

Reduced Ordered Binary Decision Diagrams

Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 29, 2009

Basic approach

- let $TS = (S, \rightarrow, I, AP, L)$ be a “large” finite transition system
 - the set of actions is irrelevant here and has been omitted, i.e., $\rightarrow \subseteq S \times S$
- For $n \geq \lceil \log |S| \rceil$, let injective function $enc : S \rightarrow \{0, 1\}^n$
 - note: $enc(S) = \{0, 1\}^n$ is no restriction, as all elements $\{0, 1\}^n \setminus enc(S)$ can be treated as the encoding of pseudo states that are unreachable
- Identify the states $s \in S = enc^{-1}(\{0, 1\}^n)$ with $enc(s) \in \{0, 1\}^n$
- And $T \subseteq S$ by its **characteristic** function $\chi_T : \{0, 1\}^n \rightarrow \{0, 1\}$
 - that is $\chi_T(enc(s)) = 1$ if and only if $s \in T$
- And $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0, 1\}^{2n} \rightarrow \{0, 1\}$
 - such that $\Delta(enc(s), enc(s')) = 1$ if and only if $s \rightarrow s'$

Switching functions

- Let $\text{Var} = \{z_1, \dots, z_m\}$ be a finite set of Boolean variables
- An **evaluation** is a function $\eta : \text{Var} \rightarrow \{0, 1\}$
 - let $\text{Eval}(z_1, \dots, z_m)$ denote the set of evaluations for z_1, \dots, z_m
 - shorthand $[z_1 = b_1, \dots, z_m = b_m]$ for $\eta(z_1) = b_1, \dots, \eta(z_m) = b_m$
- $f : \text{Eval}(\text{Var}) \rightarrow \{0, 1\}$ is a **switching function** for $\text{Var} = \{z_1, \dots, z_m\}$
- Logical operations and quantification are defined as expected
 - $f_1(\cdot) \wedge f_2(\cdot) = \min\{f_1(\cdot), f_2(\cdot)\}$
 - $f_1(\cdot) \vee f_2(\cdot) = \max\{f_1(\cdot), f_2(\cdot)\}$
 - $\exists z. f(\cdot) = f(\cdot)|_{z=0} \vee f(\cdot)|_{z=1}$, and
 - $\forall z. f(\cdot) = f(\cdot)|_{z=0} \wedge f(\cdot)|_{z=1}$

Polynomial-size data structure impossible

- There is **no** poly-size data structure for all switching functions
 - $|Eval(z_1, \dots, z_m)| = 2^m$, so #functions $Eval(z_1, \dots, z_m) \rightarrow \{0, 1\}$ is 2^{2^m}
- Suppose there is a data structure that can represent K_m switching functions by at most 2^{m-1} bits
- Then $K_m \leq \sum_{i=0}^{2^{m-1}} 2^i = 2^{2^{m-1}+1} - 1 < 2^{2^{m-1}+1}$
- But then there are at least

$$2^{2^m} - 2^{2^{m-1}+1} = 2^{2^{m-1}+1} \cdot (2^{2^m-2^{m-1}-1} - 1) = 2^{2^{m-1}+1} \cdot (2^{2^{m-1}-1} - 1)$$

switching functions whose representation needs more than 2^{m-1} bits

Representing switching functions

- Truth tables
 - very space inefficient: 2^n entries for n variables
 - satisfiability and equivalence check: easy; boolean operations also easy
 - . . . but have to consider exponentially many lines (so are hard)
- . . . in Disjunctive Normal Form (DNF)
 - satisfiability is easy: find a disjunct that does have complementary literals
 - negation and conjunction complicated
 - equivalence checking ($f = g?$) is coNP-complete
- . . . in Conjunctive Normal Form (CNF)
 - satisfiability problem is NP-complete (Cook's theorem)
 - negation and disjunction complicated

Representing switching functions

<i>representation</i>	<i>compact?</i>	<i>sat</i>	<i>equi</i>	\wedge	\vee	\neg
propositional formula	often	hard	hard	easy	easy	easy
DNF	sometimes	easy	hard	hard	easy	hard
CNF	sometimes	hard	hard	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard	hard

