘—:SO

© JPK 21

Advanced model checking

Explicitly representing transition systems
TS = (S, —,I,AP, L) with |S| = n and |AP| = k:

e Identify the n states by numbers

e Represent the set of initial states I as boolean vector ¢
— i(s;) = lifand only if state s; € I

e Represent — by a boolean matrix T of size nxn
— T(si,s;) = lifandonlyif s; — s;

e Represent L by an nxk-boolean matrix L
— L(s;,a;) = 1ifandonly if a; € L(s;)

= Use sparse matrix representations for T and L

© JPK

22

Advanced model checking

Explicit representation: an example

o (o oP

{a,b}
1 O 1 0 1 0O O
0 O 1 1 O 0 1
1=) and T = 0 1 1 1 and L = 10
0 1 0 1 1 1 1

© JPK 23

Advanced model checking

Symbolic representation: an example (1)

e oP

{a,b} b
state | enc(s;) switching function
S0 (0,0) —15131/\)
e States: S1 (O, 1) —x1 N\ X9
S9o (1, 0) I A\ — o
S3 (17 1) x1 N\ T3
e Initial states: xr(x1,x2) = (X1 A —x2) V (21 A D x2)

© JPK 24

Advanced model checking

Symbolic representation: an example (2)

A | (0,00 (0,1) (1,0) (1,1)
(0, 0) 0 1 0 1
e Transition relation: (0,1) 0 1 1 0
(1,0) 0 1 1 1
(1,1) 1 0 1 1
e Switching function: A(&a_zg, f.,l\ﬁ;/) = lifandonlyif s — s’
S S/
Az, T2, T, TY) = (mx1 A —xo A =z A T)
Vo (mx A mxa AT A T)
V (T N\ o N\ 513,1 A CB/Q)
V ce
V (5131 N x2 A 513/1 N\ 513/2)

© JPK 25

Advanced model checking

Transition relation as a BDT

\

@/% o %
¢%¢% @Y a0y

1100 1 1111

A BDT representing A for our example using ordering z; < z2 < x; < xj

© JPK 26

Advanced model checking

Successor sets
e A switching function for Post(s) = {s’' € S| s — s’ } is obtained by:

XPOSt(S) — (A|$1 bl, xn—bn) {E/ A z}

e Example for our two-state transition system: Post(sg) = { so, s1 }

(Alp=o) {" =z} = (0o V ~2)[e—o){z’ —a} =1

=1

e And for Post(s1) = { so } we obtain

(Alg=1){z" 2} = ((mzV :fcl)‘w:ll{x/ —zx} =

© JPK 27

Advanced model checking

Symbolic model checking (1)

e For the propositional fragment of CTL, Sat can be computed
symbolically

e What about the temporal operators 4(), 3U and 40 ?

e Enumeratively:

Sat(3O P) = {s e 5| Post(s) NSat(P) # o}

e Symbolically:

Xsata0 @) = 7. (AZ,T') A gSat(é)(f,Z)
s' € Post(s) s’ €Sat(P)

© JPK 28

Advanced model checking

Symbolic model checking (2)

Computation of Sat(3(® U V)):
Ty := Sat(V); 5 :=0;
repeat
Tiiy = Ti(7) U (Sat(cp) N{seS|3s'eS.scPost(s)NT, });

ji=J+ 1
until Tj = Tj—l

return 7.

Symbolic computation of Sat(3(® U V)):

fo(Z) := Xsat(w)(T); j := 0;
repeat
fi1 @) = £V (Xsaa @) A TF-(ATT), AHE)));
s’ € Post(s) s'€T}
Jj:=J+1
until f;(z) = f;-1(T)

return f;(x).

© JPK 29

Advanced model checking

Symbolic model checking (3)

Computation of Sat(30®):
Ty := Sat(®); j := 0;
repeat
Tj_|_1 = Tj M {8 eS ‘ POSt(s)ﬂTj #@},
gi=7J+1
until Tj = Tj—l;
return 7.

Symbolic computation of Sat(30P):

fo(T) = Xsat(@)(7); J := 0;

repeat
fi+1(@) = f;(@) A 3T (A@,T) A f;(T));
ji=g41

until f;(z) = f;-1(%);

return f;(x).

© JPK

30

