

Symbolic CTL Model Checking

Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 27, 2009

Existential normal form (ENF)

The set of CTL formulas in *existential normal form (ENF)* is given by:

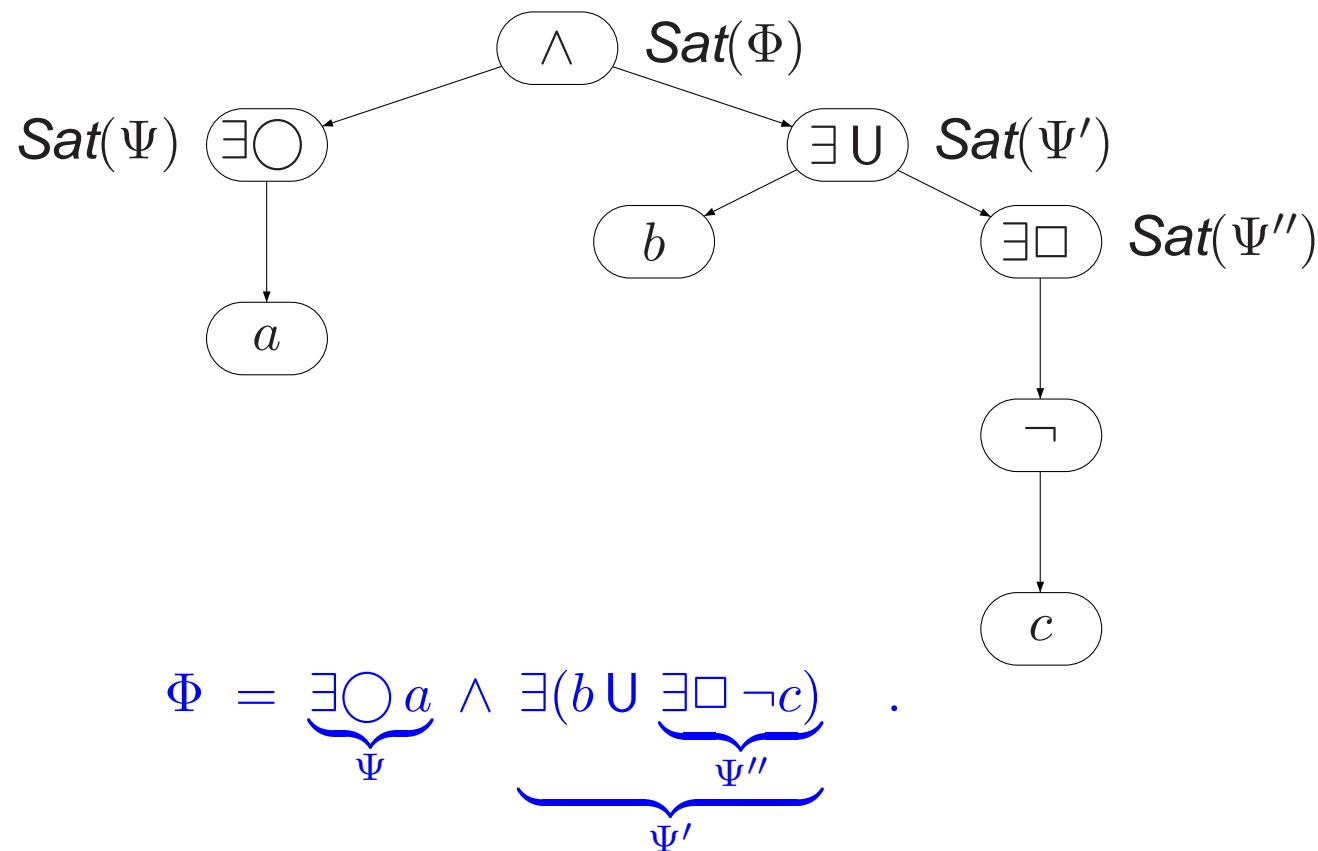
$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi_1 \cup \Phi_2) \mid \exists \Box \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