There is hope perhaps

Nevertheless there are data structures which yield compact representations for many switching functions that appear in practical applications

for hardware circuits, ordered binary decision diagrams (OBDDs) are successful

Representing boolean functions

<i>representation</i>	<i>compact?</i>	<i>sat</i>	<i>equ</i>	\wedge	\vee	\neg
propositional formula	often	hard	hard	easy	easy	easy
DNF	sometimes	easy	hard	hard	easy	hard
CNF	sometimes	hard	hard	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard	hard
reduced ordered binary decision diagram	often	easy	easy*	medium	medium	easy

* provided appropriate implementation techniques are used

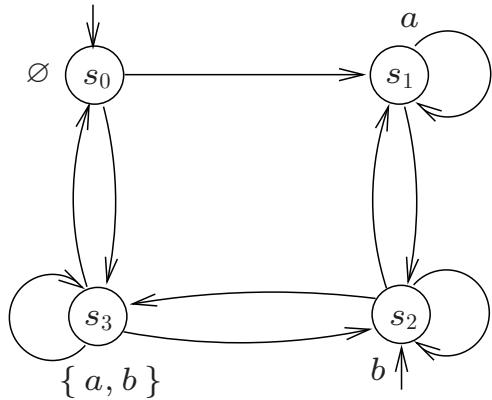
Binary decision tree

- The BDT for function f on $\text{Var} = \{ z_1, \dots, z_m \}$ has depth m
 - outgoing edges for node at level i stand for $z_i = 0$ (dashed) and $z_i = 1$ (solid)
- For evaluation $s = [z_1 = b_1, \dots, z_m = b_m]$, $f(s)$ is the value of the leaf
 - reached by traversing the BDT from the root using branch $z_i = b_i$ for at level i
- The subtree of node v at level i for variable ordering $z_1 < \dots < z_m$ represents

$$f_v = f|_{z_1=b_1, \dots, z_{i-1}=b_{i-1}}$$

- which is a switching function over $\{ z_i, \dots, z_m \}$ and
- where $z_1 = b_1, \dots, z_{i-1} = b_{i-1}$ is the sequence of decisions made along the path from the root to node v

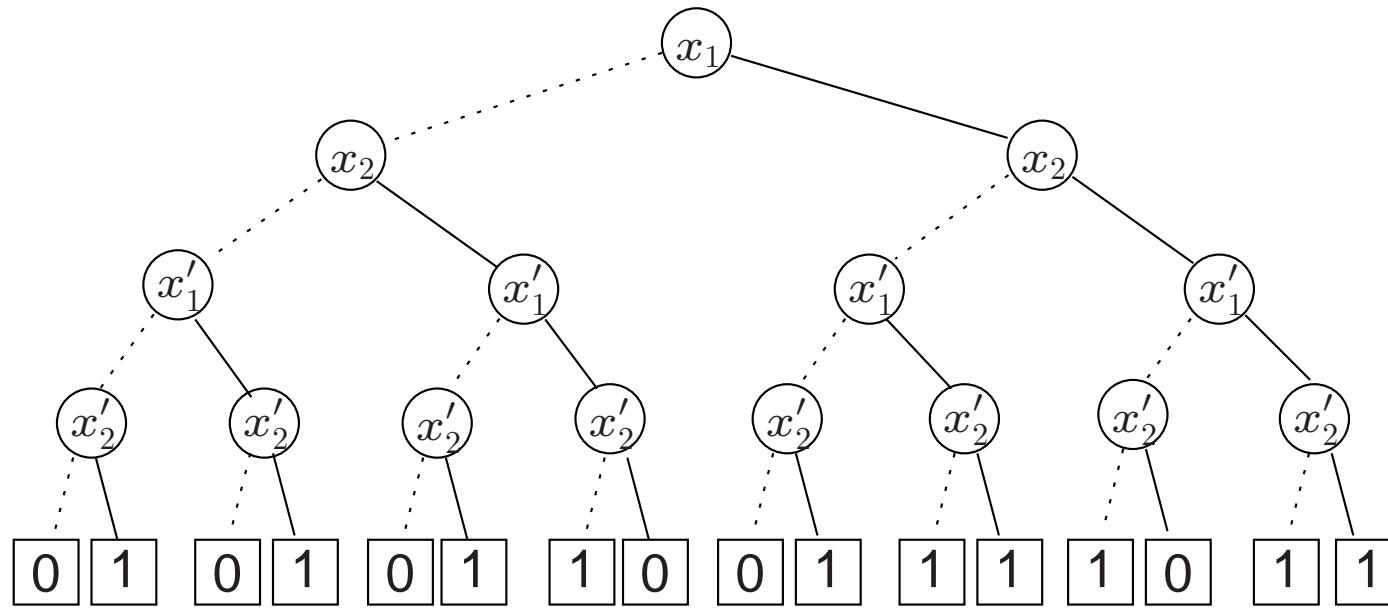
Symbolic representation of a transition system



