
Bisimulation Quotienting
Lecture #2 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 17, 2009

c© JPK



Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) T̂S prior or during model checking

Relevant issues:

• What is the formal relationship between TS and T̂S?

• Can T̂S be obtained algorithmically and efficiently?

• Which logical fragment (of LTL, CTL, CTL∗) is preserved?

• And in what sense?

– “strong” preservation: positive and negative results carry over
– “weak” preservation: only positive results carry over
– “match”: logic equivalence coincides with formal relation
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Advanced model checking

Summary of lecture #1

formal relation trace equivalence

complexity PSPACE-complete

logical fragment LTL

preservation strong

c© JPK 2



Advanced model checking

Outlook of today’s lecture

formal relation trace equivalence bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL CTL∗

preservation strong match
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Advanced model checking

Bisimulation

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2, if (s1, s2) ∈ R for some bisimulation R for TS
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Advanced model checking

Bisimulation

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

and

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2
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Advanced model checking

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R
t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4 . . . . . .

proof: by induction on the length of a path
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Advanced model checking

Bisimulation of transition systems

TS1 ∼ TS2 iff ∀s1 ∈ I1. ∃s2 ∈ I2. s1 ∼TS s2

∧ ∀s2 ∈ I2. ∃s1 ∈ I1. s1 ∼TS s2
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Advanced model checking

∼ vs. trace equivalence

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

bisimilar transition systems thus satisfy the same LT properties!
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Advanced model checking

Quotient transition system

Let TS = (S, Act,→, I, AP, L) and bisimulation R ⊆ S × S be an equivalence

The quotient of TS under R is defined by:

TS/R = (S′, { τ },→′, I ′, AP, L′)

where

• S′ = S/R = { [s]R | s ∈ S } with [s]R = { s′ ∈ S | (s, s′) ∈ R}
• I ′ = { [s]R | s ∈ I }
• L′([s]R) = L(s)

• →′ is defined by:
s α−→ s

′

[s]R τ−→′ [s′]R

note that TS ∼ TS/R Why?
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Advanced model checking

Coarsest bisimulation

∼TS is a bisimulation, an equivalence,

and the coarsest bisimulation for TS

The quotient under ∼TS is the smallest
under any bisimulation relation
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Advanced model checking

The simplified bakery algorithm

Process 1:
. . . . . .

while true {
. . . . . .

n1 : x1 := x2 + 1;

w1 : wait until(x2 = 0 ||x1 < x2 ) {
c1 : . . . critical section . . .}

x1 := 0;

. . . . . .

}

Process 2:
. . . . . .

while true {
. . . . . .

n2 : x2 := x1 + 1;

w2 : wait until(x1 = 0 ||x2 < x1) {
c2 : . . . critical section . . .}

x2 := 0;

. . . . . .

}

this algorithm can be applied to arbitrarily many processes
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Advanced model checking

Example path fragment

process P1 process P2 x1 x2 effect

n1 n2 0 0 P1 requests access to critical section
w1 n2 1 0 P2 requests access to critical section
w1 w2 1 2 P1 enters the critical section
c1 w2 1 2 P1 leaves the critical section
n1 w2 0 2 P1 requests access to critical section
w1 w2 3 2 P2 enters the critical section
w1 c2 3 2 P2 leaves the critical section
w1 n2 3 0 P2 requests access to critical section
w1 w2 3 4 P2 enters the critical section
. . . . . . .. .. . . .
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Advanced model checking

Bakery algorithm as transition system

n1 n2
x1 � 0
x2 � 0

n1 c2
x1 � 0
x2 � 1

n1 w2
x1 � 0

w1 w2
x1 � 2
x2 � 1

c1 w2
x1 � 1
x2 � 2

c1 n2
x1 � 1
x2 � 0

w1 n2
x1 � 1
x2 � 0

w1 c2

n1 c2
x1 � 0

n1 w2
x1 � 0

x1 � 3

c1 n2

x2 � 0

x2 � 0

x2 � 3
x1 � 0

x2 � 0

x2 � 1

w1 w2
x1 � 1
x2 � 2

x1 � 2
x2 � 1

x2 � 2

x2 � 2

w1 w2

x2 � 2

c1 w2 w1 c2

� � � � � �

n1 w2 w1 n2

� � � � � �

w1 w2
x1 � 2

w1 n2
x1 � 2

x1 � 2

c1 n2
x1 � 3

n1 c2

x2 � 3

� � � � � �

infinite state space due to possible unbounded increase of counters
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Advanced model checking

Bisimulation
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Advanced model checking

Bisimulation quotient
n1 n2

x1 = 0
x2 = 0

n1 w2

x1 = 0
x2 > 0

w1 n2

x1 > 0
x2 = 0

n1 c2

x1 = 0
x2 > 0

c1 n2

x1 > 0
x2 = 0

w1 w2

x1 > x2 > 0
w1 w2

x2 > x1 > 0

c1 w2

x2 > x1 > 0
w1 c2

x1 > x2 > 0

TSabs
Bak = TSBak/R for AP = { crit1, crit2, wait1, wait2 }
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Advanced model checking

