© JPK

Bisimulation Quotienting
Lecture #2 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

April 17, 2009

Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) TS prior or during model checking

Relevant issues:

e What is the formal relationship between TS and TS?

e Can TS be obtained algorithmically and efficiently?

e Which logical fragment (of LTL, CTL, CTL*) is preserved?

e And in what sense?

— “strong” preservation: positive and negative results carry over
— “weak” preservation: only positive results carry over
— “match”: logic equivalence coincides with formal relation

© JPK 1

Advanced model checking

Summary of lecture #1

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

© JPK

Advanced model checking

Outlook of today’s lecture

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
PTIME
CTL*

match

© JPK

Advanced model checking

Bisimulation

R C S x Sisabisimulation on TS if for any (s1, s2) € R:

o [(s1) = L(s2)

e if s7 € Post(s;) then there exists an s, € Post(sy) with (s, s5) € R
e if s, € Post(sz) then there exists an s € Post(s;) with (s, s},) € R

s1 and so are bisimilar, s; ~1s sa, if (s1, s2) € R for some bisimulation R for TS

© JPK 4

Advanced model checking

and

Bisimulation

can be completed to

can be completed to

© JPK

Advanced model checking

Bisimulation on paths

Whenever we have:

s — S1 — S22 — 83 — 54

R
to

this can be completed to
sop — S1 — S22 — 83 — 54
R R R R R

to — t1 — to — t3 — 14

proof: by induction on the length of a path

© JPK

Advanced model checking

Bisimulation of transition systems

TS| ~ TSy iff Vsy € I1.dsy € I5. 81 ~15 So
N Vsyg € Iyp.ds1 € I1.81 ~15 So

© JPK .

Advanced model checking

~ VS. trace equivalence

TS; ~ TSy, implies Traces(TS;) = Traces(TSs)

bisimilar transition systems thus satisfy the same LT properties!

© JPK

Advanced model checking

Quotient transition system

Let TS = (S, Act, —, I, AP, L) and bisimulation R C S x S be an equivalence

The quotient of TS under R is defined by:
TS/R = (S, {r},=',I',AP, L")
where

e S =S/R = {[slg|s€S}twith[s]g = {se€ S| (s,s) eR}
I'={[s]r | s€TI}
L'([s]r) = L(s)

e —'is defined by:

oY% /
S —S8

[slr = [s'lr

notethat TS ~ TS/R Why?

© JPK 9

Advanced model checking

Coarsest bisimulation

~Ts IS @ bisimulation, an equivalence,

and the coarsest bisimulation for TS

The quotient under ~+g is the smallest
under any bisimulation relation

© JPK

10

Advanced model checking

The simplified bakery algorithm

Process 1: Process 2:
while true { while true {
ni : 1 = x9 + 1; no : xo = x1 + 1;
w1 wait until(zo = 0 ||z1 < z2){ wo wait until(z1 =0 || z2 < z1) {
c1 ... critical section . . .} co : ... critical section . . .}
xq = 0; xo 1= 0;
} }

this algorithm can be applied to arbitrarily many processes

© JPK

11

Advanced model checking

Example path fragment

process P;

process P,

8
=

8
N

effect

ni

C1
ni

no
no

C2

Wwwwokr Pk EFro

A ODNDNMNDNMNDNDN OO

P, requests access to critical section
P, requests access to critical section
P; enters the critical section
P; leaves the critical section
P, requests access to critical section
P, enters the critical section
P, leaves the critical section
P, requests access to critical section
P, enters the critical section

© JPK

12

Advanced model checking

Bakery algorithm as transition system

infinite state space due to possible unbounded increase of counters

© JPK

13

Advanced model checking

Bisimulation

© JPK

14

Advanced model checking

TS

abs

Bak

Bisimulation quotient

= TSBak/R for

ni N9

5131:0
33‘2:0

AP = { crity, crity, waity, waits }

© JPK

15

Advanced model checking

Preservation of properties

o TSY: = ¢ with, e.g.,:

— d(—crity vV —crit;) and (OOwait; = O<crit;) A (OCwait; = OOcrity)
e Since TS’ ~ TSg., it follows Traces(TS%".) = Traces(TS pu;)
e Since Traces(TSY%".) = Traces(TSzu), it follows TSy, = ¢

e We thus have Traces(TS%".) = Traces(TS)

© JPK 16

Advanced model checking

Syntax of CTL*

CTL" state-formulas are formed according to:
O = true ‘ a ‘ O, A D, | ~® | I

where a € AP and ¢ Is a path-formula

CTL" path-formulas are formed according to the grammar:

@ =P ‘ w1 N\ P2 ‘ =P ‘ Op ‘ ©1 U g

where & is a state-formula, and ¢, ¢, and ¢, are path-formulas

in CTL*: Vo = —3d-. This does not hold in CTL!