Switching function: $\Delta(\underbrace{x_1, x_2}_{s}, \underbrace{x'_1, x'_2}_{s'}) = 1$ if and only if $s \rightarrow s'$

$$\begin{aligned}
 \Delta(x_1, x_2, x'_1, x'_2) = & (\neg x_1 \wedge \neg x_2 \wedge \neg x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge \neg x_2 \wedge x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge x_2 \wedge x'_1 \wedge \neg x'_2) \\
 \vee & \dots \\
 \vee & (x_1 \wedge x_2 \wedge x'_1 \wedge x'_2)
 \end{aligned}$$

Transition relation as a BDT



A BDT representing Δ for our example using ordering $x_1 < x_2 < x'_1 < x'_2$

Considerations on BDTs

- BDTs are **not compact**
 - a BDT for switching function f on n variables has 2^n leafs
⇒ they are as space inefficient as truth tables!
- ⇒ BDTs contain quite some **redundancy**
 - all leafs with value one (zero) could be collapsed into a single leaf
 - a similar scheme could be adopted for isomorphic subtrees
- The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

Let \wp be a variable ordering for Var where $\wp = (z_1, \dots, z_m)$

An \wp -OBDD is a tuple $\mathfrak{B} = (V, V_I, V_T, \text{succ}_0, \text{succ}_1, \text{var}, \text{val}, v_0)$ with

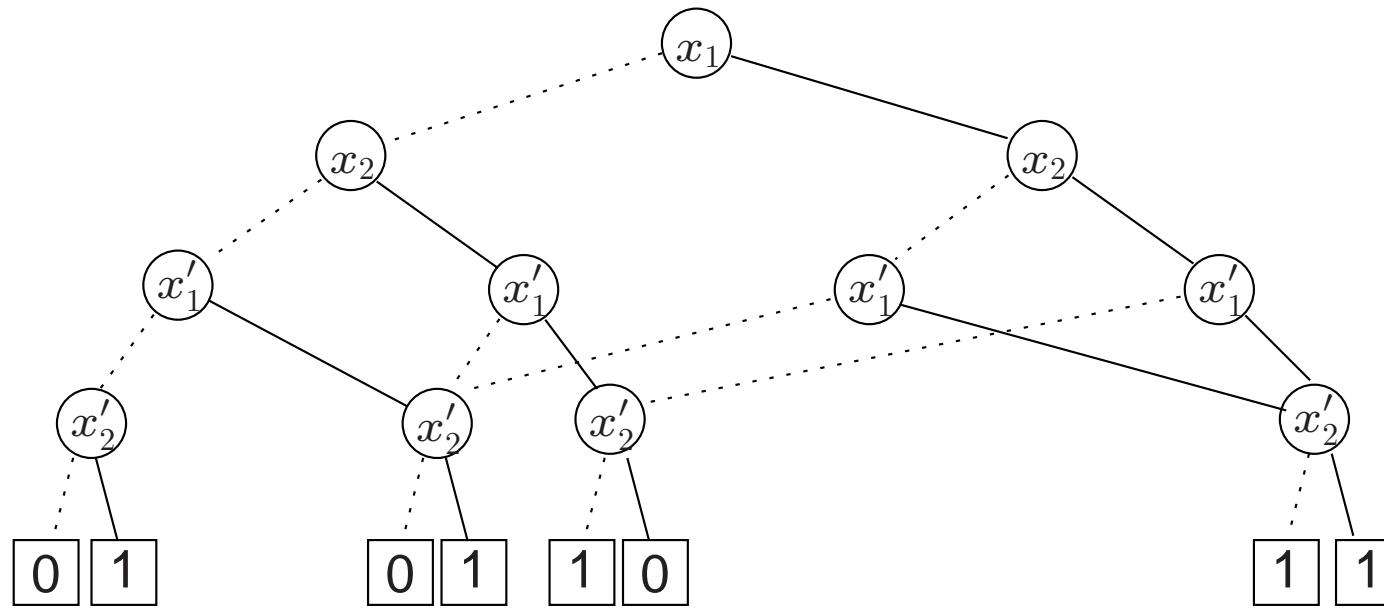
- a finite set V of nodes, partitioned into V_I (inner) and V_T (terminals)
 - and a distinguished root (node) $v_0 \in V$
- successor functions $\text{succ}_0, \text{succ}_1 : V_I \rightarrow V$
 - such that each node $v \in V \setminus \{v_0\}$ has at least one predecessor
 - i.e., all nodes of the OBDD \mathfrak{B} are reachable from the root
- a labeling functions $\text{var} : V_I \rightarrow \text{Var}$ and $\text{val} : V_T \rightarrow \{0, 1\}$