CTL model checking

- Convert the formula Φ' into an equivalent Φ in ENF
- How to check whether state TS satisfies Φ ?
 - compute *recursively* the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether all initial states belong to $Sat(\Phi)$
- Recursive **bottom-up** computation:
 - consider the *parse-tree* of Φ
 - start to compute $Sat(a)$, for all leafs in the tree
 - then go one level up in the tree and check the formula of these nodes
 - then go one level up and check the formula of these nodes
 - and so on..... until the root of the tree (i.e., Φ) is checked

Example



Characterization of $\text{Sat}(1)$

For all CTL formulas Φ, Ψ over AP it holds:

$$\text{Sat}(\text{true}) = S$$

$$\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP$$

$$\text{Sat}(\Phi \wedge \Psi) = \text{Sat}(\Phi) \cap \text{Sat}(\Psi)$$

$$\text{Sat}(\neg\Phi) = S \setminus \text{Sat}(\Phi)$$

$$\text{Sat}(\exists \bigcirc \Phi) = \{ s \in S \mid \text{Post}(s) \cap \text{Sat}(\Phi) \neq \emptyset \}$$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Characterization of $\text{Sat}(2)$

For all CTL formulas Φ, Ψ over AP it holds:

- $\text{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S , such that:
 - (1) $\text{Sat}(\Psi) \subseteq T$ and
 - (2) $s \in \text{Sat}(\Phi)$ and $\text{Post}(s) \cap T \neq \emptyset$ implies $s \in T$
- $\text{Sat}(\exists \Box \Phi)$ is the largest subset T of S , such that:
 - (3) $T \subseteq \text{Sat}(\Phi)$ and
 - (4) $s \in T$ implies $\text{Post}(s) \cap T \neq \emptyset$

where $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ is a transition system without terminal states

Computation of Sat

switch(Φ):

```

 $a$  : return { $s \in S \mid a \in L(s)$ };

 $\dots$  :  $\dots$ 

 $\exists \bigcirc \Psi$  : return { $s \in S \mid \text{Post}(s) \cap \text{Sat}(\Psi) \neq \emptyset$ };

 $\exists(\Phi_1 \cup \Phi_2)$  :  $T := \text{Sat}(\Phi_2)$ ; (* compute the smallest fixed point *)
  while  $\text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T) \neq \emptyset$  do
    let  $s \in \text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T)$ ;
     $T := T \cup \{s\}$ ;
  od;
  return  $T$ ;

 $\exists \square \Psi$  :  $T := \text{Sat}(\Psi)$ ; (* compute the greatest fixed point *)
  while  $\exists s \in T. \text{Post}(s) \cap T = \emptyset$  do
    let  $s \in \{s \in T \mid \text{Post}(s) \cap T = \emptyset\}$ ;
     $T := T \setminus \{s\}$ ;
  od;
  return  $T$ ;

```

end switch

Symbolic model checking

- Represent sets of states and of transitions *symbolically*
 - this set-based approach is very natural for CTL
- Prominent symbolic approach:
 - encode states as binary strings, e.g., $s_0 = 0000$
 - and identify subsets of states and the transition relation by *switching functions*
- How to represent switching functions?
 - DNF, truth tables, binary decision trees,
 - CNF — this is used in SAT-based model checking
 - **binary decision diagrams** (ROBDDs)

Basic approach

- let $TS = (S, \rightarrow, I, AP, L)$ be a “large” finite transition system
 - the set of actions is irrelevant here and has been omitted, i.e., $\rightarrow \subseteq S \times S$
- For $n \geq \lceil \log |S| \rceil$, let injective function $enc : S \rightarrow \{0, 1\}^n$
 - note: $enc(S) = \{0, 1\}^n$ is no restriction, as all elements $\{0, 1\}^n \setminus enc(S)$ can be treated as the encoding of pseudo states that are unreachable
- Identify the states $s \in S = enc^{-1}(\{0, 1\}^n)$ with $enc(s) \in \{0, 1\}^n$
- And $T \subseteq S$ by its **characteristic** function $\chi_T : \{0, 1\}^n \rightarrow \{0, 1\}$
 - that is $\chi_T(enc(s)) = 1$ if and only if $s \in T$
- And $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0, 1\}^{2n} \rightarrow \{0, 1\}$
 - such that $\Delta(enc(s), enc(s')) = 1$ if and only if $s \rightarrow s'$

