Reduced Ordered Binary Decision Diagrams
Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

May 29, 2009

© JPK

Advanced model checking

Basic approach

e let TS = (5,—,I,AP, L) be a “large” finite transition system

— the set of actions is irrelevant here and has been omitted, i.e., -C S x S

e Forn > [log|S

|, let injective functionenc : S — {0,1}"

— note: enc(S) = {0, 1}" is no restriction, as all elements { 0,1 }™ \ enc(S)
can be treated as the encoding of pseudo states that are unreachable

e Identify the states s € S = enc™!({ 0,1 }") with enc(s) € {0,1}"

e And T C S by its characteristic function xyo: {0,1}" — {0,1}

— thatis xr(enc(s)) = 1ifandonlyifs € T
e And — C S x S by the Boolean function A : {0,1}°" — {0,1}

— such that A (enc(s),enc(s’)) = lifandonly if s — s

© JPK 1

Advanced model checking

Switching functions

e LetVar={z,...,z,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(z, . . ., z,) denote the set of evaluations for zy, .. ., z,
— shorthand [z1 = by, ..., 2 = by fOrn(z) = b1, ...,1m(z2m) = by
e f:Eval(Var) — {0,1} is a switching function for Var = {z, ..., z,,}

e Logical operations and quantification are defined as expected

— fi(-) A f2(r) = min{ fi1(+), f2(-) }
- f1(-) V fo(r) = max{ fi(-), f2() }
- dz. f)z=0 V f(+)|z=1, and

()
- V2. f(-))z=0 A F(-)]2=1

f(
f(

© JPK 2

Advanced model checking

Polynomial-size data structure impossible

e There is no poly-size data structure for all switching functions

— |Bval(z, ..., zm)| = 2™, so #functions Eval(zy, ..., 2,) — {0,1 }is 22"

e Suppose there is a data structure that can represent K,, switching
functions by at most 2™~ bits

m—1 . m— m—
e ThenK,, < Y7, 20 = 22" 11 < 22" '#1
e But then there are at least

22m B 22m—1_|_1 _ 22m—1_|_1. (22m_2m—1_1 B 1) _ 22m—1_|_1. (22m—1_1 B 1)

switching functions whose representation needs more than 2™~ bits

© JPK 3

Advanced model checking

Representing switching functions

e Truth tables

— very space inefficient: 2" entries for n variables
— satisfiability and equivalence check: easy; boolean operations also easy
— ... but have to consider exponentially many lines (so are hard)

e ... In Disjunctive Normal Form (DNF)

— satisfiability is easy: find a disjunct that does have complementary literals
— negation and conjunction complicated
— equivalence checking (f = ¢7?) is coNP-complete

e ... In Conjunctive Normal Form (CNF)

— satisfiability problem is NP-complete (Cook’s theorem)
— negation and disjunction complicated

© JPK

Advanced model checking

Representing switching functions

representation | compact? sat equi A Vv —
propositional
formula often hard hard | easy easy easy
DNF | sometimes easy hard | hard easy hard
CNF | sometimes hard hard | easy hard hard
(ordered)
truth table never hard hard | hard hard hard

© JPK

Advanced model checking

Thereis hope....... perhaps

Nevertheless there are data structures which yield compact representations

for many switching functions that appear in practical applications

for hardware circuits, ordered binary decision diagrams (OBDDs) are successful

© JPK

Advanced model checking

Representing boolean functions

representation | compact? sat equ A Vv =

propositional

formula often hard hard easy easy easy

DNF | sometimes easy hard hard easy hard

CNF | sometimes hard hard easy hard hard
(ordered)

truth table never hard hard hard hard hard
reduced ordered

binary decision diagram often easy easy” | medium medium easy

* provided appropriate implementation techniques are used

© JPK .

Advanced model checking

Binary decision tree

e The BDT for function f on Var = { 2, ..., z,, } has depth m

— outgoing edges for node at level ¢ stand for z; = 0 (dashed) and z; = 1 (solid)

e For evaluation s = [y = by, ..., 2 = by, f(s) Is the value of the leaf

— reached by traversing the BDT from the root using branch z; = b, for at level ¢

e The subtree of node v at level ¢ for variable ordering z; < ... < z,,
represents

Jo = f’21=bl,---,2z'—1=bz'—1

— which is a switching function over { z;, . . ., z,, } and

— where z; = by,...,2_1 = b;_1 Is the sequence of decisions made along the
path from the root to node v

© JPK

Advanced model checking

Symbolic representation of a transition system

> > @D
C

{a,b} b

Switching function: Az, a;2,§_’1, x,) = lifand only if s — s’

S S/
A(z1, T2, T, TYH) = (mx1 A —xog A —x] A zy)
Vo (—mxz1 A mxa Az AT
V (—|x1 N X9 A a:'l N\ —|xl2>
V
V (5131 N\ o N\ CBll N\ 513,2)

© JPK

Advanced model checking

Transition relation as a BDT

\

@/% o %
¢%¢% @Y a0y

1100 1 1111

A BDT representing A for our example using ordering z; < z2 < x; < xj

© JPK 10

Advanced model checking

Considerations on BDTs

e BDTs are not compact

— a BDT for switching function f on n variables has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— a similar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change if the variable order changes

© JPK 11

Advanced model checking

Ordered Binary Decision Diagram
Let o be a variable ordering for Var where p = (21, ..., zn)