Preservation of properties

• TSabs
Bak |= ϕ with, e.g.,:

– �(¬crit1 ∨ ¬crit2) and (��wait1 ⇒ ��crit1) ∧ (��wait2 ⇒ ��crit2)

• Since TSabs
Bak ∼ TSBak , it follows Traces(TSabs

Bak) = Traces(TSBak)

• Since Traces(TSabs
Bak) = Traces(TSBak), it follows TSBak |= ϕ

• We thus have Traces(TSabs
Bak) = Traces(TSBak)
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Advanced model checking

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣∣∣ ϕ1∧ϕ2

∣∣∣ ¬ϕ
∣∣∣ © ϕ

∣∣∣ ϕ1 U ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!
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Advanced model checking

Relationship between LTL, CTL and CTL∗

�(a∧ © a)
��a

�(a∧ © a)

∀�∃�a

LTL CTL

CTL∗

∨
∀�∃�a
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Advanced model checking

CTL∗ equivalence

States s1 and s2 in TS (over AP) are CTL∗-equivalent:

s1 ≡CTL∗ s2 if and only if (s1 |= Φ iff s2 |= Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously
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Advanced model checking

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and ©
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Advanced model checking

Example
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Advanced model checking

Bisimulation vs. CTL∗-equivalence

For any transition systems TS and TS′ (over AP) without terminal states:

TS ∼ TS′ if and only if TS ≡CTL TS′ if and only if TS ≡CTL∗ TS′

⇒ prior to model-check Φ, it is safe to first minimize TS wrt. ∼

how to obtain such bisimulation quotients?
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Advanced model checking

Basic fixpoint characterization

Consider the function F : 2S×S → 2S×S:

F(R) = { (s, t) | L(s) = L(t) ∧ ∀s′ ∈ S.

(s−→ s′ ⇒ ∃t′ ∈ S. t−→ t′ ∧ (s′, t′) ∈ R) ∧
(t−→ s′ ⇒ ∃u′ ∈ S. s−→u′ ∧ (s′, u′) ∈ R) ∧

}

∼TS = F(∼TS) and for any R such that F(R) = R it holds R ⊆ ∼TS
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Advanced model checking

How to compute the fixpoint of F?

For finite transition system TS = (S, Act,→, I, AP, L):

∼TS =
⋂∞

i=0 ∼i that is: s ∼TS s′ iff s ∼i s′ for all i � 0

where ∼i is defined by:

∼0 = { (s, t) ∈ S × S | L(s) = L(t) }
∼i+1 = F(∼i)

this constitutes the basis for the algorithms to follow
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Advanced model checking

Partitions

• A partition Π = {B1, . . . , Bk } of S satisfies:

– Bi is non-empty; Bi is called a block
– Bi ∩ Bj = ∅ for all i, j with i �= j

– B1 ∪ . . . ∪ Bk = S

• C ⊆ S is a super-block of partition Π of S if

C = Bi1 ∪ . . . ∪ Bil for Bij ∈ Π for 0 < j � l

• Partition Π is finer than partition Π′ if:

∀B ∈ Π. (∃B′ ∈ Π′. B ⊆ B′)

⇒ each block of Π′ equals the disjoint union of a set of blocks in Π

– Π is strictly finer than Π′ if it is finer than Π′ and Π �= Π′
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Advanced model checking

Partitions and equivalences

• R is an equivalence on S ⇒ S/R is a partition of S

• Partition Π = {B1, . . . , Bk } of S induces the equivalence relation

RΠ = { (s, t) | ∃Bi ∈ Π. s ∈ Bi ∧ t ∈ Bi }

• S/RΠ = Π

⇒ there is a one-to-one relationship between partitions and equivalences
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Advanced model checking

Skeleton for bisimulation checking
from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) }

• Repeat until no change: Πi+1 := Refine(Πi)

– loop invariant: Πi is coarser than S/∼ and finer than {S }

• Return Πi

– termination: S × S ⊇ RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ∼TS

– time complexity: maximally |S | iterations needed (why?)

this is a partition-refinement algorithm
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Advanced model checking

Computing the initial partition ΠAP

• Main idea: construct a decision tree of height k for AP = { a1, . . . , ak }

• Node at depth i < k of the tree: ai ∈ L(s) or ai 
∈ L(s)?

• Leaf v represents equally labeled states:

– s ∈ states(v) if and only if decision path for L(s) leads from root to v

• Decision tree is created step-by-step

– new nodes are created when a state is encountered with a new labeling

• Time complexity Θ(|S|·|AP|)
– a single tree traversal is needed for each state
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Advanced model checking

Example
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Advanced model checking

Lemma

1. S/∼ is the coarsest partition Π of S such that

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre(C) = ∅ or B ⊆ Pre(C) for all B, C ∈ Π

i.e., either no or all states in B have a direct successor in C

2. If (ii) holds for Π, then it holds for all B ∈ Π and all superblocks C of Π
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Advanced model checking

Proof

c© JPK 31



Advanced model checking

How to compute the fixpoint of F?