© JPK

17

Advanced model checking

Relationship between LTL, CTL and CTL*

m SlaN Oa)
> V

> YO30a

O0&a vOd5a

© JPK 18

Advanced model checking

CTL* equivalence

States s; and s, in TS (over AP) are CTL"-equivalent:
S1 =cTL* S2 If and Only If (81 ‘: o iff S9 ‘: (I))

for all CTL™ state formulas over AP

TS =c1+ TSy ifandonlyif (TS; =@ iff TS, = @)

for any sublogic of CTL", logical equivalence is defined analogously

© JPK

19

Advanced model checking

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s ~7s s
(2) s and s’ are CTL-equivalent, i.e., s =c1L s’

3) s and s’ are CTL"-equivalent, i.e., s =~ = s’
CTL

this is proven in three steps: =1 € ~ C =cTL* C =cTL

important: equivalence is also obtained for any sub-logic containing —, A and O

© JPK 20

Advanced model checking

Example

© JPK

21

Advanced model checking

Bisimulation vs. CTL*-equivalence

For any transition systems TS and TS’ (over AP) without terminal states:
TS ~ TS' ifandonlyif TS =cp TS ifandonlyif TS = q+ TS

= prior to model-check &, it is safe to first minimize TS wrt. ~

how to obtain such bisimulation quotients?

© JPK

22

Advanced model checking

Basic fixpoint characterization

Consider the function F : 25%5 — 25%5:

FMR) = { (s,t)| L(s)=L(t) N Vs €S,
(s —s" = I eSt—-t N (s\t')eR) A
(t—s = W eSs—u N (s5u)eR) A

~1s = F(~r7s) and for any R such that 7(R) = R itholds R C ~rg

© JPK

23

Advanced model checking

How to compute the fixpoint of F7?

For finite transition system TS = (S, Act, —, I, AP, L):

o

~rs = [img ~i thatis: s ~qgs'iff s ~; s’ foralli >0
where ~; is defined by:
~0 = {(st) €S xS | L(s)=L(1)}

~ipr = F(~)

this constitutes the basis for the algorithms to follow

© JPK 24

Advanced model checking

Partitions

e A partition Il = { By,..., By } of S satisfies:

— B, is non-empty; B; is called a block
— B, N B; =wforall¢,j withe # j
— BiU...UB,=S

e (' C Sis asuper-block of partition IT of S if
C = B;; U...U B forBZ-j ellfor0<j <l

e Partition II is finer than partition II” if:
VB ell. (3B’ Il'. B C B’

= each block of IT’ equals the disjoint union of a set of blocks in II
— I is strictly finer than IT’ if it is finer than IT" and IT £ IT’

© JPK

25

Advanced model checking

Partitions and equivalences

e R is an equivalenceon S = S/R s a partition of S

e Partition II = { By, ..., By } of S induces the equivalence relation

Ruo=1{(s,t)|3B;e€ll.s€ B; A t€ B;}

OS/RH = 11

= there is a one-to-one relationship between partitions and equivalences

© JPK 26

Advanced model checking

Skeleton for bisimulation checking

from now on, we assume that TS is finite

e lteratively compute a partition of S

e Initially: ITy equals Ilap = { (s,t) € S x S | L(s) = L(?) }

e Repeat until no change:

— loop invariant: I1; is coarser than S/ ~ and finer than { S }

e Return II;

— termination: S X S O Ry, 2 Rn; 2 R, 2 --- 2 R, = ~7s
— time complexity: maximally | S | iterations needed (why?)

I1;,1 := Refine(I;)

this is a partition-refinement algorithm

© JPK

27

Advanced model checking

Computing the initial partition Il,p
e Main idea: construct a decision tree of height k for AP = { a4, ..., a; }

e Node at depth ¢ < k of the tree: a; € L(s) ora; & L(s)?

e Leaf v represents equally labeled states:

— s € states(v) if and only if decision path for L(s) leads from root to v

e Decision tree Is created step-by-step

— new nodes are created when a state is encountered with a new labeling

e Time complexity ©(|S|-|AP|)

— asingle tree traversal is needed for each state

© JPK 28

Advanced model checking

Example

© JPK

29

Advanced model checking

Lemma

1. S/ ~ is the coarsest partition IT of .S such that
(i) IIis finer than the initial partition Il 5p, and
(i) B N Pre(C)=2o0rB C Pre(C') forall B,C € 1II
I.e., either no or all states in B have a direct successor in C

2. If (ii) holds for II, then it holds for all B € II and all superblocks C' of 11

© JPK

30

Advanced model checking

Proof

© JPK

31

Advanced model checking

How to compute the fixpoint of F7?

