
Reduced Ordered Binary Decision Diagrams
Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 29, 2009

c© JPK

Advanced model checking

Basic approach

• let TS = (S,→, I, AP, L) be a “large” finite transition system

– the set of actions is irrelevant here and has been omitted, i.e., →⊆ S × S

• For n � �log |S|�, let injective function enc : S → { 0, 1 }n

– note: enc(S) = {0, 1}n is no restriction, as all elements { 0, 1 }n \ enc(S)

can be treated as the encoding of pseudo states that are unreachable

• Identify the states s ∈ S = enc−1({ 0, 1 }n) with enc(s) ∈ {0, 1}n

• And T ⊆ S by its characteristic function χT : { 0, 1 }n → { 0, 1 }
– that is χT(enc(s)) = 1 if and only if s ∈ T

• And →⊆ S × S by the Boolean function ∆ : { 0, 1 }2n → { 0, 1 }
– such that ∆

`
enc(s), enc(s′)

´
= 1 if and only if s → s′

c© JPK 1

Advanced model checking

Switching functions

• Let Var = {z1, . . . , zm} be a finite set of Boolean variables

• An evaluation is a function η : Var → { 0, 1 }
– let Eval(z1, . . . , zm) denote the set of evaluations for z1, . . . , zm

– shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm

• f : Eval(Var) → { 0, 1 } is a switching function for Var = {z1, . . . , zm}

• Logical operations and quantification are defined as expected

– f1(·)∧ f2(·) = min{ f1(·), f2(·) }
– f1(·) ∨ f2(·) = max{ f1(·), f2(·) }
– ∃z. f(·) = f(·)|z=0 ∨ f(·)|z=1, and
– ∀z. f(·) = f(·)|z=0 ∧ f(·)|z=1

c© JPK 2

Advanced model checking

Polynomial-size data structure impossible

• There is no poly-size data structure for all switching functions

– |Eval(z1, . . . , zm)| = 2m, so #functions Eval(z1, . . . , zm) → { 0, 1 } is 22m

• Suppose there is a data structure that can represent Km switching
functions by at most 2m−1 bits

• Then Km �
∑2m−1

i=0 2i = 22m−1+1 − 1 < 22m−1+1

• But then there are at least

22m − 22m−1+1 = 22m−1+1·
(
22m−2m−1−1 − 1

)
= 22m−1+1·

(
22m−1−1 − 1

)

switching functions whose representation needs more than 2m−1 bits

c© JPK 3

Advanced model checking

Representing switching functions

• Truth tables

– very space inefficient: 2n entries for n variables
– satisfiability and equivalence check: easy; boolean operations also easy
– . . . but have to consider exponentially many lines (so are hard)

• . . . in Disjunctive Normal Form (DNF)

– satisfiability is easy: find a disjunct that does have complementary literals
– negation and conjunction complicated
– equivalence checking (f = g?) is coNP-complete

• . . . in Conjunctive Normal Form (CNF)

– satisfiability problem is NP-complete (Cook’s theorem)
– negation and disjunction complicated

c© JPK 4

Advanced model checking

Representing switching functions

representation compact? sat equi ∧ ∨ ¬
propositional

formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard

CNF sometimes hard hard easy hard hard

(ordered)
truth table never hard hard hard hard hard

c© JPK 5

Advanced model checking

There is hope perhaps

Nevertheless there are data structures which yield compact representations

for many switching functions that appear in practical applications

for hardware circuits, ordered binary decision diagrams (OBDDs) are successful

c© JPK 6

Advanced model checking

Representing boolean functions

representation compact? sat equ ∧ ∨ ¬
propositional

formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard

CNF sometimes hard hard easy hard hard

(ordered)
truth table never hard hard hard hard hard

reduced ordered
binary decision diagram often easy easy∗ medium medium easy

∗ provided appropriate implementation techniques are used

c© JPK 7

Advanced model checking

Binary decision tree

• The BDT for function f on Var = { z1, . . . , zm } has depth m

– outgoing edges for node at level i stand for zi = 0 (dashed) and zi = 1 (solid)

• For evaluation s = [z1 = b1, . . . , zm = bm], f(s) is the value of the leaf

– reached by traversing the BDT from the root using branch zi = bi for at level i

