© JPK

Timed Automata
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

June 19, 2009

Advanced model checking

Time-critical systems

e Timing issues are of crucial importance for many systems, e.g.,

— landing gear controller of an airplane, railway crossing, robot controllers
— steel production controllers, communication protocols

¢ In time-critical systems correctness depends on:

— not only on the logical result of the computation, but
— also on the time at which the results are produced

e How to model timing issues:

— discrete-time or continuous-time?

© JPK

Advanced model checking

A discrete time domain

e Time has a discrete nature, i.e., time is advanced by discrete steps

— time is modelled by naturals; actions can only happen at natural time values
— a single transition corresponds to a single time unit

= delay between any two events is always a multiple of a single time unit

e Properties can be expressed in traditional temporal logic

— the next-operator “measures” time passage

— two time units after being red, the lightis green: O (red = (O (O green)
— within two time units after red, the light is green:

O (red = (green V (O green V. O O green))

'
ng green

e Main application area: synchronous systems, e.g., hardware

© JPK

Advanced model checking

A discrete time domain

e Main advantage: conceptual simplicity

— labeled transition systems can be taken as is
— temporal logic can be taken as is
= traditional model-checking algorithms suffice
= adequate for synchronous systems. e.g., hardware systems

e Malin limitations:

— (minimal) delay between any pair of actions is a multiple of an a priori fixed
minimal delay
= difficult (or impossible) to determine this in practice
= not invariant against changes of the time scale
=- Inadequate for asynchronous systems. e.g., distributed systems

© JPK

Advanced model checking

A continuous time-domain

If time Is continuous, state changes can happen at any point in time:

within four

O time-units . is modeled by

t=20 t=0.74 t =2

Tl Ll

t=0 t=074 t=

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within 7 time-units?

© JPK 4

Advanced model checking

Approach
e Restrict expressivity of the property language

— e.g., only allow reference to natural time units

— Timed CTL

e Model timed systems symbolically rather than explicitly

— in a similar way as program graphs and channel systems

— Timed Automata

e Consider a finite quotient of the infinite state space on-demand

— i.e., using an equivalence that depends on the property and the timed automaton

—> Region Automata

© JPK 5

Advanced model checking

signal
"approach"

A railroad crossing

Eignal
'exit"

please close and open the gate at the right time!

© JPK

Advanced model checking

Modeling using transition systems

approach

0D

raise lower lower . ralse

@ exit 9

Train Controller Gate

No guarantee that the gate is closed when train is passing

© JPK

Advanced model checking

This can be seen as follows

—{ (far, 0, up))

approach
' h
approac — approach
raise lower lower raise [(near, 1, Up>]
lower enter
g exit 9
({near, 2, down)) ([(in,1,up) |

the train can enter the crossing while gate is still open

© JPK 8

Advanced model checking

Timing assumptions

Train Controller Gate

appmach
approach

up
raise lower lower raise
enter
exit

ey

after delay of executlon time
> 2 minutes 1 minute of < 1 minute

© JPK

Advanced model checking

Resulting composite behaviour

lower near 2 down)\

- roach
(farOup)app {nearlup

enter in 1 up)/

© JPK

10

Advanced model checking

Timed automata model of train

approach

enter

after
> 2 minutes

train is now also assumed to leave crossing within five time units

© JPK 11

Advanced model checking Mm

Timed automata model of gate

\
lower raise (up) lower (coming do-wnj
true) reset(z) __T <1
A

execution time
of < 1 minute

raising the gate is now also assumed to take between one and two time units

© JPK 12

Advanced model checking

Clocks

e Clocks are variables that take non-negative red values, i.e., iIn R

e Clocks increase implicitly, i.e., clock updates are not allowed

e All clocks increase at the same pace, I.e., with rate one

— after an elapse of d time units, all clocks advance by d

e Clocks may only be inspected and reset to zero

e Boolean conditions on clocks are used as:

— guards of edges: when is an edge enabled?
— invariants of locations: how long is it allowed to stay?

© JPK 13

Advanced model checking

Clock constraints

e A clock constraint over set C' of clocks is formed according to:
gu= zr<c | r<c | x> c | x=c ‘ gNg Wherece Nandz e C

e Let CC(C) denote the set of clock constraints over C'.

e Clock constraints without any conjunctions are atomic

— let ACC(C') denote the set of atomic clock constraints over C

clock difference constraints such as x—y < ¢ can be added at
expense of slightly more involved theory

© JPK 14

Advanced model checking

Timed automaton

A timed automaton TA = (Loc, Act,C,—, Locy, Inv, AP, L) where:

e Loc is a finite set of locations

e Locy C Loc is a set of initial locations

e ('Is afinite set of clocks

e — C Loc x CC(C) x Act x 2¢ x Loc is a transition relation
e Inv:Loc — CC(C) is an invariant-assignment function, and

e L :Loc — 2°F is a labeling function

© JPK

15

Advanced model checking

Intuitive interpretation

o, C
e Edge/ = T o ¢ means:

— action « is enabled once guard g holds
— when moving from location ¢ to ¢’

x perform action «, and

x reset any clock in C will to zero

x ... all clocks not in C keep their value

e Nondeterminism if several transitions are enabled

e Inv(/) constrains the amount of time that may be spent in location ¢

— once the invariant Inv(¢) becomes invalid, the location ¢ must be left
— if this is impossible — no enabled transition — no further progress is possible

© JPK 16

Advanced model checking

Guards versus invariants

I

value
of «

8
V
)

—~—
8
——

© JPK

17

Advanced model checking

Guards versus invariants

© JPK

18

Advanced model checking

Guards versus invariants

|

value
of «

—~ |8
8|\
| ro

© JPK 19

Advanced model checking

Arbitrary clock differences

— — - clock x
clock y

y > 2 ?

{ Yy } 4 p /
clock /
value £

xr = 2 2 5

Lz} |

8

time ——=

This is impossible to model in a discrete-time setting

© JPK 20

Advanced model checking

Fisher’s mutual exclusion protocol

© JPK

21

Advanced model checking

Composing timed automata
Let TA; = (Loc;, Act;, C;, <, Loco;, Inv;, AP, L;) and H an action-set

TA1 || TA; = (Loc, Act; U Acty, C, —, Locg, Inv,AP, L) where:

e Loc =Loc; x Locy and Locy = Locy ;1 x Locp 2 and C = C; U Cs

® |I']V(<€1,€2>) = |nV1(£1) A\ |nV2(€2) and L(<€1,€2>) = Ll(fl) U Lg(fg)

E c_gl:a,Dl El A E (_gz:a,D2\ E’
e ~isdefined bytherules: fora ¢ H — — 15 2 245
glAQQZG,D1UD2 / y
(1, £2) == = (€}, 4)
g:o, D / g:a,D /
fora ¢ H: ! — 15 and 2 — 2y
(1, £5) =—— (£},) (€1, L) =———> (£1, £))

© JPK 22

Advanced model checking

Example: arailroad crossing

© JPK

23

Advanced model checking

(far, O, up)
approachreset(z, y)
near,1,up))
[J<5AZ£AJ
enter =y > 9 5 = 1 ~dower
[éin,l,upz J reset(z) (near,2,c.down)
y<HAz< 1 y<dHANr <1
L= lower enter o \
re 6t<1[/<zn,2,c down>} [(near,Z,dOﬂ)
y<HhAx 1 y<H

[(far,Ox,ggoz%zg up)}

approach}reset(y, 2)

near,1,going up)
, SnearLgegng up) ||

enter' y > 2

#[y (in,1,g0ing up)
<OHONz<2N2K 1

rx>1

WV

© JPK 24

Advanced model checking

Clock valuations

e A clock valuation n for set C' of clocks is a function n : C' — R+

— assigning to each clock = € C'its current value n(x)

e Clock valuation n+d for d € R is defined by:
— (n+d)(x) = n(x) + dforall clocks z € C

e Clock valuation reset x in n for clock z is defined by:

(resetz inn)(y) = { g(y) :Iz i i

— reset xz in (reset y in n) is abbreviated by reset =, y in n

© JPK

25

Advanced model checking

Satisfaction of clock constraints
Letx € C,n € Eval(C),ce N, and g,¢' € CC(C)

The the relation = C Eval(C) x CC(C) is defined by:

n = true

nEx<c iffnlr)<c
nEx<c iffnz) <c
nEx>c Iiffnlx)>c
nEx>c iffn(z)>c
nEghg ifinEg AnkEd

© JPK

26

Advanced model checking

Timed automaton semantics
For timed automaton TA = (Loc,Act, C, —, Locy, Inv, AP,L):

Transition system TS(TA) = (S, Act’, —, I, AP’, L’) where:

e S =Loc x Eval(C), so states are of the form s = (¢, n)

o Act’' = Act U R, (discrete) actions and time passage actions
o [={{ly,mo) | 4o €Locy A no(x)=0forallz e C}

e AP’ = AP U ACC(C)

o L'({(,m)=L{) U{geACC(C)[nlkg}

e — IS the transition relation defined on the next slide

© JPK

27

Advanced model checking

Timed automaton semantics

The transition relation — is defined by the following two rules:

e Discrete transition: (¢,n) — (¢,) if all following conditions hold:

— there is a transition labeled (g : «, D) from location £ to £’ such that:
— g is satisfied by n,i.e., n =g

— n' = n with all clocks in D resetto 0, i.e., ' = reset D inn

— n’ fulfills the invariant of location ¢', i.e., " |= Inv(£')

e Delay transition: (¢,7) % (¢, n+d) for d € Rsq if n+d = Inv(¢)

© JPK 28

Advanced model checking

Example

© JPK

29

