
Reduced Ordered Binary Decision Diagrams
Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 17, 2009

c© JPK

Advanced model checking

Switching functions

• Let Var = {z1, . . . , zm} be a finite set of Boolean variables

• An evaluation is a function η : Var → { 0, 1 }
– let Eval(z1, . . . , zm) denote the set of evaluations for z1, . . . , zm

– shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm

• f : Eval(Var) → { 0, 1 } is a switching function for Var = {z1, . . . , zm}

• Logical operations and quantification are defined by:

f1(·)∧ f2(·) = min{ f1(·), f2(·) }
f1(·) ∨ f2(·) = max{ f1(·), f2(·) }

∃z. f(·) = f(·)|z=0 ∨ f(·)|z=1, and
∀z. f(·) = f(·)|z=0 ∧ f(·)|z=1

c© JPK 1

Advanced model checking

Ordered Binary Decision Diagram

Let ℘ be a variable ordering for Var where z1 <℘ . . . <℘ zm

An ℘-OBDD is a tuple B = (V, VI, VT , succ0, succ1, var, val, v0) with

• a finite set V of nodes, partitioned into VI (inner) and VT (terminals)

– and a distinguished root v0 ∈ V

• successor functions succ0, succ1 : VI → V

– such that each node v ∈ V \ {v0} has at least one predecessor

• labeling functions var : VI → Var and val : VT → { 0, 1 } satisfying

v ∈ VI ∧ w ∈ { succ0(v), succ1(v) } ∩ VI ⇒ var(v) <℘ var(w)

c© JPK 2

Advanced model checking

Transition relation as an OBDD

1 0 1 1 0 1 10

x′
2 x′

2 x′
2

x′
1 x′

1

x2

x1

x′
1 x′

1

x2

x′
2

An example OBDD representing f→ for our example using x1 < x2 < x′
1 < x′

2

c© JPK 3

Advanced model checking

Consistent co-factors in OBDDs

• Let f be a switching function for Var

• Let ℘ = (z1, . . . , zm) a variable ordering for Var, i.e., z1 <℘ . . . <℘ zm

• Switching function g is a ℘-consistent cofactor of f if

g = f |z1=b1,...,zi=bi
for some i ∈ { 0, 1, . . . , m }

• Then it holds that:

1. for each node v of an ℘-OBDD B, fv is a ℘-consistent cofactor of fB

2. for each ℘-consistent cofactor g of fB there is a node v ∈ B with fv = g

c© JPK 4

Advanced model checking

Reduced OBDDs

A ℘-OBDD B is reduced if for every pair (v, w) of nodes in B:

v �= w implies fv �= fw

(A reduced ℘-OBDD is abbreviated as ℘-ROBDD)

⇒ ℘-ROBDDs any ℘-consistent cofactor is represented by exactly one node

c© JPK 5

Advanced model checking

Transition relation as an ROBDD

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x′
1

0

x1

x2 x2

x′
1x′

1

x′
2x′

2

1

(a) ordering x1 < x2 < x′
1 < x′

2 (b) ordering x1 <′ x′
1 <′ x2 <′ x′

2

c© JPK 6

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ℘ a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a ℘-ROBDD B with fB = f

(b) Any ℘-ROBDDs B and C with fB = fC are isomorphic

Any ℘-OBDD B for f is reduced iff size(B) � size(C) for each ℘-OBDD C for f

c© JPK 7

Advanced model checking

Reducing OBDDs
• Generate an OBDD (or BDT) for a switching function, then reduce

– by means of a recursive descent over the OBDD

• Elimination of duplicate leafs

– for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them

• Elimination of “don’t care” (non-leaf) vertices

– if succ0(v) = succ1(v) = w, delete v and redirect all its incoming edges to w

• Elimination of isomorphic subtrees

– if v 	= w are roots of isomorphic subtrees, remove w

and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

c© JPK 8

Advanced model checking

How to reduce an OBDD?

0 01 1 01

becomes

(special case of) isomorphism rule

c© JPK 9

Advanced model checking

How to reduce an OBDD?

v w v

0 1
0 1

becomes

isomorphism rule

c© JPK 10

Advanced model checking

How to reduce an OBDD?

v

w

w
becomes

elimination rule

c© JPK 11

Advanced model checking

Soundness and completeness

if C arises from a ℘-OBDD B by applying

the elimination or isomorphism rule, then:

C is a ℘-OBDD with fB = fC

℘-OBDD B is reduced if and only if

no reduction rule is applicable to B

c© JPK 12

Advanced model checking

Variable ordering

• ROBDDs are canonical for a fixed variable ordering

– the size of the ROBDD crucially depends on the variable ordering
– # nodes in ROBDD B = # of ℘-consistent co-factors of f