Switching functions

- Let $\text{Var} = \{z_1, \dots, z_m\}$ be a finite set of Boolean variables
- An **evaluation** is a function $\eta : \text{Var} \rightarrow \{0, 1\}$
 - let $\text{Eval}(z_1, \dots, z_m)$ denote the set of evaluations for z_1, \dots, z_m
 - shorthand $[z_1 = b_1, \dots, z_m = b_m]$ for $\eta(z_1) = b_1, \dots, \eta(z_m) = b_m$
- Notations:
 - \bar{z} denotes the variable tuple (z_1, \dots, z_m)
 - \bar{b} denotes the bit tuple $(b_1, \dots, b_m) \in \{0, 1\}^m$
 - $[\bar{z} = \bar{b}]$ denotes $[z_1 = b_1, \dots, z_m = b_m]$
- $f : \text{Eval}(\text{Var}) \rightarrow \{0, 1\}$ is a **switching function** for $\text{Var} = \{z_1, \dots, z_m\}$
 - the switching functions for the empty variable set are just constants 0 or 1

Logical operations on switching functions

- Boolean connectives for switching functions are straightforward
 - e.g., let switching function f_1 for $\{z_1, \dots, z_n, \dots, z_m\}$ and
 - switching function f_2 for $\{z_n, \dots, z_m, \dots, z_k\}$ with $0 \leq n \leq m \leq k$
 - then the switching function $f_1 \vee f_2$ and $f_1 \wedge f_2$ for $\{z_1, \dots, z_k\}$ are defined by:

$$\begin{aligned}
 & (f_1 \vee f_2)([z_1 = b_1, \dots, z_k = b_k]) \\
 &= \max \left\{ f_1([z_1 = b_1, \dots, z_m = b_m]), f_2([z_n = b_n, \dots, z_k = b_k]) \right\} \quad \text{and} \\
 & (f_1 \wedge f_2)([z_1 = b_1, \dots, z_k = b_k]) \\
 &= \min \left\{ f_1([z_1 = b_1, \dots, z_m = b_m]), f_2([z_n = b_n, \dots, z_k = b_k]) \right\}
 \end{aligned}$$

- Let z_i denote the *projection function* $pr_{z_i} : \text{Eval}(\bar{z}) \rightarrow \{0, 1\}$ with

$$pr_{z_i}([\bar{z} = \bar{b}]) = b_i \quad \text{and 0 or 1 for constant switching functions}$$

Cofactors

Let $f : \text{Eval}(z, y_1, \dots, y_m) \rightarrow \{0, 1\}$ be a switching function

- The *positive cofactor* of f for variable z is the switching function $f|_{z=1}$:

$$f|_{z=1}(c, b_1, \dots, b_m) = f(1, b_1, \dots, b_m)$$

- The *negative cofactor* of f for z is the switching function $f|_{z=0}$:

$$f|_{z=0}(c, b_1, \dots, b_m) = f(0, b_1, \dots, b_m)$$

- For switching function f for $\{z_1, \dots, z_k, y_1, \dots, y_m\}$, the *iterated* cofactor of f is

$$f|_{z_1=b_1, \dots, z_k=b_k} = (\dots (f|_{z_1=b_1})|_{z_2=b_2} \dots) |_{z_k=b_k}$$

Example

Shannon expansion

- If f is a switching function for Var , then for each variable $z \in \text{Var}$:

$$f = \underbrace{(\neg z \wedge f|_{z=0}) \vee (z \wedge f|_{z=1})}_{\text{Shannon expansion}}$$

