

# Qualitative Properties in Markov Chains

## Lecture #20 of Advanced Model Checking

*Joost-Pieter Katoen*

Lehrstuhl 2: Software Modeling & Verification

E-mail: [katoen@cs.rwth-aachen.de](mailto:katoen@cs.rwth-aachen.de)

July 15, 2009

## Discrete-time Markov chains

A **DTMC**  $\mathcal{M}$  is a tuple  $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  with:

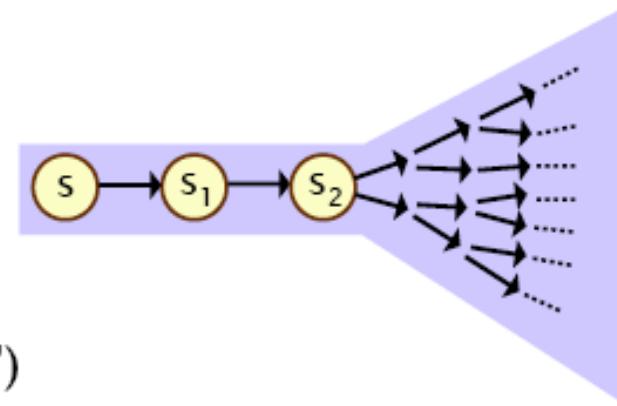
- $S$  is a countable nonempty set of **states**
- $\mathbf{P} : S \times S \rightarrow [0, 1]$ , **transition probability function** s.t.  $\sum_{s'} \mathbf{P}(s, s') = 1$ 
  - $\mathbf{P}(s, s')$  is the probability to jump from  $s$  to  $s'$  in one step
- $\iota_{\text{init}} : S \rightarrow [0, 1]$ , the **initial distribution** with  $\sum_{s \in S} \iota_{\text{init}}(s) = 1$ 
  - $\iota_{\text{init}}(s)$  is the probability that system starts in state  $s$
  - state  $s$  for which  $\iota_{\text{init}}(s) > 0$  is an **initial state**
- $L : S \rightarrow 2^{AP}$ , the **labelling function**

## Paths in a DTMC

- State graph of DTMC  $\mathcal{M}$  is a digraph  $G = (V, E)$  with
  - vertices in  $V$  are states of  $\mathcal{M}$ , and  $(s, s') \in E$  if and only if  $\mathbf{P}(s, s') > 0$
- Paths in  $\mathcal{M}$  are maximal (i.e., infinite) paths in its state graph
  - infinite sequence of states  $s_0 s_1 s_2 \dots \dots$
  - $Paths(\mathcal{M})$  and  $Paths_{fin}(\mathcal{M})$  denote the set of (finite) paths in  $\mathcal{M}$
- Direct successors and predecessors
  - $Post(s) = \{s' \in S \mid \mathbf{P}(s, s') > 0\}$  and  $Pre(s) = \{s' \in S \mid \mathbf{P}(s', s) > 0\}$
  - $Post^*(s)$  and  $Pre^*(s)$  are reflexive and transitive closure of  $Post$  and  $Pre$

## Paths and probabilities

- To reason (quantitatively) about this system
  - need to define a **probability space over paths**
- Intuitively:
  - sample space:  $\text{Path}(s) = \text{set of all infinite paths from a state } s$
  - events: sets of infinite paths from  $s$
  - basic events: **cylinder sets** (or “cones”)
  - cylinder set  $\text{Cyl}(\omega)$ , for a finite path  $\omega$   
= set of **infinite paths with the common finite prefix  $\omega$**
  - for example:  $\text{Cyl}(ss_1s_2)$



## Probability space on DTMC paths

- Events are *infinite paths* in the DTMC  $\mathcal{M}$ , i.e.,  $\Omega = \text{Paths}(\mathcal{M})$
- $\sigma$ -algebra on  $\mathcal{M}$  is generated by *cylinder sets* of finite paths  $\hat{\pi}$ :

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{M}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