• Some switching functions have linear and exponential ROBDDs

– e.g., the addition function, or the stable function

• Some switching functions only have polynomial ROBDDs

– this holds, e.g., for symmetric functions (see next)
– examples f(. . .) = x1 ⊕ . . . ⊕ xn, or f(. . .) = 1 iff � k variables xi are true

• Some switching functions only have exponential ROBDDs

– this holds, e.g., for the multiplication function

c© JPK 13

Advanced model checking

The function stable with exponential ROBDD

y1y1 y1 y1 y1 y1 y1 y1

x1

1

y3

x2 x2

x3 x3 x3x3

y2

y3

y2 y2 y2

The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·2n − 1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn

c© JPK 14

Advanced model checking

The function stable with linear ROBDD
x1

y1 y1

x2

y2 y2

x3

y3

1

y3

The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·n + 2 vertices under ordering x1 < y1 < . . . < xn < yn

c© JPK 15

Advanced model checking

Another function with an exponential ROBDD
z1

0 1

z2 z2

z3 z3 z3 z3

y1 y1 y1 y1

y2 y2

y3

ROBDD for f3(z , y) = (z1 ∧ y1) ∨ (z2 ∧ y2) ∨ (z3 ∧ y3)

for the variable ordering z1 < z2 < z3 < y1 < y2 < y3

c© JPK 16

Advanced model checking

And an optimal linear ROBDD

z1

1 0

y1

z2

y2

z3

y3

• ROBDD for f3(·) = (z1∧y1)∨(z2∧y2)∨(z3∧y3)

• for ordering z1 < y1 < z2 < y2 < z3 < y3

• as all variables are essential for f , this ROBDD is
optimal

• that is, for no variable ordering a smaller ROBDD
exists

c© JPK 17

Advanced model checking

Symmetric functions

f ∈ Eval(z1, . . . , zm) is symmetric if and only if

f([z1 = b1, . . . , zm = bm]) = f([z1 = bi1, . . . , zm = bim])

for each permutation (i1, . . . , im) of (1, . . . , m)

E.g.: z1∨ z2∨ . . .∨ zm, z1∧ z2∧ . . .∧ zm, the parity function, and the majority function

If f is a symmetric function with m essential variables, then

for each variable ordering ℘ the ℘-ROBDD has size O(m2)

c© JPK 18

Advanced model checking

The even parity function

feven(x1, . . . , xn) = 1 iff the number of variables xi with value 1 is even

truth table or propositional formula for feven has exponential size

but an ROBDD of linear size is possible

c© JPK 19

Advanced model checking

The multiplication function

• Consider two n-bit integers

– let bn−1bn−2 . . . b0 and cn−1cn−2 . . . c0

– where bn−1 is the most significant bit, and b0 the least significant bit

• Multiplication yields a 2n-bit integer

– the ROBDD Bfn−1
has at least 1.09n vertices

– where fn−1 denotes the the (n−1)-st output bit of the multiplication

c© JPK 20

Advanced model checking

Optimal variable ordering

• The size of ROBDDs is dependent on the variable ordering

• Is it possible to determine ℘ such that the ROBDD has minimal size?

– to check whether a variable ordering is optimal is NP-hard
– polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]

• There are many switching functions with large ROBDDs

– for almost all switching functions the minimal size is in Ω(2n

n)

• How to deal with this problem in practice?

– guess a variable ordering in advance
– rearrange the variable ordering during the ROBDD manipulations
– not necessary to test all n! orderings, best known algorithm in O(3n·n2)

c© JPK 21

Advanced model checking

Variable swapping

c© JPK 22

Advanced model checking

Sifting algorithm
[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable xi in OBDD at hand

2. By successive swapping of xi, determine size(B) at any position for
xi

3. Shift xi to position for which size(B) is minimal

4. Go back to the first step until no improvement is made

◦ Characteristics:

• a variable may change position several times during a single sifting iteration
• often yields a local optimum, but works well in practice

c© JPK 23

Advanced model checking

Interleaved variable ordering

• Which variable ordering to use for transition relations?

• The interleaved variable ordering:

– for encodings x1, . . . , xn and y1, . . . , yn of state s and t respectively:

x1 < y1 < x2 < y2 < . . . < xn < yn

• This variable ordering yields compact ROBDDs for binary relations

– for transition relation with z1 . . . zm be the encoding of action α, take:

z1 < z2 < . . . < zm| {z }
encoding of α

< x1 < y1 < x2 < y2 < . . . < xn < yn| {z }
interleaved order of states

c© JPK 24

Advanced model checking

Implementation: shared OBDDs

A shared ℘-OBDD is an OBDD with multiple roots

10

Shared OBDD representing z1 ∧ ¬z2| {z }
f1

, ¬z2|{z}
f2

, z1 ⊕ z2| {z }
f3

and ¬z1 ∨ z2| {z }
f4

Main underlying idea: combine several OBDDs with same variable ordering
such that common ℘-consistent co-factors are shared

c© JPK 25

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

• The unique table

– keeps track of ROBDD nodes that already have been created
– table entry 〈var(v), succ1(v), succ0(v)〉 for each inner node v