- Variable z is *essential* for f if $f|_{z=0} \neq f|_{z=1}$; else it is not essential

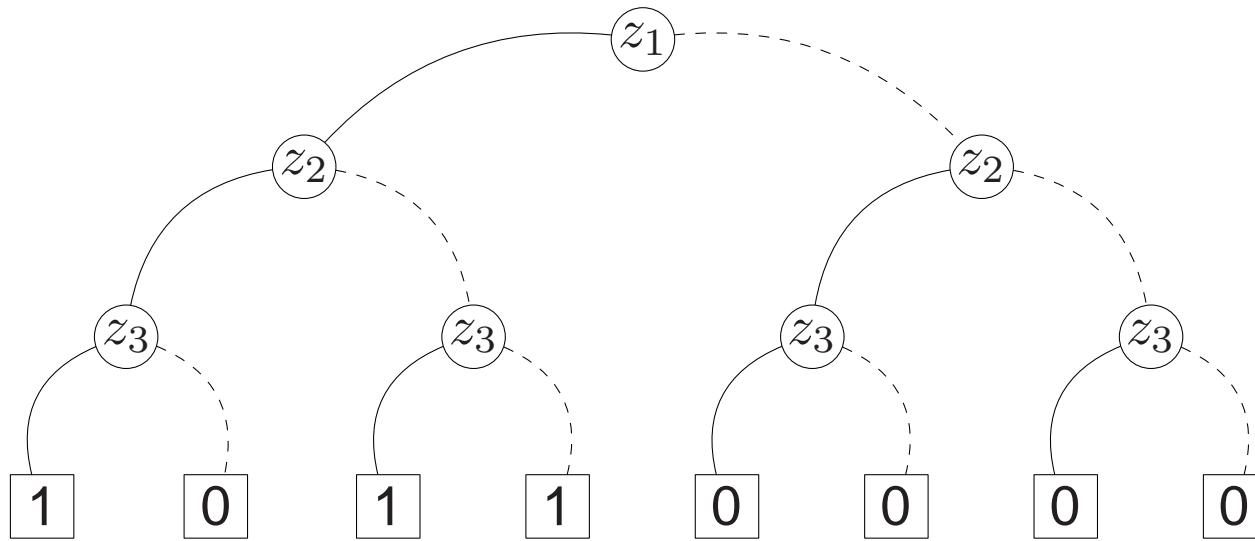
Binary decision tree

- Let Var be a set of Boolean variables and $<$ a total order on Var
- **Binary decision tree (BDT)** is a complete binary **tree** over $\langle \text{Var}, < \rangle$
 - each leaf v is labeled with a boolean value $\text{val}(v) \in \{ 0, 1 \}$
 - non-leaf v is labeled by a boolean variable $\text{Var}(v) \in \text{Var}$
 - such that for each non-leaf v and vertex w :

$$w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (\text{Var}(v) < \text{Var}(w) \vee w \text{ is a leaf})$$

\Rightarrow On each path from root to leaf, variables occur in the **same order**

Binary decision tree



binary decision tree (BDT) for $z_1 \wedge (\neg z_2 \vee z_3)$

satisfying assignments $[z_1 = 1, z_2 = 0, z_3 = 0]$, $[z_1 = 1, z_2 = 0, z_3 = 1]$ and
 $[z_1 = 1, z_2 = 1, z_3 = 1]$

Binary decision tree

- The BDT for function f on $\text{Var} = \{ z_1, \dots, z_m \}$ has depth m
 - outgoing edges for node at level i stand for $z_i = 0$ (dashed) and $z_i = 1$ (solid)
- For evaluation $s = [z_1 = b_1, \dots, z_m = b_m]$, $f(s)$ is the value of the leaf
 - reached by traversing the BDT from the root using branch $z_i = b_i$ for at level i
- The subtree of node v at level i for variable ordering $z_1 < \dots < z_m$ represents
 - the iterated cofactor $f|_{z_1=b_1, \dots, z_{i-1}=b_{i-1}}$
 - which is a switching function over $\{ z_i, \dots, z_m \}$ and
 - where $z_1 = b_1, \dots, z_{i-1} = b_{i-1}$ is the sequence of decisions made along the path from the root to node v