• The subtree of node v at level i for variable ordering z1 < . . . < zm

represents
fv = f |z1=b1,...,zi−1=bi−1

– which is a switching function over { zi, . . . , zm } and
– where z1 = b1, . . . , zi−1 = bi−1 is the sequence of decisions made along the

path from the root to node v

c© JPK 8

Advanced model checking

Symbolic representation of a transition system

s0 s1

s3 s2

a

b{ a, b }

∅

Switching function: ∆(x1, x2| {z }
s

, x
′
1, x

′
2| {z }

s′
) = 1 if and only if s → s′

∆(x1, x2, x′
1, x′

2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x′
1 ∧ x′

2)

∨ (¬ x1 ∧ ¬ x2 ∧ x′
1 ∧ x′

2)

∨ (¬ x1 ∧ x2 ∧ x′
1 ∧ ¬x′

2)

∨ . . .

∨ (x1 ∧ x2 ∧ x′
1 ∧ x′

2)

c© JPK 9

Advanced model checking

Transition relation as a BDT

1 0 1 0 1 1 0 0 1 1 1 01 1 10

x′
2 x′

2 x′
2 x′

2

x′
1 x′

1

x2

x1

x′
1

x′
2 x′

2

x′
1

x2

x′
2x′

2

A BDT representing ∆ for our example using ordering x1 < x2 < x′
1 < x′

2

c© JPK 10

Advanced model checking

Considerations on BDTs

• BDTs are not compact

– a BDT for switching function f on n variables has 2n leafs
⇒ they are as space inefficient as truth tables!

⇒ BDTs contain quite some redundancy

– all leafs with value one (zero) could be collapsed into a single leaf
– a similar scheme could be adopted for isomorphic subtrees

• The size of a BDT does not change if the variable order changes

c© JPK 11

Advanced model checking

Ordered Binary Decision Diagram
Let ℘ be a variable ordering for Var where ℘ = (z1, . . . , zm)

An ℘-OBDD is a tuple B = (V, VI, VT , succ0, succ1, var, val, v0) with

• a finite set V of nodes, partitioned into VI (inner) and VT (terminals)

– and a distinguished root (node) v0 ∈ V

• successor functions succ0, succ1 : VI → V

– such that each node v ∈ V \ {v0} has at least one predecessor
– i.e., all nodes of the OBDD B are reachable from the root

• a labeling functions var : VI → Var and val : VT → { 0, 1 }
satisfying for ℘ = (z1, . . . , zm) and v ∈ VI:

var(v) = zi ∧ w ∈ { succ0(v), succ1(v) } ∩ VI ⇒ var(w) = zj for j > i

c© JPK 12

Advanced model checking

Some example OBDDs

c© JPK 13

Advanced model checking

Transition relation as an OBDD

1 0 1 1 0 1 10

x′
2 x′

2 x′
2

x′
1 x′

1

x2

x1

x′
1 x′

1

x2

x′
2

An example OBDD representing f→ for our example using x1 < x2 < x′
1 < x′

2

c© JPK 14

Advanced model checking

Semantics of an OBDD

The semantics of ℘-OBDD B is the switching function fB where fB([z1 =

b1, . . . , zm = bm]) is the value of the leaf that is reached when traversing B starting
in v0 and branching according to the evaluation [z1 = b1, . . . , zm = bm]

c© JPK 15

Advanced model checking

Intermezzo: OBDDs versus DFA

1

1

1

1

1

1

0

0

0

0 0

0

x1

x2

x′
2

x′
1

0 1

x′
1

x′
2

each OBDD B is a deterministic automaton AB with f−1
B (1) = L(AB)

c© JPK 16

Advanced model checking

Bottom-up characterization of fB

Let B be a ℘-OBDD. Switching function fv for node v ∈ V :

• If v ∈ VT , then fv is the constant switching function with value val(v)

• If v ∈ VI with var(v) = z , then fv =
(¬z ∧ fsucc0(v)

) ∨ (
z ∧ fsucc1(v)

)
︸ ︷︷ ︸

Shannon expansion

Furthermore, fB = fv0 for the root v0 of B

c© JPK 17

Advanced model checking

Consistent co-factors in OBDDs

• Let f be a switching function for Var

• Let ℘ = (z1, . . . , zm) a variable ordering for Var, i.e., z1 <℘ . . . <℘ zm

• Switching function g is a ℘-consistent cofactor of f if

g = f |z1=b1,...,zi=bi
for some i ∈ { 0, 1, . . . , m }

• Then it holds that:

1. for each node v of an ℘-OBDD B, fv is a ℘-consistent cofactor of fB

2. for each ℘-consistent cofactor g of fB there is a node v ∈ B with fv = g

c© JPK 18

Advanced model checking

Reduced OBDDs

A ℘-OBDD B is reduced if for every pair (v, w) of nodes in B:

v �= w implies fv �= fw

(A reduced ℘-OBDD is abbreviated as ℘-ROBDD)

⇒ ℘-ROBDDs any ℘-consistent cofactor is represented by exactly one node

c© JPK 19

Advanced model checking

Example ROBDDs

c© JPK 20

Advanced model checking

Transition relation as an ROBDD

1 0 1 1 0 1 10

x′
2 x′

2 x′
2

x′
1 x′

1

x2

x1

x′
1 x′

1

x2

x′
2

An example OBDD representing f→ for our example using x1 < x2 < x′
1 < x′

2

c© JPK 21

Advanced model checking

Transition relation as an ROBDD

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x′
1

0

x1

x2 x2

x′
1x′

1

x′
2x′

2

1

(a) ordering x1 < x2 < x′
1 < x′

2 (b) ordering x1 <′ x′
1 <′ x2 <′ x′

2

c© JPK 22

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ℘ a variable ordering for
Var. Then:

(a) For each switching function f for Var there exists a ℘-ROBDD B with
fB = f

(b) For any ℘-ROBDDs B and C with fB = fC, B and C are isomorphic,
i.e., agree up to renaming of the nodes

c© JPK 23

Advanced model checking

Proofs

c© JPK 24

Advanced model checking

The importance of canonicity

• Absence of redundant vertices

– if fB does not depend on zi, ROBDD B does not contain an xi node

• Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?

– generate ROBDDs Bf and Bg, and check isomorphism

• Test for validity: f(x1, . . . , xn) = 1?

– generate ROBDD Bf and check whether it only consists of a 1-leaf

• Test for implication: f(x1, . . . , xn) → g(x1, . . . , xn)?

– generate ROBDD Bf ∧¬g and check if it just consists of a 0-leaf

• Test for satisfiability

– f is satisfiable if and only if Bf has a reachable 1-leaf

c© JPK 25

Advanced model checking

Minimality of ROBDDs

For any ℘-OBDD B for f B is reduced iff size(B) � size(C) for each ℘-OBDD C for f

c© JPK 26

Advanced model checking

Reducing OBDDs
• Generate an OBDD (or BDT) for a boolean expression, then reduce

– by means of a recursive descent over the OBDD

• Elimination of duplicate leafs

– for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them

• Elimination of “don’t care” (non-leaf) vertices

– if left(v) = right(v) = w, eliminate v and redirect all its incoming edges to w

• Elimination of isomorphic subtrees

– if v �= w are roots of isomorphic subtrees, remove w

– and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

c© JPK 27

Advanced model checking

How to reduce an OBDD?

0 01 1 01

becomes

(special case of) isomorphism rule

c© JPK 28

Advanced model checking

How to reduce a BDD?

v w v

0 1
0 1

becomes

isomorphism rule

c© JPK 29

Advanced model checking

How to reduce an OBDD?

v

w

w
becomes

elimination rule

c© JPK 30

Advanced model checking

Example

c© JPK 31

Advanced model checking

Soundness of reduction rules

if C arises from a ℘-OBDD B by the elimination

or isomorphism rule, then:

C is a ℘-OBDD with fB = fC

Elimination rule for v with var(v) = z , and w = succ0(v) = succ1(v):

fv =
“
¬z ∧ fsucc0(v)

”
∨

“
z ∧ fsucc1(v)

”
= (¬z ∧ fw) ∨ (z ∧ fw) = fw

Isomorphism rule for v, w with var(v) = var(w) = z v yields:

fv =
“
¬z ∧ fsucc0(v)

”
∨

“
z ∧ fsucc1(v)

”
=

“
¬z ∧ fsucc0(w)

”
∨

“
z ∧ fsucc1(w)

”
= fw

as each reduction rule decreases the # nodes, repeatedly applying them terminates

c© JPK 32

Advanced model checking

Completeness of reduction rules

℘-OBDD B is reduced if and only if

no reduction rule is applicable to B

c© JPK 33