satisfying for $\wp = (z_1, \dots, z_m)$ and $v \in V_I$:

$$\text{var}(v) = z_i \wedge w \in \{\text{succ}_0(v), \text{succ}_1(v)\} \cap V_I \Rightarrow \text{var}(w) = z_j \text{ for } j > i$$

Some example OBDDs

Transition relation as an OBDD

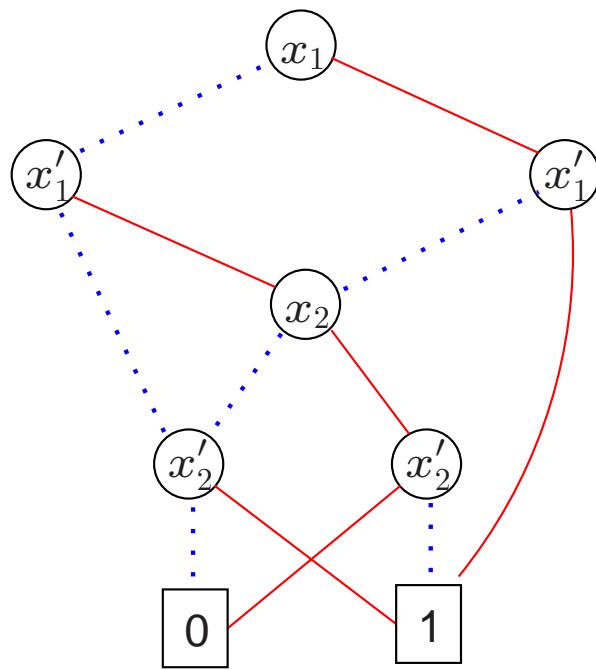
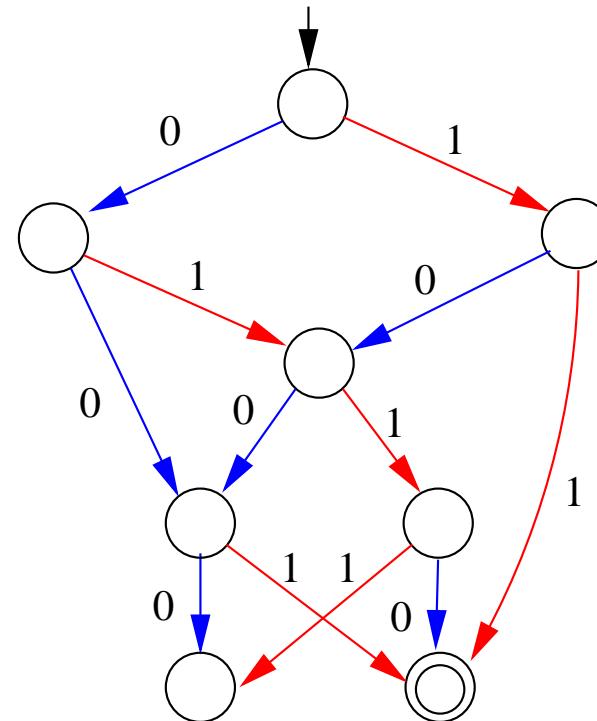