Existential and universal quantification

Let f be a switching function for Var and $z \in \text{Var}$

- $\exists z.f$ is the switching function given by $\exists z.f = f|_{z=0} \vee f|_{z=1}$
 - if $\bar{z} = (z_1, \dots, z_k)$, then $\exists \bar{z}.f$ abbreviates $\exists z_1. \exists z_2. \dots. \exists z_k. f$
- $\forall z.f$ is the switching function given by $\forall z.f = f|_{z=0} \wedge f|_{z=1}$
 - if $\bar{z} = (z_1, \dots, z_k)$, then $\forall \bar{z}.f$ abbreviates $\forall z_1. \forall z_2. \dots. \forall z_k. f$
- Let $f(z, y_1, y_2) = (z \vee y_1) \wedge (\neg z \vee y_2)$. Then:
 - $\exists z.f = f|_{z=0} \vee f|_{z=1} = y_1 \vee y_2$, and
 - $\forall z.f = f|_{z=0} \wedge f|_{z=1} = y_1 \wedge y_2$

Renaming

Let $\bar{z} = (z_1, \dots, z_m)$, $\bar{y} = (y_1, \dots, y_m)$ and $\bar{x} = (x_1, \dots, x_k)$ such that no z_i and y_i occur in \bar{x}

- For evaluation $s = [\bar{y} = \bar{b}] \in \text{Eval}(\bar{y}, \bar{x})$, evaluation $s\{\bar{z} \leftarrow \bar{y}\}$
 - agrees with s for the variables in \bar{x}
 - and assigns the same value $b \in \{0, 1\}$ to variable z_i as s to variable y_i
- For f on $\text{Eval}(\bar{y}, \bar{x})$, $f\{\bar{z} \leftarrow \bar{y}\}$ on $\text{Eval}(\bar{z}, \bar{x})$ is given by

$$f\{\bar{z} \leftarrow \bar{y}\}(s) = f(s\{\bar{z} \leftarrow \bar{y}\})$$

- that is, $f\{\bar{z} \leftarrow \bar{y}\}([\bar{y} = \bar{b}, \bar{x} = \bar{c}]) = f([\bar{z} = \bar{b}, \bar{x} = \bar{c}])$

Transition systems as switching functions

- Encode state s by $n \geq \lceil \log |S| \rceil$ Boolean variables x_1, \dots, x_n
 - identify $[x_1 = b_1, \dots, x_n = b_n]$ with $s \in S$ such that $\text{enc}(s) = (b_1, \dots, b_n)$
 - assume $S = \text{Eval}(\bar{x})$
- Represent $I \subseteq S$ by the *characteristic function* $\chi_I : \text{Eval}(\bar{x}) \rightarrow \{0, 1\}$
- Represent labeling L by a family $(f_a)_{a \in AP}$ of switching functions for \bar{x}
 - where for $a \in AP$, $f_a = \chi_{\text{Sat}(a)}$ represents the set $\text{Sat}(a)$
- Represent $\rightarrow \subseteq S \times S$ by its characteristic function

Encoding the transition relation

- Represent $\rightarrow \subseteq S \times S$ by its characteristic function
 - identify \rightarrow with a function $\Delta : S \times S \rightarrow \{ 0, 1 \}$ such that $\Delta(s, t) = 1$ iff $s \rightarrow t$
- Encode start and target state by $\bar{x} = (x_1, \dots, x_n)$ and $\bar{x}' = (x'_1, \dots, x'_n)$
 - that is, for each variable x_i introduce a (copy) variable x'_i
- Represent the transition relation \rightarrow by the switching function

$$\Delta : \text{Eval}(\bar{x}, \bar{x}') \rightarrow \{ 0, 1 \} \quad \text{with} \quad \Delta(s, t \{ \bar{x}' \leftarrow \bar{x} \}) = \begin{cases} 1 & \text{if } s \rightarrow t \\ 0 & \text{otherwise} \end{cases}$$

