Reduced Ordered Binary Decision Diagrams
Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

June 17, 2009

© JPK

Advanced model checking

Switching functions

e LetVar={z,...,z,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(zy, . . ., z,) denote the set of evaluations for zy, .. ., z,
— shorthand [z; = b1, ..., 2, = bp] forn(z) = b1, ..., m(2m) = by

e f:Eval(Var) — {0,1} is a switching function for Var = {z, . ..

e Logical operations and quantification are defined by:

f1(-) A f2(+)
f1(-) Vv f2()
Jz. f(+)
Vz. f()

min{ f1(-), f2(+) }
max{ f1(+), f2(-) }
f()lz=0 V f(-)]:=1, and
f(')|z:O N f(')|z:1

© JPK

Advanced model checking

Ordered Binary Decision Diagram

Let o be a variable ordering for Var where z; <, ... <, 2,

An p-OBDD is atuple %8 = (V,V;, Vi, succy, succy, var, val, vy) with

e a finite set V' of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root vy € V

e successor functions succy, succy; : V; — V

— such that each node v € V \ {wvg} has at least one predecessor
e labeling functions var : V; — Var and val : V; — {0,1 } satisfying

ve Vi N we {succy(v),succi(v) } NV = var(v) <, var(w)

© JPK 2

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x) <

© JPK 3

Advanced model checking

Consistent co-factors in OBDDs

e Let f be a switching function for Var
o Let o = (z1,...,2,) avariable ordering for Var, i.e., z; <, ... <, zm
e Switching function g is a @-consistent cofactor of f if

9= flu=b....,=p, forsomeie{0,1,...,m}

e Then it holds that:

1. for each node v of an -OBDD ‘B, f, is a gp-consistent cofactor of fy
2. for each p-consistent cofactor g of fy there is a node v € B with f, = ¢

© JPK 4

Advanced model checking

Reduced OBDDs

A ©-OBDD %8 is reduced if for every pair (v, w) of nodes in ‘B:
v # w implies f, # f.

(A reduced -OBDD is abbreviated as p-ROBDD)

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK 5

Advanced model checking

Transition relation as an ROBDD

(a) ordering z; < xy <) < @,

(b) ordering z; <’ x| <’ xy <" 2

© JPK

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and g a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a -ROBDD B with fo = f

(b) Any ©-ROBDDs B and ¢ with fs = f¢ are isomorphic

Any ©-OBDD B for f is reduced iff size(B) < size(¢) for each o-OBDD ¢ for f

© JPK .

Advanced model checking

Reducing OBDDs

Generate an OBDD (or BDT) for a switching function, then reduce

— by means of a recursive descent over the OBDD

Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

Elimination of “don’t care” (non-leaf) vertices

— if succy(v) = succy (v) = w, delete v and redirect all its incoming edges to w

Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK 8

Advanced model checking

How to reduce an OBDD?

Q\ : \ becomes

1 0(|0 1

(special case of) isomorphism rule

© JPK 9

Advanced model checking

How to reduce an OBDD?
Q v Qw

C)\ O becomes

isomorphism rule

© JPK

10

Advanced model checking

How to reduce an OBDD?

l:
.
.

becomes

elimination rule

© JPK

11

Advanced model checking

Soundness and completeness

if ¢ arises from a ©-OBDD ‘B by applying
the elimination or isomorphism rule, then:
¢is a p-OBDD with fs = f¢

©-OBDD *8 is reduced if and only if

no reduction rule is applicable to B

© JPK

12

Advanced model checking

Variable ordering

e ROBDDs are canonical for a fixed variable ordering

— the size of the ROBDD crucially depends on the variable ordering
— # nodes in ROBDD B = # of p-consistent co-factors of f

e Some switching functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

e Some switching functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)

