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Advanced model checking

Timed automata

• Timed automaton = finite-state automaton with clock variables

• Clocks take non-negative real values, i.e., in R�0

• Clocks increase implicitly, i.e., clock updates are not allowed

• All clocks increase at the same pace, i.e., with rate one

• Clocks may only be inspected and reset to zero

• Boolean conditions on clocks are used as:

– guards of edges: when is an edge enabled?
– invariants of locations: how long is it allowed to stay?

c© JPK 1



Advanced model checking

Clock constraints

• A clock constraint over set C of clocks is formed according to:

g ::= x < c
∣∣∣ x � c

∣∣∣ x > c
∣∣∣ x � c

∣∣∣ g ∧ g where c ∈ N and x ∈ C

• Let CC(C) denote the set of clock constraints over C

• Clock constraints without any conjunctions are atomic

– let ACC(C) denote the set of atomic clock constraints over C

clock difference constraints such as x−y < c can be added at
expense of slightly more involved theory
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Advanced model checking

Timed automaton

A timed automaton TA =
(
Loc, Act, C, ↪→, Loc0, Inv, AP, L

)
where:

• Loc is a finite set of locations

• Loc0 ⊆ Loc is a set of initial locations

• C is a finite set of clocks

• ↪→ ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation

• Inv : Loc → CC(C) is an invariant-assignment function, and

• L : Loc → 2AP is a labeling function
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Advanced model checking

Timed automata model of train

train is now also assumed to leave crossing within five time units
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Advanced model checking

Clock valuations

• A clock valuation η for set C of clocks is a function η : C −→ R�0

– assigning to each clock x ∈ C its current value η(x)

• Clock valuation η+d for d ∈ R�0 is defined by:

– (η+d)(x) = η(x) + d for all clocks x ∈ C

• Clock valuation reset x in η for clock x is defined by:

(reset x in η)(y) =
{

η(y) if y �= x
0 if y = x

– reset x in (reset y in η) is abbreviated by reset { x, y } in η
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Advanced model checking

Timed automaton semantics
For timed automaton TA =

(
Loc, Act, C, ↪→, Loc0, Inv, AP, L

)
:

Transition system TS(TA) = (S, Act′,→, I, AP′, L′) where:

• S = Loc × Eval(C), so states are of the form s = 〈�, η〉

• Act′ = Act ∪ R�0, (discrete) actions and time-passage actions

• I = { 〈�0, η0〉 | �0 ∈ Loc0 ∧ η0(x) = 0 for all x ∈ C }

• AP′ = AP ∪ ACC(C)

• L′(〈�, η〉) = L(�) ∪ { g ∈ ACC(C) | η |= g }

• ↪→ is defined on the next slide
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Advanced model checking

Timed automaton semantics

The transition relation −→ is defined by the following two rules:

• Discrete transition: 〈�, η〉 α−−→〈�′, η′〉 if all following conditions hold:

– there is a transition labeled (g : α, D) from location � to �′ such that:
– g is satisfied by η, i.e., η |= g

– η′ = η with all clocks in D reset to 0, i.e., η ′ = reset D in η

– η′ fulfills the invariant of location �′, i.e., η′ |= Inv(�′)

• Delay transition: 〈�, η〉 d−→〈�, η+d〉 for d ∈ R�0 if η+d |= Inv(�)
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Advanced model checking

Example

c© JPK 8



Advanced model checking

Timed paths

Delays may be realized in TS(TA) in uncountably many ways, e.g.:

〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 2〉 〈off , 2〉 . . .

〈off , 0〉 〈off , 0.5〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈on, 2〉 〈off , 2〉 . . .

〈off , 0〉 〈off , 0.1〉 〈off , 1〉 〈on, 0〉 〈on, 0.53〉 〈on, 1.3〉 〈on, 2〉 〈off , 2〉 . . .

The effect of 〈�, η〉 d1+d2−−−−−→ 〈�, η+d1+d2〉 corresponds to:

〈�, η〉 d1−−→ 〈�, η+d1〉 d2−−→ 〈�, η+d1+d2〉

Thus, uncountably many states of the form 〈�, η+t〉 with 0 � t � d1+d2 are “visited”
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Advanced model checking

Timed paths

• Paths through TS(TA) model possible behaviours of TA

• But, not every path represents a realistic behaviour

• Some unrealistic phenomena that may occur:

– time convergence: time converges to some value
– timelock: the passage of time stops
– zenoness: infinitely many actions take place in finite time

• Timelock and zenoness are modeling flaws and to be avoided

• Time-convergent paths will be excluded for model checking

– they are treated similar as unfair paths in transition systems
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Advanced model checking

Time divergence

off on

switch on

switch off

x � 2

reset(x)

x � 1

The timed path:

〈off , 0〉 2−1−−−→ 〈off , 1−2−1〉 2−2−−−→ 〈off , 1−2−2〉 2−3−−−→ 〈off , 1−2−3〉 . . . . . .

visits infinitely many states in the interval [ 1
2, 1]
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Advanced model checking

Time divergence

• Let for any t < d, for fixed d ∈ IR>0, clock valuation η+t |= Inv(�)

• A possible execution fragment starting from the location � is:

〈�, η〉 d1−−→ 〈�, η+d1〉 d2−−→ 〈�, η+d1+d2〉 d3−−→〈�, η+d1+d2+d3〉 d4−−→ . . .