Example encoding transition relation

- Let $S = \{ s_0, s_1 \}$ and $s_0 \rightarrow s_0$, $s_0 \rightarrow s_1$, and $s_1 \rightarrow s_0$
- Use a single Boolean variable $x_1 = x$ for the encoding
 - say $enc(s_0) = 0$ and $enc(s_1) = 1$
- \rightarrow is represented by switching function $\Delta : Eval(x, x') \rightarrow \{ 0, 1 \}$ with

$$\Delta = \neg x \vee \neg x'$$

- satisfying assignments are: $\underbrace{[x = 0, x' = 0]}_{s_0 \rightarrow s_0}$, $\underbrace{[x = 0, x' = 1]}_{s_0 \rightarrow s_1}$, and $\underbrace{[x = 1, x' = 0]}_{s_1 \rightarrow s_0}$

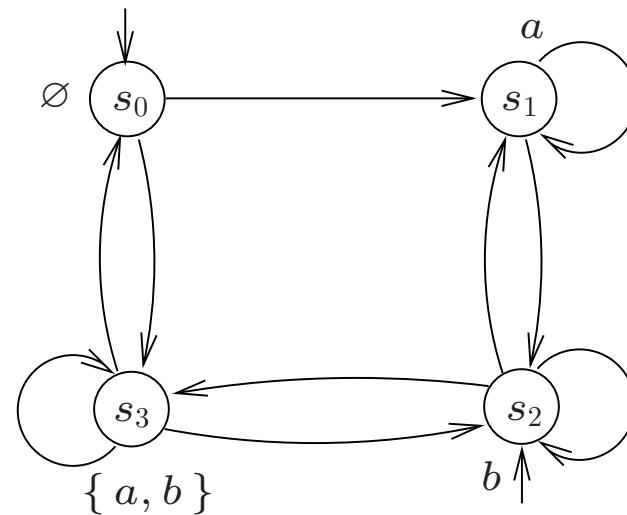
Explicitly representing transition systems

$TS = (S, \rightarrow, I, AP, L)$ with $|S| = n$ and $|AP| = k$:

- Identify the n states by **numbers**
- Represent the set of initial states I as **boolean vector** \underline{i}
 - $\underline{i}(s_j) = 1$ if and only if state $s_j \in I$
- Represent \rightarrow by a boolean matrix \mathbf{T} of size $n \times n$
 - $\mathbf{T}(s_i, s_j) = 1$ if and only if $s_i \rightarrow s_j$
- Represent L by an $n \times k$ -boolean matrix \mathbf{L}
 - $\mathbf{L}(s_i, a_j) = 1$ if and only if $a_j \in L(s_i)$

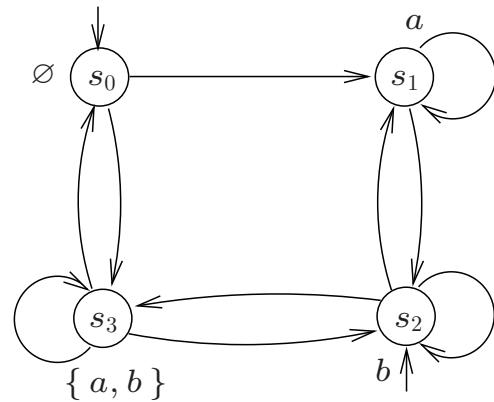
⇒ Use sparse matrix representations for \mathbf{T} and \mathbf{L}

Explicit representation: an example



$$i = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad \text{and} \quad L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Symbolic representation: an example (1)



- States:

state	enc(s_i)	switching function
s_0	(0, 0)	$\neg x_1 \wedge \neg x_2$
s_1	(0, 1)	$\neg x_1 \wedge x_2$
s_2	(1, 0)	$x_1 \wedge \neg x_2$
s_3	(1, 1)	$x_1 \wedge x_2$