For finite transition system TS = (S, Act, —, [, AP, L):

where ~; is defined by:
~o = {(s,t) € SxS|L(s)=L(t) }

~iv1 = ~; NA{(s,t) | VC € S/~;.sePre(C)ifft € Pre(C)}

the block C' is called a splitter

each relation ~; is an equivalence relation

© JPK 32

Advanced model checking

The refinement operator
o Let: Refine(Il,C) = Uz Refine(B,C) for C asuperblock of I1

— where Refine(B,C) = {B N Pre(C), B\ Pre(C)} \ {2}

block B superblock C

e Basic properties:

— for II finer than I1pp and coarser than S /~:
Refine(I1, C') is finer than IT and Refine(II, C') is coarser than S/~

— Il is strictly coarser than S/~ if and only if there exists a splitter for I1

© JPK

33

Advanced model checking

Splitters

e LetII be a partition of S and C' a superblock of II

e ('Is a splitter of IT if for some B € II.

BnNnPre(C)# 2 N B\Pre(lC)+# o

e Block B is stable wrt. C if

BNPre(C)=2 N B\Pre(C)=90

e Il is stable wrt. C' if any B € Il is stable wrt. C

© JPK

34

Advanced model checking

Algorithm skeleton

Input: finite transition system TS over AP with state space S
Output: bisimulation quotient space S/~

1I .= HAP;
while there exists a splitter for IT do
choose a splitter C' for IT;

IT := Refine(II, C); (* Refine(I1, C) is strictly finer than II *)
od
return 11

© JPK 35

Advanced model checking

Example

© JPK

36

Advanced model checking

Which splitter to take?

How to determine a splitter for partition II; 1?7
1. Simple strategy: O(|S|-M)
use any block of II; as splitter candidate

2. Advanced strategy: O(log |S|-M)

use only “smaller” blocks of II; as splitter candidates

and apply “simultaneous” refinement

© JPK 37

Advanced model checking

A partition-refinement algorithm

[Kanellakis & Smolka, 1983]

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

II := HAP;
[y :={S}; (* I, is the “previous” partition *)
(* loop invariant: II is coarser than S/~ and finer than ITpp and I1,;; *)
repeat
11,y = 11,

forall C € 11,, do
IT := Refine(II, C);
od
until II = 11,4
return II

© JPK 38

Advanced model checking

Time complexity

For TS = (S, Act, —, I, AP, L) with M > |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/ ~

has a worst-case time complexity in O(|S| - |AP| + |S| - M)

© JPK

39

Advanced model checking

Proof

© JPK

40

Advanced model checking

An efficiency improvement

e Not necessary to refine with respect to all blocks C € 11,
=- Consider only the “smaller” subblocks of a previous refinement
e Step i: refine ¢’ into Cy = C'NPre(D) and Cy = C" \ Pre(D)

e Step ¢+1: use the smallest C' € { (', C5 } as splitter candidate

— let C be such that |C| < |C’|/2, thus |C| < |C"\ C|
— combine the refinement steps with respectto C and C’ \ C

e Refine(Il,C,C'\ C) = Refine(Refine(11, C), C’\C) where |C| < |C'\ O

— the decomposed blocks are stable with respectto C and C' \ C

© JPK 41

Advanced model checking

The new refinement operator

o Let: Refine(IL,C,C"\ C) = Jgey Refine(B,C,C"\ C)
— where Refine(B, C,C’'\ C) = { B1, B2, B3 } \ { @ } with:

By = BnNPre(C)nPre(C'\ C) toboth Cand C \ C’
By = (BnPre(C))\ Pre(C"\ O) only to C
B3 = (BnPre(C'\C))\ Pre(C) onlyto C'\ C

= blocks B1, By, B3 are stable with respectto C and C’ \ C

T

B1

block B

© JPK

42

Advanced model checking

Improved partition-refinement algorithm

[Paige & Tarjan, 1987]

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

My :={ S}
IT := Refine(Ilpp, S);

(* loop invariant: II is coarser than S/~ and finer than ITpp and I1,;4, *)
(* and II is stable with respect to any block in 1T, *)

repeat

choose block C’ € I, \ II and block C' € IT with C C C’ and |C| < %;
IIyq = 11
IT := Refine(II, C, C" \ C);

until IT = Hold

return II

© JPK 43

Advanced model checking

Example

© JPK

44

Advanced model checking

Time complexity

For TS = (S, Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity of computing TS/~ is O(]S|-|AP| + log |S|-M)

© JPK

45

Advanced model checking

Proof

© JPK

46

Advanced model checking

Summary of today’s lecture

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
O(log |S|-M)
CTL~"

match

© JPK

a7