- cylinder sets serve as *events* of the smallest  $\sigma$ -algebra on  $\text{Paths}(\mathcal{M})$
- $\text{Pr}$  is the *probability measure* on the  $\sigma$ -algebra on  $\text{Paths}(\mathcal{M})$ :

$$\text{Pr}(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

- where  $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$  if  $n > 0$
- and  $\mathbf{P}(s_0) = 1$  for paths containing a single state

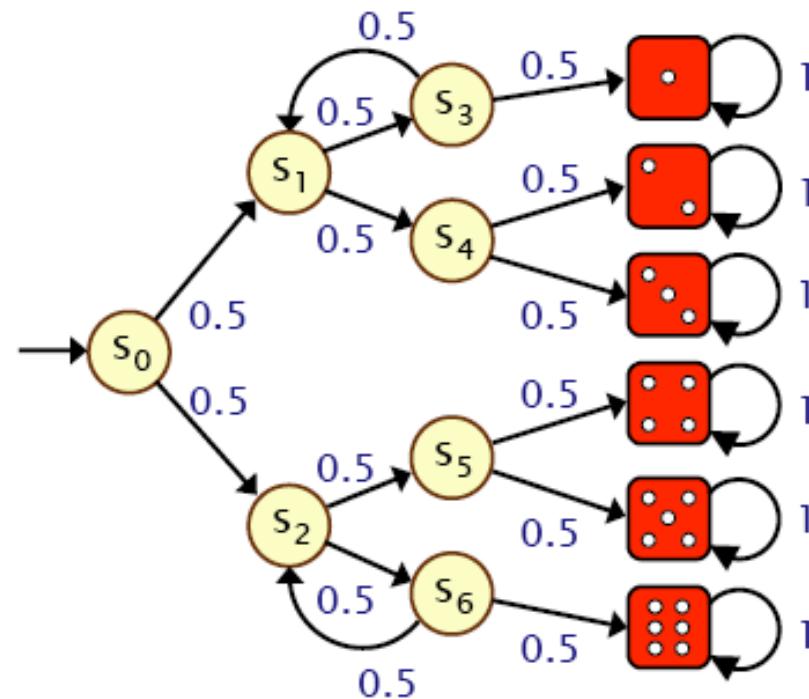
## Reachability probabilities in finite DTMCS

- Let  $Pr(s \models \diamond B) = Pr_s(\diamond B) = Pr_s\{\pi \in Paths(s) \mid \pi \models \diamond B\}$ 
  - where  $Pr_s$  is the probability measure in  $\mathcal{M}$  with only initial state  $s$
- Let variable  $x_s = Pr(s \models \diamond B)$  for any state  $s$ 
  - if  $B$  is not reachable from  $s$  then  $x_s = 0$
  - if  $s \in B$  then  $x_s = 1$
- For any state  $s \in Pre^*(B) \setminus B$ :

$$x_s = \underbrace{\sum_{t \in S \setminus B} \mathbf{P}(s, t) \cdot x_t}_{\text{reach } B \text{ via } t} + \underbrace{\sum_{u \in B} \mathbf{P}(s, u)}_{\text{reach } B \text{ in one step}}$$

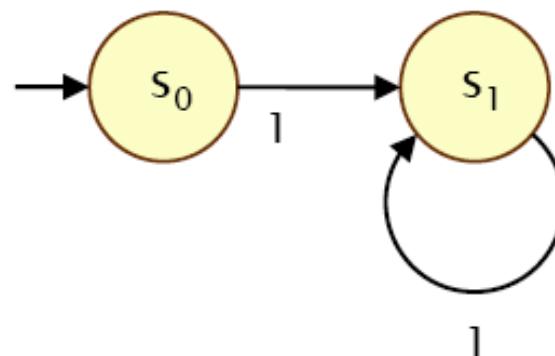
## Example

- Compute  $\text{ProbReach}(s_0, \{4\})$



## Unique solution

- Why the need to identify states that can reach T?
- Consider this simple DTMC:
  - compute probability of reaching  $\{s_0\}$  from  $s_1$



- linear equation system:  $x_{s0} = 1$ ,  $x_{s1} = x_{s1}$
- multiple solutions:  $(x_{s0}, x_{s1}) = (1, p)$  for any  $p$