- Initial states:

$$\chi_I(x_1, x_2) = (\neg x_1 \wedge \neg x_2) \vee (x_1 \wedge \neg x_2)$$

Symbolic representation: an example (2)

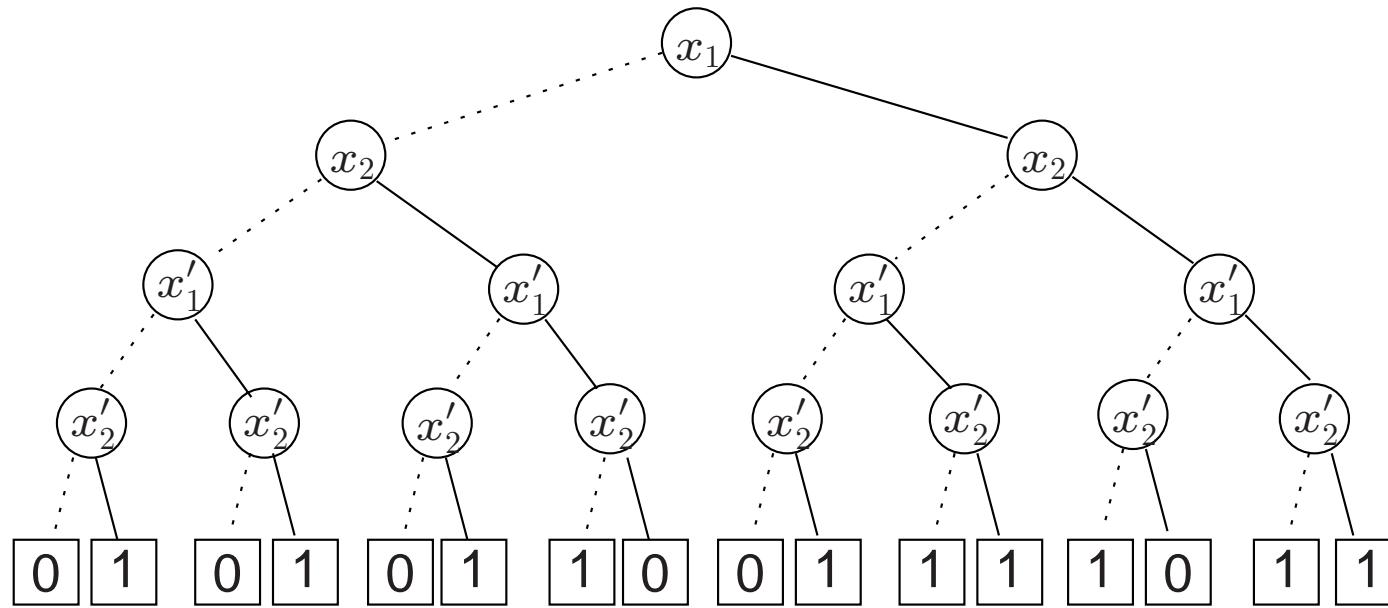
- Transition relation:

Δ	(0, 0)	(0, 1)	(1, 0)	(1, 1)
(0, 0)	0	1	0	1
(0, 1)	0	1	1	0
(1, 0)	0	1	1	1
(1, 1)	1	0	1	1

- Switching function: $\Delta(\underbrace{x_1, x_2}_s, \underbrace{x'_1, x'_2}_{s'}) = 1$ if and only if $s \rightarrow s'$

$$\begin{aligned}
 \Delta(x_1, x_2, x'_1, x'_2) = & (\neg x_1 \wedge \neg x_2 \wedge \neg x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge \neg x_2 \wedge x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge x_2 \wedge x'_1 \wedge \neg x'_2) \\
 \vee & \dots \\
 \vee & (x_1 \wedge x_2 \wedge x'_1 \wedge x'_2)
 \end{aligned}$$