An p-OBDD is atuple %8 = (V,V;, Vi, succy, succy, var, val, vy) with
e a finite set V' of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root (node) v € V

e successor functions succy, succy : V; — V

— such that each node v € V' \ {vp} has at least one predecessor
— l.e., all nodes of the OBDD ‘B are reachable from the root

e alabeling functions var : V; — Varandval : Vi — {0,1}
satisfying for o = (z1,...,2,) and v € V:

var(v) =z A w € {succy(v),succy(v) } N Vy = var(w) = z; forj >4

© JPK 12

Advanced model checking

Some example OBDDs

© JPK

13

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x) <

© JPK

14

Advanced model checking

Semantics of an OBDD

The semantics of ©-OBDD B is the switching function fy where fu([z1 =
bi,...,zn = b)) is the value of the leaf that is reached when traversing 95 starting
in vy and branching according to the evaluation [z; = by, ..., 2z, = by

© JPK 15

Advanced model checking

Intermezzo: OBDDs versus DFA

each OBDD B is a deterministic automaton Ag with f;'(1) = L(Asg)

© JPK

16

Advanced model checking

Bottom-up characterization of fy

Let B be a p-OBDD. Switching function f, for node v € V

e If v € Vp, then f, is the constant switching function with value val(v)

o Ifv e Vywithvar(v) =z, then f, = (=2 A foucey(v)) V(2 A fsucey(v))

~
Shannon expansion

Furthermore, fy = f,, for the root v, of ‘5

© JPK 17

Advanced model checking

Consistent co-factors in OBDDs

e Let f be a switching function for Var
o Let o = (z1,...,2,) avariable ordering for Var, i.e., z; <, ... <, zm
e Switching function g is a @-consistent cofactor of f if

9= flu=b....,=p, forsomeie{0,1,...,m}

e Then it holds that:

1. for each node v of an -OBDD ‘B, f, is a gp-consistent cofactor of fy
2. for each p-consistent cofactor g of fy there is a node v € B with f, = ¢

© JPK

18

Advanced model checking

Reduced OBDDs

A ©-OBDD %8 is reduced if for every pair (v, w) of nodes in ‘B:
v # w implies f, # f.

(A reduced -OBDD is abbreviated as p-ROBDD)

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK

19

Advanced model checking

Example ROBDDs

© JPK

20

Advanced model checking

Transition relation as an ROBDD

An example OBDD representing f_, for our example using z; < z2 < x) <

© JPK

21

Advanced model checking

Transition relation as an ROBDD

(a) ordering z; < xy <) < @,

(b) ordering z; <’ x| <’ xy <" 2

© JPK

22

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and g a variable ordering for
Var. Then:

(a) For each switching function f for Var there exists a @-ROBDD ‘B with
Je =1

(b) For any p-ROBDDs B and ¢ with fz = f¢, B and ¢ are isomorphic,
l.e., agree up to renaming of the nodes

© JPK 23

Advanced model checking

Proofs

© JPK

24

Advanced model checking

The importance of canonicity

e Absence of redundant vertices

— if fy does not depend on z;, ROBDD 5 does not contain an x; node
e Test for equivalence: f(x1,...,x,) =9g(x1,...,Tn)?

— generate ROBDDs ‘5 ¢ and ‘B, and check isomorphism
e Test for validity: f(z1,...,z,) =17

— generate ROBDD ‘B ; and check whether it only consists of a 1-leaf
e Test for implication: f(z1,...,x,) — g(x1,...,Tn)?

— generate ROBDD B, A _, and check if it just consists of a O-leaf

e Test for satisfiability

— f is satisfiable if and only if 98 ; has a reachable 1-leaf

© JPK

25

Advanced model checking

Minimality of ROBDDs

For any ©-OBDD B for f B is reduced iff size(*8) < size(¢) for each ©-OBDD ¢ for f

© JPK 26

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a boolean expression, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— ifleft(v) = right(v) = w, eliminate v and redirect all its incoming edges to w

e Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
— and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK

27

Advanced model checking

How to reduce an OBDD?

Q\ : \ becomes

1 0(|0 1

(special case of) isomorphism rule

© JPK 28

Advanced model checking

(Qw

How to reduce a BDD?

\

O becomes

isomorphism rule

© JPK

29

Advanced model checking

How to reduce an OBDD?

l:
.
.

becomes

elimination rule

© JPK

30

Advanced model checking

Example

© JPK

31

Advanced model checking

Soundness of reduction rules

if € arises from a ©-OBDD ‘B by the elimination
or isomorphism rule, then:

¢ is a p-OBDD with fu = fe¢

Elimination rule for v with var(v) = 2z, and w = succy(v) = succy (v):

fo = (_'Z/\fsucco(v)) v (Z/\fsuccl(v)) = (72 A fu) V (A fu) = fu

Isomorphism rule for v, w with var(v) = var(w) = z v yields:

fo = (_‘Z A fSUCCO(v))v(Z A fsuccl(v)) = (_‘Z A fsucc()(w)) v (Z A fsuccl(w)) = fu

as each reduction rule decreases the # nodes, repeatedly applying them terminates

© JPK 32

Advanced model checking

Completeness of reduction rules

©-OBDD *8 is reduced if and only if

no reduction rule is applicable to B

© JPK

33