– main operation: find or add(z , v1, v0) with v1 	= v0

∗ return v if there exists a node v = 〈z , v1, v0〉 in the ROBDD
∗ if not, create a new z -node v with succ0(v) = v0 and succ1(v) = v0

– implemented using hash functions (expected access time is O(1))

• The computed table

– keeps track of tuples for which ITE has been executed (memoization)
⇒ realizes a kind of dynamic programming

c© JPK 26

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1, f2) = (g ∧ f1) ∨ (¬ g ∧ f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

fv = ITE
“

z, fsucc1(v), fsucc0(v)

”

Then:

¬f = ITE(f, 0, 1)

f1 ∨ f2 = ITE(f1, 1, f2)

f1 ∧ f2 = ITE(f1, f2, 0)

f1 ⊕ f2 = ITE(f1,¬f2, f2) = ITE(f1, ITE(f2, 0, 1), f2)

If g, f1, f2 are switching functions for Var, z ∈ Var and b ∈ {0, 1}, then

ITE(g, f1, f2)|z=b = ITE(g|z=b, f1|z=b, f2|z=b)

c© JPK 27

Advanced model checking

ITE-operator on shared OBDDs
if u is terminal then

if val(u) = 1 then
w := v1 (* ITE(1, fv1, fv2) = fv1 *)

else
w := v2 (* ITE(0, fv1

, fv2
) = fv2

*)
fi

else
z := min{var(u), var(v1), var(v2)};
w1 := ITE(u|z=1, v1|z=1, v2|z=1);
w0 := ITE(u|z=0, v1|z=0, v2|z=0);
if w0 = w1 then

w := w1; (* elimination rule *)
else

w := find or add(z, w1, w0); (* isomorphism rule *)
fi

fi
return w

c© JPK 28

Advanced model checking

ROBDD size under ITE

The size of the ℘-ROBDD for ITE(g, f1, f2) is bounded by Ng · Nf1
· Nf2

where Nf denotes the size of the ℘-ROBDD for f

c© JPK 29

Advanced model checking

ROBDD size under ITE

The size of the ℘-ROBDD for ITE(g, f1, f2) is bounded by Ng · Nf1
· Nf2

where Nf denotes the size of the ℘-ROBDD for f

But how to avoid multiple invocations to ITE?

⇒ Store triples (u, v1, v2) for which ITE already has been computed

c© JPK 30

Advanced model checking

Efficiency improvement by memoization
if there is an entry for (u, v1, v2, w) in the computed table then

return node w

else
if u is terminal then

if val(u) = 1 then w := v1 else w := v2 fi
else

z := min{var(u), var(v1), var(v2)};
w1 := ITE(u|z=1, v1|z=1, v2|z=1);
w0 := ITE(u|z=0, v1|z=0, v2|z=0);
if w0 = w1 then w := w1 else w := find or add(z, w1, w0) fi;
insert (u, v1, v2, w) in the computed table;
return node w

fi
fi

The number of recursive calls for the nodes u, v1, v2 equals the ℘-ROBDD size

of ITE(fu, fv1, fv2), which is bounded by Nu · Nv1 · Nv2

c© JPK 31

Advanced model checking

Some experimental results

• Traffic alert and collision avoidance system (TCAS) (1998)

– 277 boolean variables, reachable state space is about 9.61056 states
– |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
– checking ∀� (p → q) takes 290 sec and 717,000 BDD vertices

• Synchronous pipeline circuit (1992)

– pipeline with 12 bits: reachable state space of 1.51029 states
– checking safety property takes about 104 − 105 sec
– |B→| is linear in data path width
– verification of 32 bits (about 10120 states): 1h 25m
– using partitioned transition relations

OBDDs are in particular successful for synchronous hardware

but combination with e.g., bisimulation minimization may be inefficient

c© JPK 32

Advanced model checking

Some other types of BDDs

• Zero-suppressed BDDs

– like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted

• Parity BDDs

– like ROBDDs, but non-terminals may be labeled with ⊕; no canonical form

• Edge-valued BDDs

• Multi-terminal BDDs (or: algebraic BDDs)

– like ROBDDs, but terminals have values in R, or N, etc.

• Binary moment diagrams (BMD)

– generalization of ROBDD to linear functions over bool, int and real
– uses edge weights

c© JPK 33

Advanced model checking

Further reading

• R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

• R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992

• M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999

• H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

• K. McMillan: Symbolic model checking, 1992

• Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

c© JPK 34