An example OBDD representing f_{\rightarrow} for our example using $x_1 < x_2 < x'_1 < x'_2$

Semantics of an OBDD

The semantics of \wp -OBDD \mathfrak{B} is the switching function $f_{\mathfrak{B}}$ where $f_{\mathfrak{B}}([z_1 = b_1, \dots, z_m = b_m])$ is the value of the leaf that is reached when traversing \mathfrak{B} starting in v_0 and branching according to the evaluation $[z_1 = b_1, \dots, z_m = b_m]$

Intermezzo: OBDDs versus DFA



each OBDD \mathfrak{B} is a deterministic automaton $\mathcal{A}_{\mathfrak{B}}$ with $f_{\mathfrak{B}}^{-1}(1) = L(\mathcal{A}_{\mathfrak{B}})$

Bottom-up characterization of $f_{\mathfrak{B}}$

Let \mathfrak{B} be a \wp -OBDD. Switching function f_v for node $v \in V$:

- If $v \in V_T$, then f_v is the constant switching function with value $\text{val}(v)$
- If $v \in V_I$ with $\text{var}(v) = z$, then $f_v = \underbrace{(\neg z \wedge f_{\text{succ}_0(v)}) \vee (z \wedge f_{\text{succ}_1(v)})}_{\text{Shannon expansion}}$

Furthermore, $f_{\mathfrak{B}} = f_{v_0}$ for the root v_0 of \mathfrak{B}

Consistent co-factors in OBDDs

- Let f be a switching function for Var
- Let $\wp = (z_1, \dots, z_m)$ a variable ordering for Var , i.e., $z_1 <_{\wp} \dots <_{\wp} z_m$
- Switching function g is a *\wp -consistent cofactor* of f if

$$g = f|_{z_1=b_1, \dots, z_i=b_i} \quad \text{for some } i \in \{0, 1, \dots, m\}$$

- Then it holds that:
 1. for each node v of an \wp -OBDD \mathfrak{B} , f_v is a \wp -consistent cofactor of $f_{\mathfrak{B}}$
 2. for each \wp -consistent cofactor g of $f_{\mathfrak{B}}$ there is a node $v \in \mathfrak{B}$ with $f_v = g$

Reduced OBDDs

A \wp -OBDD \mathfrak{B} is *reduced* if for every pair (v, w) of nodes in \mathfrak{B} :