— examples f(...)=x1 D ... B x,, 0r f(...) = 1iff > k variables x; are true

e Some switching functions only have exponential ROBDDs

— this holds, e.g., for the multiplication function

© JPK

13

Advanced model checking

The function stable with exponential ROBDD

The ROBDD of fyu(Z,y) = (1 <= y1) A ... A (xn < yYn)

has 3-2" — 1 verticesunderorderingz; < ... <z, <y1 < ... < Yy,

© JPK 14

Advanced model checking

The function stable with linear ROBDD

The ROBDD of fyu(T,y) = (1 < y1) A ... A (xn < yn)

has 3-n + 2 verticesunderorderingz; < y1 < ... < x, < Yn

© JPK

15

Advanced model checking

Another function with an exponential ROBDD

-
.
.
/
L7 @ e @
/ /
/ /
/ /
@ //,4' @ @
. =
////
»
7
L7
/ /
: @ @ @
! -
. -
| 7 s 7
7 7/
(I L /
\'/
\
|
|
|
\
\
\
\
\
\ L
N \ ,
NN
ASY \ //
NN
NN /
NN
\@

ROBDD for fg(z, y) = (Zl VAN yl) V (ZQ AN yg) V (23 AN yg)
for the variable ordering z; < 2 < z3 < 11 < 12 < U3

© JPK

16

Advanced model checking

And an optimal linear ROBDD

e ROBDDfor f3(-) = (z1Ay1)V (Ay)V(AYs3)
e forordering 1 < y1 < 22 < 12 < 13 < U3

e as all variables are essential for f, this ROBDD is
optimal

e that s, for no variable ordering a smaller ROBDD
exists

© JPK

17

Advanced model checking

Symmetric functions

f € Eval(z, ..., z,) is symmetric if and only if

f([z1 = bl, B bm]) = f([z1 = bil’ e ey Rm — bzm])

for each permutation (i, ...,%,) of (1,...,m)

Eg:x1VaV...Vzn, 21N A...Az,, the parity function, and the majority function

If £ is a symmetric function with m essential variables, then

for each variable ordering g the -ROBDD has size O(m?)

© JPK

18

Advanced model checking

The even parity function

feven(x1, ..., xy) = 1iff the number of variables z; with value 1 is even

truth table or propositional formula for f..., has exponential size

but an ROBDD of linear size is possible

© JPK 19

Advanced model checking

The multiplication function

e Consider two n-bit integers

— let b,—1b,—2...by and Cn—1Cpn—2...Co

— where b,,_1 is the most significant bit, and b, the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD B, , has at least 1.09" vertices
— where f,,_; denotes the the (n—1)-st output bit of the multiplication

© JPK

20

Advanced model checking

Optimal variable ordering
e The size of ROBDDs is dependent on the variable ordering

e IS it possible to determine g such that the ROBDD has minimal size?
— to check whether a variable ordering is optimal is NP-hard
— polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]
e There are many switching functions with large ROBDDs

— for almost all switching functions the minimal size is in Q(%)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the ROBDD manipulations
— not necessary to test all n! orderings, best known algorithm in O(3™-n?)

© JPK 21

Advanced model checking

Variable swapping

© JPK

22

Advanced model checking

Sifting algorithm
[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable z; in OBDD at hand

2. By successive swapping of z;, determine size(®5) at any position for
Lj

3. Shift z; to position for which size(8) is minimal

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

© JPK 23

Advanced model checking

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings x¢,...,x, and yq, ..., y, Of state s and ¢ respectively:
T <Y <2< Y2 < ... <2y < Yp
e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

g1 <2< ...<Zp <1 <yYy1 <2< yYy2<...<Ty <Yy
encoding of o interleaved order of states

© JPK 24

Advanced model checking

Implementation: shared OBDDs

A shared ©-OBDD is an OBDD with multiple roots

Shared OBDD representing Z1 N\ 1z, JZ & D zy and 221V 23
f1 f2 f3 fa
Main underlying idea: combine several OBDDs with same variable ordering
such that common g-consistent co-factors are shared

