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Advanced model checking

Discrete-time Markov chains
A DTMC M is atuple (S, P, tin, AP, L) with:
e S'is a countable nonempty set of states
o P: S5 xS —|0,1], transition probability function s.t. > ,P(s,s’) = 1

— P(s, s') is the probability to jump from s to s’ in one step

e i : S — [0, 1], the initial distribution with >~ .(s) = 1
sesS

— init(s) is the probability that system starts in state s
— state s for which ¢jni(s) > 0 is an initial state

o L:S — 247 the labelling function
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Paths in a DTMC

e State graph of DTMC M is a digraph G = (V, F/) with

— vertices in V are states of M, and (s, s’) € Eifand only if P(s,s’) > 0

e Paths in M are maximal (i.e., infinite) paths in its state graph

— infinite sequence of states sgs1s9. ... ..
— Paths(M) and Pathsg, (M) denote the set of (finite) paths in M

e Direct successors and predecessors

— Post(s) = {s" € S| P(s,s’) > 0}andPre(s) = {s' € S| P(s’,s) > 0}
— Post*(s) and Pre*(s) are reflexive and transitive closure of Post and Pre
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Paths and probabilities

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively:
..

— sample space: Path(s) = set of all {'_,3 ....
Infinite paths from a state s §’<X.'.'.‘.'.'

~

— events: sets of infinite paths from s N

— basic events: cylinder sets (or “cones”)

— cylinder set Cyl(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: Cyl(ss;s,)
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Probability space on DTMC paths
e Events are infinite paths in the DTMC M, i.e., Q = Paths(M)

e o-algebra on M is generated by cylinder sets of finite paths 7

Cyl(#) = { = € Paths(M) | 7 is a prefix of 7 }
— cylinder sets serve as events of the smallest o-algebra on Paths(.,M)

e Pris the probability measure on the o-algebra on Paths(M):

Pr(Cyl(so...sn)) = tnt(s0) - P(s0-.5,)

— where P(SQ S1... Sn) = H P(SZ‘, Si—l—l) ifn >0
0<i<n
— and P(sg) = 1 for paths containing a single state
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Reachability probabilities in finite DTMCs

o LetPr(s = ©B) = Pry(O0B) = Pry{r ¢ Paths(s) | 7 = OB}

— where Pr; is the probability measure in M with only initial state s

e Letvariable z, = Pr(s = ¢ B) for any state s

— if B is not reachable from s then z, = 0
— ifse€ Bthenz, =1

e For any state s € Pre*(B) \ B:

ZPst -y + Zpsu

tES\B ueB

reach B via t reach B |n one step
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Example

- Compute ProbReach(s,, {4})
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Unique solution

- Why the need to identify states that can reach T?

- Consider this simple DTMC:
— compute probability of reaching {s,} from s,

° | g

1

— linear equation system: X, = 1, X;; = X
— multiple solutions: (X, X;;) = (1,p) for any p
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Linear equation system

e These equations can be rewritten into the following form:
X = AX + b

— where vector X = (z),.5 With S = Pre*(B) \ B

- A = (P(s, t) . the transition probabilities in S
s,te

- b = (bs) < contains the probabilities to reach B within one step
sc
e Linear equation system: (I—-A)x = b

— note: more than one solution may exist if | — A has no inverse (i.e., is singular)
= characterize the desired probability as least fixed point
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Example
Let B = { delivered }

S = {init, try, lost } and the equations:

Lint  — Ly

_ 1 9
Tty = 71 Tlost T 1g
Llost — Lty

which can be rewritten as:

1 -1 0 0
0 1 —5 | x=1| &
0 —1 1 0

and yields the (unique) solution: zyy = Zinit = Ziost = 1.
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Constrained reachability

o Let M = (S,P, vini, AP, L) be a (possibly infinite) DTMC and B, C C S

e C'US"B is the union of the basic cylinders of path fragments:

— s8981...8.Withk <nmands; € Cforall0 <7< kand s, € B

e Let S_g, S—1, S» be a partition of S such that:

- B C S C{seS|PrisE=CUB) =1}
- S\(CUB) C S.p C {se S|Pr(s=CUB) =0}
— so: all statesin S, belongto C' \ B

e LetA = (P(s,t)) and (b, ). _. where by =P(s, S=1)

5,t€S? 5€S59
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Least fixed point characterization

e An alternative: least fixed point characterization

e Consider functions of the form £ : [0,1]° — [0,1]°

— F thus maps vectors of probabilities (of length |S|) to such vectors
e Definey < y'ifandonlyify, <y, foralls e S
e yis afixed pointof F if F(y)=y

e A fixed point x Is the least fixed point of F' if

— X < y for any other fixed pointy of F
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Least fixed point characterization

The vector x = (Pr(s = CUB)),_, is the least fixed point of:

ses
F:[0,1]°* = [0,1]°? givenby F(y) = A-y + Db

Furthermore, for x(9) = 0 and x("+1) = F(x(™) for n > 0:

o x(7) = (xé”))ses? where for any s: z{™ = Pr(s = C US" §_;)

o x(0 < xM < x) ... <x,and

o X = lim x(™
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Proof
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Constrained reachability probabilities

e So: x is the least solution of Ax +b = xin [0, 1]°7
e And: can be approximated by:

xO =0 and x™tY = Ax("™) 1 b for n >0

e Power method: compute vectors x(?, x(1) x(2) . and abort if:

max | 2"t — 2" | < ¢ for some small tolerance «

SES?

— convergence guaranteed
— alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation
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Unique solution

Let M be a finite DTMC with state space S partitioned into:

® S:() = Sat(ﬂEI(C U B))
e S_j;asubsetof{s € S|Pr(s = CUB) = 1} that contains B
e S; = S\ (S_gUS_1)

For B, C' C S, the vector

(Pr(sE=CUB))

SES?

IS the unique solution of the linear equation system:

X = Ax+b where A = (P(s,t)), ,.q and b = (P(s,5-1)), g
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Computing constrained reachability probabilities

e The probabilities of the events C' U S" B can be obtained iteratively:

x© =0 and xOt) = Ax®D 1 bforo<i<n

e where A = (P(s,t)) and b = (P(s,B))

s,teC\B seC\B

e Then: x("(s) = Pr(s e CUS"B)forsec C\ B
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Bounded reachability probabilities

- ProbReach(s,, {1,2,3,4,5,6}) = 1

- ProbReach=k (s, {1,2,3,4,5,6}) = .
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Example on constrained reachability
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Transient probabilities

e Giventhat A"(s,t) = Pr(sES;U™"1)

—ifB=9,C =5S,wehave S_.1 =S_g=gand S, = SandA =P
— P"(s, t) is the probability to be in state t after n steps once started in s

e Transient probability: ©1(t) = Y. g un(s) - P"(s, 1)

e O = P-P-...-Btime = P+ tiny

n times

— where the initial distribution ¢int IS Viewed as column-vector
e Compute ©M by successive vector-matrix multiplication:

@Q/l —  Ljnit, @Q/l = P. @Q/il fOl”n > 1
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Reachability = transient probabilities

e Suppose we want to compute probabilities for &<"B in M

— observe: once B is reached, remaining behaviour is not important

e Adapt M by making all states in B absorbing

— Pgp(s,t) =P(s,t)ifs ¢ BandPpg(s,s) =1fors € B
— all outgoing transitions of s € B are replaced by a single self-loop at s

e Then:
pri(o="B) = ) 6)3(s)
reachab?ﬁty in M s'eB
transient prongiIity in Mp

7
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Constrained reachability = transient probabilities

e Suppose we want to compute probabilities for C' U S"B in M

— observe: once B is reached, remaining behaviour is not important
— observe: once s € S\ (C U B) is reached, remaining behaviour not important

e Adapt M by making all states in B and S \ (C'U B) absorbing

— Pp(s,t) =P(s,t)ifs € BandPpg(s,s) =1fors € Borse CUB

e Then:
E)r./\/l<0 U <nBz _ Z @nMC’B(S/)
reachabTity in M s'EB
transient probagility in M¢c g