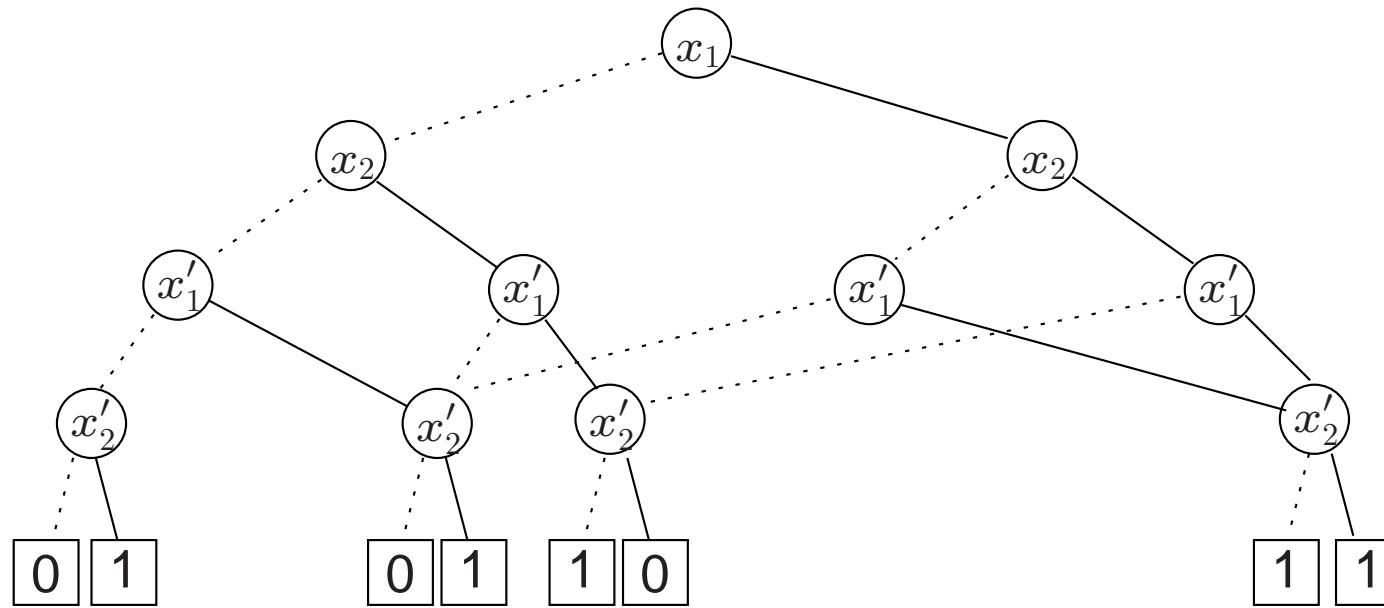
$$v \neq w \text{ implies } f_v \neq f_w$$

(A *reduced* \wp -OBDD is abbreviated as \wp -ROBDD)

⇒ \wp -ROBDDs any \wp -consistent cofactor is represented by **exactly one** node