Transition relation as a BDT



A BDT representing Δ for our example using ordering $x_1 < x_2 < x'_1 < x'_2$

Successor sets

- A switching function for $Post(s) = \{ s' \in S \mid s \rightarrow s' \}$ is obtained by:

$$\chi_{Post(s)} = (\Delta|_{x_1=b_1, \dots, x_n=b_n}) \{ \bar{x}' \leftarrow \bar{x} \}$$

- Example for our two-state transition system: $Post(s_0) = \{ s_0, s_1 \}$

$$(\Delta|_{x=0}) \{x' \leftarrow x\} = \underbrace{((\neg x \vee \neg x')|_{x=0})}_{=1} \{x' \leftarrow x\} = 1$$

- And for $Post(s_1) = \{ s_0 \}$ we obtain

$$(\Delta|_{x=1}) \{x' \leftarrow x\} = \underbrace{((\neg x \vee \neg x')|_{x=1})}_{=\neg x'} \{x' \leftarrow x\} = \neg x$$

Symbolic model checking (1)

- For the propositional fragment of CTL, Sat can be computed symbolically
- What about the temporal operators $\exists \bigcirc$, $\exists U$ and $\exists \Box$?
- Enumeratively:

$$\text{Sat}(\exists \bigcirc \Phi) = \{ s \in S \mid \text{Post}(s) \cap \text{Sat}(\Phi) \neq \emptyset \}$$

- Symbolically:

$$\chi_{\text{Sat}(\exists \bigcirc \Phi)} = \exists \bar{x}' . (\underbrace{\Delta(\bar{x}, \bar{x}')}_{s' \in \text{Post}(s)} \wedge \underbrace{\chi_{\text{Sat}(\Phi)}(\bar{x}')}_{s' \in \text{Sat}(\Phi)})$$

Symbolic model checking (2)

Computation of $\text{Sat}(\exists(\Phi \cup \Psi))$:

$T_0 := \text{Sat}(\Psi); j := 0;$

repeat

$$T_{j+1} := T_j(\bar{x}) \cup \left(\text{Sat}(\Phi) \cap \{ s \in S \mid \exists s' \in S. s' \in \text{Post}(s) \cap T_j \} \right);$$

$$j := j + 1;$$

until $T_j = T_{j-1}$

return T_j .

Symbolic computation of $\text{Sat}(\exists(\Phi \cup \Psi))$:

$f_0(\bar{x}) := \chi_{\text{Sat}(\Psi)}(\bar{x}); j := 0;$

repeat

$$f_{j+1}(\bar{x}) := f_j(\bar{x}) \vee \left(\chi_{\text{Sat}(\Phi)}(\bar{x}) \wedge \exists \bar{x}' . \left(\underbrace{\Delta(\bar{x}, \bar{x}')}_{s' \in \text{Post}(s)} \wedge \underbrace{f_j(\bar{x}')}_{s' \in T_j} \right) \right);$$

$$j := j + 1;$$

until $f_j(\bar{x}) = f_{j-1}(\bar{x})$

return $f_j(\bar{x})$.

Symbolic model checking (3)

Computation of $\text{Sat}(\exists \Box \Phi)$:

```
 $T_0 := \text{Sat}(\Phi); j := 0;$ 
repeat
   $T_{j+1} := T_j \cap \{ s \in S \mid \text{Post}(s) \cap T_j \neq \emptyset \};$ 
   $j := j + 1$ 
until  $T_j = T_{j-1}$ ;
return  $T_j$ .
```

Symbolic computation of $\text{Sat}(\exists \Box \Phi)$:

```
 $f_0(\bar{x}) := \chi_{\text{Sat}(\Phi)}(\bar{x}); j := 0;$ 
repeat
   $f_{j+1}(\bar{x}) := f_j(\bar{x}) \wedge \exists \bar{x}'. (\Delta(\bar{x}, \bar{x}') \wedge f_j(\bar{x}'));$ 
   $j := j + 1$ 
until  $f_j(\bar{x}) = f_{j-1}(\bar{x})$ ;
return  $f_j(\bar{x})$ .
```