– where di > 0 and the infinite sequence d1 + d2 + . . . converges towards d

– such path fragments are called time-convergent
⇒ time advances only up to a certain value

• Time-convergent execution fragments are unrealistic and ignored

– much like unfair paths (as we will see later on)
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Advanced model checking

Time divergence

• Infinite path fragment π is time-divergent if ExecTime(π) = ∞
• The function ExecTime : Act ∪ IR>0 → IR�0 is defined as:

ExecTime(τ) =


0 if τ ∈ Act
d if τ = d ∈ IR>0

• For infinite execution fragment ρ = s0
τ1−−→ s1

τ2−−→ s2 . . . in TS(TA) let:

ExecTime(ρ) =
∞X

i=0

ExecTime(τi)

– for path fragment π in TS(TA) induced by ρ: ExecTime(π) = ExecTime(ρ)

• For state s in TS(TA): Pathsdiv(s) = {π ∈ Paths(s) | π is time-divergent}
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Advanced model checking

Example: light switch

The path π in TS(Switch) in which on- and of-periods of one minute alternate:

π = 〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 〈off , 2〉 〈on, 0〉 〈on, 1〉 〈off , 2〉 . . .

is time-divergent as ExecTime(π) = 1 + 1 + 1 + . . . = ∞

The path:

π′ = 〈off , 0〉 〈off , 1/2〉 〈off , 3/4〉 〈off , 7/8〉 〈off , 15/16〉 . . .

is time-convergent, since ExecTime(π′) =
P
i�1

`
1
2

´i
= 1 < ∞
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Advanced model checking

Timelock

• State s ∈ TS(TA) contains a timelock if Pathsdiv(s) = ∅

– there is no behavior in s where time can progress ad infinitum
– any terminal state contains a timelock (but also non-terminal states may do)
– terminal location does not necessarily yield a state with timelock (e.g. inv = true)

• TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

• Timelocks are considered as modeling flaws that should be avoided

– like deadlocks, we need mechanisms to check their presence
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Advanced model checking

A non timelock-free timed automaton

off on

switch on

switch off

x� 2

reset(x)

1 � x< 2

State 〈on, 2〉 is reachable in transition system TS(TA), e.g., via:

〈off , 0〉 switch on−−−−−−→〈on, 0〉 2−→〈on, 2〉

As 〈on, 2〉 is a terminal state, Pathsdiv(〈on, 2〉) = ∅
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Advanced model checking

Another non timelock-free timed automaton

off on

switch on

switch off

x < 3

reset(x)

1 � x < 2

State 〈on, 2〉 is not terminal, , e.g., the time-convergent path in:

〈on, 2〉 〈on, 2.9〉 〈on, 2.99〉 〈on, 2.999〉 〈on, 2.9999〉 . . .

emanates from it. But, Pathsdiv(〈on, 2〉) = ∅
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Advanced model checking

Zenoness

• A TA that performs infinitely many actions in finite time is zeno

• Path π in TS(TA) is zeno if:

it is time-convergent, and infinitely many actions α ∈ Act are executed along π

• TA is non-zeno if there does not exist a zeno path in TS(TA)

– any π in TS(TA) is time-divergent or
– is time-convergent with nearly all (i.e., all except for finitely many) transitions

being delay transitions

• Zeno paths are considered as modeling flaws that should be avoided

– like timelocks (and deadlocks), we need mechanisms to check zenoness
– this, however, turns out to be difficult ⇒ resort to sufficient conditions
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Advanced model checking

Zeno paths of a (yet another) light switch

off on

switch on
x � 2

reset(x)

x � 1 : switch off

switch on
reset(x)

The paths induced by the following execution fragments:

〈off , 0〉 sw on−−−−→〈on, 0〉 sw on−−−−→〈on, 0〉 sw on−−−−→〈on, 0〉 sw on−−−−→ . . .

〈off , 0〉 sw on−−−−→〈on, 0〉 0.5−−→〈on, 0.5〉 sw on−−−−→〈on, 0〉 0.25−−−→〈on, 0.25〉 sw on−−−−→ . . .

are zeno paths during which the user presses the on button faster and faster

avoid by imposing a minimal delay, e.g., 1
100, between successive on’s
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Advanced model checking

A non-zeno variant

off on

switch on
x � 200

reset(x)

x � 100 : switch off

x � 1 : switch on
reset(x)
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Advanced model checking

Strong zenoness

Let TA with set C of clocks such that for every (control) cycle:

�0
g1:α1,C1
↪→ �1

g2:α2,C2
↪→ . . .

gn:αn,Cn
↪→ �n = �0

there exists a clock x ∈ C such that:

1. x ∈ Ci for some 0 < i � n, and

2. for all clock evaluations η there exists c ∈ N>0 such that

η(x) < c implies (∃0 < j � n. η �|= gj or η �|= Inv(�j))

Then: TA is non-zeno
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Advanced model checking

Proof
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Advanced model checking

Example
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Advanced model checking

Timelock, time-divergence and zenoness

• A timed automaton is adequately modeling a time-critical system
whenever it is:

non-zeno and timelock-free

• Time-divergent paths will be explicitly excluded for analysis purposes
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