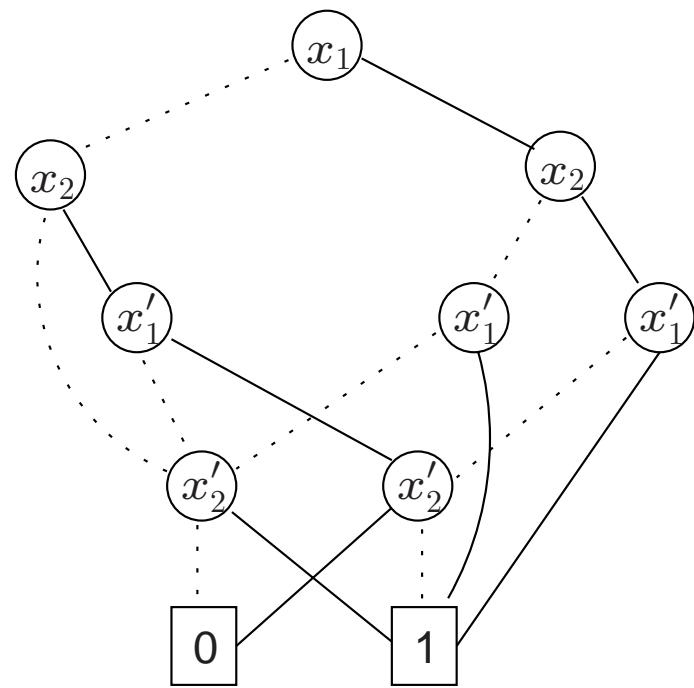
Example ROBDDs

Transition relation as an ROBDD

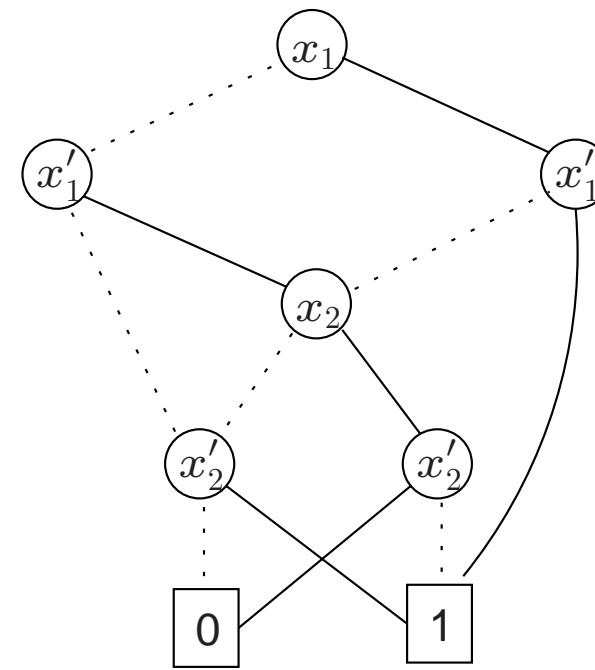


An example OBDD representing $f_>$ for our example using $x_1 < x_2 < x'_1 < x'_2$

Transition relation as an ROBDD



(a) ordering $x_1 < x_2 < x'_1 < x'_2$



(b) ordering $x_1 < ' x'_1 < ' x_2 < ' x'_2$

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and \wp a variable ordering for Var . Then:

- (a) For each switching function f for Var there **exists** a \wp -ROBDD \mathfrak{B} with $f_{\mathfrak{B}} = f$
- (b) For any \wp -ROBDDs \mathfrak{B} and \mathfrak{C} with $f_{\mathfrak{B}} = f_{\mathfrak{C}}$, \mathfrak{B} and \mathfrak{C} are **isomorphic**, i.e., agree up to renaming of the nodes

Proofs

The importance of canonicity

- **Absence of redundant vertices**
 - if $f_{\mathfrak{B}}$ does not depend on z_i , ROBDD \mathfrak{B} does not contain an x_i node
- **Test for equivalence**: $f(x_1, \dots, x_n) \equiv g(x_1, \dots, x_n)$?
 - generate ROBDDs \mathfrak{B}_f and \mathfrak{B}_g , and check isomorphism
- **Test for validity**: $f(x_1, \dots, x_n) = 1$?
 - generate ROBDD \mathfrak{B}_f and check whether it only consists of a 1-leaf
- **Test for implication**: $f(x_1, \dots, x_n) \rightarrow g(x_1, \dots, x_n)$?
 - generate ROBDD $\mathfrak{B}_f \wedge \neg g$ and check if it just consists of a 0-leaf
- **Test for satisfiability**
 - f is satisfiable if and only if \mathfrak{B}_f has a reachable 1-leaf

Minimality of ROBDDs

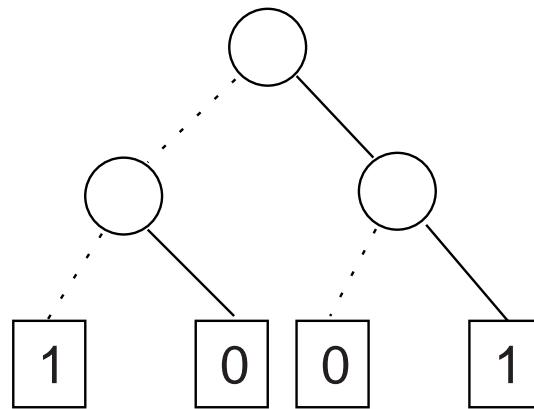
For any \wp -OBDD \mathcal{B} for f \mathcal{B} is reduced iff $\text{size}(\mathcal{B}) \leq \text{size}(\mathcal{C})$ for each \wp -OBDD \mathcal{C} for f

Reducing OBDDs

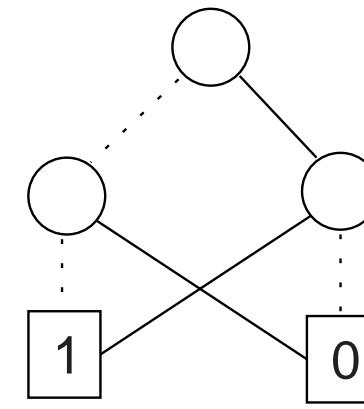
- Generate an OBDD (or BDT) for a boolean expression, then **reduce**
 - by means of a recursive descent over the OBDD
- **Elimination of duplicate leafs**
 - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- **Elimination of “don’t care” (non-leaf) vertices**
 - if $\text{left}(v) = \text{right}(v) = w$, eliminate v and redirect all its incoming edges to w
- **Elimination of isomorphic subtrees**
 - if $v \neq w$ are roots of isomorphic subtrees, remove w
 - and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

How to reduce an OBDD?