For finite transition system TS = (S, Act,→, I, AP, L):

∼ =
⋂∞

i=0 ∼i

where ∼i is defined by:

∼0 = { (s, t) ∈ S × S | L(s) = L(t) }
∼i+1 = ∼i ∩ {(s, t) | ∀C ∈ S/∼i . s ∈ Pre(C) iff t ∈ Pre(C)}

the block C is called a splitter

each relation ∼i is an equivalence relation
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Advanced model checking

The refinement operator
• Let: Refine(Π, C) =

⋃
B∈Π Refine(B,C) for C a superblock of Π

– where Refine(B, C) =
n

B ∩ Pre(C), B \ Pre(C)
o

\ {∅}

block B superblock C

B\Pre(C)

B∩Pre(C)

• Basic properties:

– for Π finer than ΠAP and coarser than S/∼:

Refine(Π, C) is finer than Π and Refine(Π, C) is coarser than S/∼

– Π is strictly coarser than S/∼ if and only if there exists a splitter for Π
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Advanced model checking

Splitters

• Let Π be a partition of S and C a superblock of Π

• C is a splitter of Π if for some B ∈ Π:

B ∩ Pre(C) 
= ∅ ∧ B \ Pre(C) 
= ∅

• Block B is stable wrt. C if

B ∩ Pre(C) = ∅ ∧ B \ Pre(C) = ∅

• Π is stable wrt. C if any B ∈ Π is stable wrt. C
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Advanced model checking

Algorithm skeleton

Input: finite transition system TS over AP with state space S

Output: bisimulation quotient space S/∼

Π := ΠAP;
while there exists a splitter for Π do

choose a splitter C for Π;
Π := Refine(Π, C); (* Refine(Π, C) is strictly finer than Π *)

od
return Π
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Advanced model checking

Example
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Advanced model checking

Which splitter to take?

How to determine a splitter for partition Πi+1?

1. Simple strategy: O(|S|·M)

use any block of Πi as splitter candidate

2. Advanced strategy: O(log |S|·M)

use only “smaller” blocks of Πi as splitter candidates

and apply “simultaneous” refinement
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Advanced model checking

A partition-refinement algorithm

[Kanellakis & Smolka, 1983]

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/∼

Π := ΠAP;
Πold := {S }; (* Πold is the “previous” partition *)

(* loop invariant: Π is coarser than S/∼ and finer than ΠAP and Πold *)
repeat

Πold := Π;
for all C ∈ Πold do

Π := Refine(Π, C);
od

until Π = Πold

return Π
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Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/∼
has a worst-case time complexity in O(|S| · |AP| + |S| · M)

c© JPK 39



Advanced model checking

Proof
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Advanced model checking

An efficiency improvement

• Not necessary to refine with respect to all blocks C ∈ Πold

⇒ Consider only the “smaller” subblocks of a previous refinement

• Step i: refine C ′ into C1 = C′ ∩ Pre(D) and C2 = C′ \ Pre(D)

• Step i+1: use the smallest C ∈ {C1, C2 } as splitter candidate

– let C be such that |C| � |C ′|/2, thus |C| � |C ′ \ C|
– combine the refinement steps with respect to C and C ′ \ C

• Refine(Π, C, C ′ \C) = Refine
“

Refine(Π, C), C ′ \C
”

where |C| � |C ′ \C|

– the decomposed blocks are stable with respect to C and C ′ \ C
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Advanced model checking

The new refinement operator

• Let: Refine(Π, C, C ′ \ C) =
⋃

B∈Π Refine(B,C,C ′ \ C)

– where Refine(B, C, C ′ \ C) = {B1, B2, B3 } \ {∅ } with:

B1 = B ∩ Pre(C) ∩ Pre(C ′ \ C) to both C and C \ C ′

B2 = (B ∩ Pre(C)) \ Pre(C ′ \ C) only to C

B3 = (B ∩ Pre(C ′ \ C)) \ Pre(C) only to C ′ \ C

⇒ blocks B1, B2, B3 are stable with respect to C and C ′ \ C

block B

B3
B1

B2
C

C′ \C
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Improved partition-refinement algorithm

[Paige & Tarjan, 1987]

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/∼

Πold := {S };
Π := Refine(ΠAP, S);

(* loop invariant: Π is coarser than S/∼ and finer than ΠAP and Πold , *)
(* and Π is stable with respect to any block in Πold *)

repeat
choose block C ′ ∈ Πold \ Π and block C ∈ Π with C ⊆ C ′ and |C| � |C′|

2 ;
Πold := Π;

Π := Refine(Π, C, C ′ \ C);
until Π = Πold

return Π
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Example
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Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

Time complexity of computing TS/∼ is O(|S|·|AP| + log |S|·M)
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Proof
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Advanced model checking

Summary of today’s lecture

formal relation trace equivalence bisimulation

complexity PSPACE-complete O(log |S|·M)

logical fragment LTL CTL∗

preservation strong match
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