© JPK 25

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

e The unique table

— keeps track of ROBDD nodes that already have been created
— table entry (var(v), succy(v), succy(v)) for each inner node v
— main operation: find_or_add(z, v1, vo) With v1 # vy
* return v if there exists anode v = (z, vy, vg) in the ROBDD
« if not, create a new z-node v with succy(v) = wvg and succy(v) = wvg
— implemented using hash functions (expected access time is O(1))

e The computed table

— keeps track of tuples for which ITE has been executed (memoization)
= realizes a kind of dynamic programming

© JPK

26

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1,f2) = (gAN fi1) V (=gA f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

Then:

Jv = ITE(z, fsuccl(v)7 fSUCCQ(’U))

-f = ITE(f,0,1)
fiv fo = |ITE(f1,1, f2)
finfa = ITE(f1, f2,0)
fi® fo = ITE(f1,~f2, fo) = ITE(f1,ITE(f2,0,1), f2)

If g, f1, f2 are switching functions for Var, z € Varand b € {0, 1}, then
ITE(97 fl) f2)|z:b — ITE(g‘sza f1|z:b> f2|z:b)

© JPK

27

Advanced model checking

ITE-operator on shared OBDDs

If u Is terminal then
if val(u) = 1 then

w = V1 (* ITE(lafvlanQ) — fvl *)
else
w = V9 (* ITE(OafvlanQ) — fv2 *)
fi
else
z := min{var(u), var(vy), var(vs) };
wy = ITE(u|2=1, v1]2=1, V2|2=1);
wo = ITE(u|.=0, V1|z=0, V2|2=0);
If wo = W1 then
w = wi; (* elimination rule *)
else
w := find_or_add(z, w1, wo); (* isomorphism rule *)
fi
fi
return w

© JPK 28

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N, denotes the size of the -ROBDD for f

© JPK

29

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N denotes the size of the -ROBDD for f

But how to avoid multiple invocations to ITE?

= Store triples (u, v1, v2) for which ITE already has been computed

© JPK

30

Advanced model checking

Efficiency improvement by memoization

if there is an entry for (u, v, v2, w) in the computed table then
return node w
else
If u is terminal then
if val(u) = 1 then w := v, else w := vy fi

else
z := min{var(u), var(vy), var(vs) };
wi = ITE(u|,=1, V1|21, V2|2=1);
wo = ITE(].=0, V1|2=0, V2| 2=0);

If wg = w; then w := w; else w := find_or_add(z, w1, wy) fi;
insert (u, v1, vo, w) in the computed table;
return node w
fi
fi

The number of recursive calls for the nodes w, v, vo equals the E-ROBDD size
of ITE(fu, fvq, fuy), Which is bounded by Ny, - Ny, - Ny,

© JPK 31

Advanced model checking

Some experimental results

e Traffic alert and collision avoidance system (TCAS) (1998)

— 277 boolean variables, reachable state space is about 9.610°° states
— |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
— checking VO (p — q) takes 290 sec and 717,000 BDD vertices

e Synchronous pipeline circuit (1992)

— pipeline with 12 bits: reachable state space of 1.510% states
— checking safety property takes about 10* — 10° sec

— |B_,| is linear in data path width

— verification of 32 bits (about 10'%" states): 1h 25m

— using partitioned transition relations

OBDDs are in particular successful for synchronous hardware

but combination with e.g., bisimulation minimization may be inefficient

© JPK 32

Advanced model checking

Some other types of BDDs

e Zero-suppressed BDDs
— like ROBDDs, but non-terminals whose 1-child is leaf O are omitted
e Parity BDDs

— like ROBDDs, but non-terminals may be labeled with &; no canonical form

e Edge-valued BDDs

e Multi-terminal BDDs (or: algebraic BDDs)

— like ROBDDs, but terminals have values in R, or N, etc.

e Binary moment diagrams (BMD)

— generalization of ROBDD to linear functions over bool, int and real
— uses edge weights

© JPK 33

Advanced model checking

Further reading

R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

K. McMillan: Symbolic model checking, 1992

Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

© JPK 34