7
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Example
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Qualitative properties

e Quantitative properties

— what is the probability of an event?

e Qualitative properties
— does an event happen with probability one?, or
— does an event happen with probability larger than zero?
e For finite MCs, qualitative properties do only depend on state graph

— and not on the transition probabilities!
— e.g., limit behaviour depends on the bottom strongly connected components
— and almost sure reachability or repeated reachability are graph properties
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Measurability of some events

Let T" C S a subset of states in a (possibly infinite) DTMC.

e The event OOT Is measurable

— OOT can be written as countable intersection of countable unions of cylinder
sets:
00T = () | Cyl(“(m+1)-st state is in T")
n=0 m>2n
— where Cyl(. . .) is the union of all cylinder sets Cyl(ty...t,,) for to...t, €
Pathss, (M) and t,,, € T

e The event ¢O7T is measurable

— as itis the complement of the measurable event O (S \ T)
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Graph notions
Let M = (S, P, int, AP, L) be a finite Markov chain

e ' C S Is strongly connected if:

— s € T'and t € T are mutually reachable via edges in T°

e T'is a strongly connected component (SCC) of M If:

— it is strongly connected and no proper superset of T" is strongly connected

e T'is a bottom SCC (BSCCQ) if:

— Itis an SCC and no state outside T is reachable from T
— forany state t € T'itholds P(s,T) = > . P(s,t) =1
— let BSCC(.M) denote the set of BSCCs of M
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Evolution of an example DTMC
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On the long run
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Fundamental result

For each state s of a finite Markov chain M:
Pr.{ = € Paths(s) | inf(7r) € BSCC(M) } =1

almost surely any finite DTMC eventually reaches a BSCC
and visits all its states infinitely often
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Zeroconf example
+ 2 BSCCs: {s¢}, {sg}

+ Probability of trying to acquire a new address infinitely
oftenis 0

O o O O O (5
: A
1-q P 1-p p

1-p

(%) PO
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Almost sure reachability

For finite DTMC with state space S, s € S and
B C S a set of absorbing states:

Prs = 0B) = 1 iff s€ S\ Pre*(s \ Pre*(B))

© JPK
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Proof
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Computing almost sure reachability properties

e Given finte DTMC M and B C S, determine:

se€ S suchthat Pr(s =<0B)=1

1. Make all states in B absorbing (yielding M 5)

2. Determine S\ Pre”( .S\ Pre*(B) ) by a graph analysis

— do a backward search from B in M g to determine Pre™(B)
— then a backward search from S \ Pre™(B) in Mp

e Time complexity: linear in the size of M
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Qualitative repeated reachability

For finite DTMC with state space S, B C S,and s € S:
Pr(s =O0¢B) = 1 iff foreachBSCCT C Post™(s). TN B # &

Example:

B=1{s3, S4 S5 }
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A remark on infinite Markov chains

e For infinite MCs, qualitative properties may rely on transition probs

P P

P
so@o®c®cd
Neoho oot

1-p 1- 1-

P P

e Value of probability p does affect qualitative properties:

1 ifp<gi 1Lifp <5

Pr(S |: <>SO) — 2 and Pr(S |: oo 30) — 2
; 1 ; 1

<1lifp >3 Oifp >3
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Quantitative repeated reachability

For finite DTMC with state space S, B C S,and s € S:

Pr(s =00B) = Pr(s = <0U)
where U is the union of all BSCCs T'with T'N B # @
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Qualitative persistence

For finite DTMC with state space S, B C S,and s € S:
Pr(s =<¢0B) =1 iff T C Bforany BSCCT C Post*(s)

0.2
.- 3
0 DHERE
Example ois 0ps ']
B:{Sz,53, 54’55} !_ ............ 1 e .l
| NRON
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Quantitative persistence

For finite DTMC with state space S, B C S,and s € S:

Pr(s = 00B) = Pr(s = OU)
where U is the union of all BSCCs T'withT' C B
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