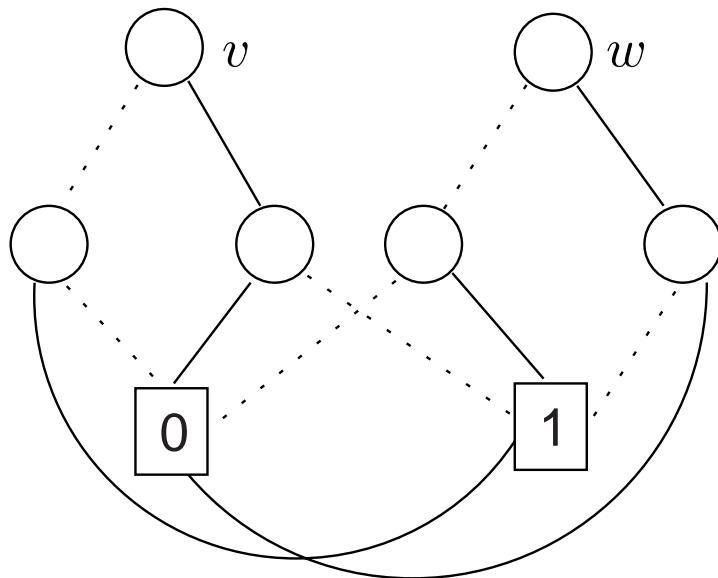


becomes

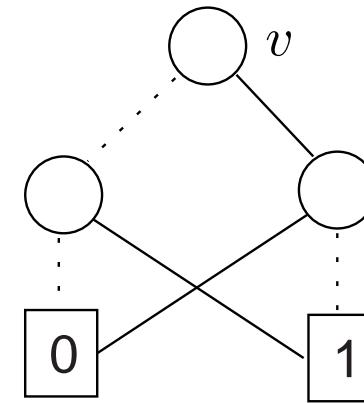


(special case of) isomorphism rule

How to reduce a BDD?

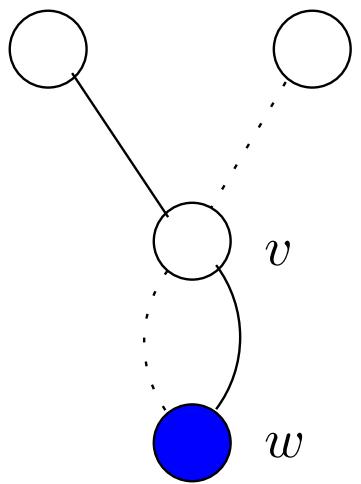


becomes

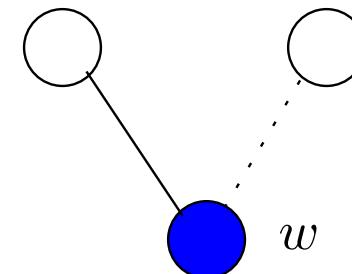


isomorphism rule

How to reduce an OBDD?



becomes



elimination rule

Example

Soundness of reduction rules

if \mathfrak{C} arises from a \wp -OBDD \mathfrak{B} by the elimination
 or isomorphism rule, then:
 \mathfrak{C} is a \wp -OBDD with $f_{\mathfrak{B}} = f_{\mathfrak{C}}$

Elimination rule for v with $\text{var}(v) = z$, and $w = \text{succ}_0(v) = \text{succ}_1(v)$:

$$f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \vee (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_w) \vee (z \wedge f_w) = f_w$$

Isomorphism rule for v, w with $\text{var}(v) = \text{var}(w) = z$ v yields:

$$f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \vee (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_{\text{succ}_0(w)}) \vee (z \wedge f_{\text{succ}_1(w)}) = f_w$$

as each reduction rule decreases the # nodes, repeatedly applying them terminates

Completeness of reduction rules

\wp -OBDD \mathfrak{B} is reduced if and only if
no reduction rule is applicable to \mathfrak{B}