## Linear equation system

- These equations can be rewritten into the following form:

$$\mathbf{x} = \mathbf{Ax} + \mathbf{b}$$

- where vector  $\mathbf{x} = (x_s)_{s \in \tilde{S}}$  with  $\tilde{S} = \text{Pre}^*(B) \setminus B$
- $\mathbf{A} = \left( \mathbf{P}(s, t) \right)_{s, t \in \tilde{S}}$ , the transition probabilities in  $\tilde{S}$
- $\mathbf{b} = (b_s)_{s \in \tilde{S}}$  contains the probabilities to reach  $B$  within one step

- *Linear equation system:*  $(\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{b}$ 
  - note: more than one solution may exist if  $\mathbf{I} - \mathbf{A}$  has no inverse (i.e., is singular)  
⇒ characterize the desired probability as least fixed point

## Example

Let  $B = \{ \text{delivered} \}$

$\tilde{S} = \{ \text{init}, \text{try}, \text{lost} \}$  and the equations:

$$\begin{aligned} x_{\text{init}} &= x_{\text{try}} \\ x_{\text{try}} &= \frac{1}{10} \cdot x_{\text{lost}} + \frac{9}{10} \\ x_{\text{lost}} &= x_{\text{try}} \end{aligned}$$

which can be rewritten as:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -\frac{1}{10} \\ 0 & -1 & 1 \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} 0 \\ \frac{9}{10} \\ 0 \end{pmatrix}$$

and yields the (unique) solution:  $x_{\text{try}} = x_{\text{init}} = x_{\text{lost}} = 1$ .

## Constrained reachability

- Let  $\mathcal{M} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a (possibly infinite) DTMC and  $\mathcal{B}, \mathcal{C} \subseteq S$
- $\mathcal{C} \cup \leq^n \mathcal{B}$  is the union of the basic cylinders of path fragments:
  - $s_0 s_1 \dots s_k$  with  $k \leq n$  and  $s_i \in \mathcal{C}$  for all  $0 \leq i < k$  and  $s_k \in \mathcal{B}$
- Let  $S_{=0}, S_{=1}, S_?$  be a partition of  $S$  such that:
  - $\mathcal{B} \subseteq S_{=1} \subseteq \{s \in S \mid \Pr(s \models \mathcal{C} \cup \mathcal{B}) = 1\}$
  - $S \setminus (\mathcal{C} \cup \mathcal{B}) \subseteq S_{=0} \subseteq \{s \in S \mid \Pr(s \models \mathcal{C} \cup \mathcal{B}) = 0\}$
  - so: all states in  $S_?$  belong to  $\mathcal{C} \setminus \mathcal{B}$
- Let  $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$  and  $(b_s)_{s \in S_?}$  where  $b_s = \mathbf{P}(s, S_{=1})$

## Least fixed point characterization

- An alternative: least fixed point characterization
- Consider functions of the form  $F : [0, 1]^S \rightarrow [0, 1]^S$ 
  - $F$  thus maps vectors of probabilities (of length  $|S|$ ) to such vectors
- Define  $\mathbf{y} \leq \mathbf{y}'$  if and only if  $y_s \leq y'_s$  for all  $s \in S$
- $\mathbf{y}$  is a **fixed point** of  $F$  if  $F(\mathbf{y}) = \mathbf{y}$
- A fixed point  $\mathbf{x}$  is the **least fixed point** of  $F$  if
  - $\mathbf{x} \leq \mathbf{y}$  for any other fixed point  $\mathbf{y}$  of  $F$

## Least fixed point characterization

The vector  $\mathbf{x} = (\Pr(s \models \mathcal{C} \cup \mathcal{B}))_{s \in S?}$  is the *least fixed point* of:

$$F : [0, 1]^{S?} \rightarrow [0, 1]^{S?} \quad \text{given by} \quad F(\mathbf{y}) = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$$

Furthermore, for  $\mathbf{x}^{(0)} = \mathbf{0}$  and  $\mathbf{x}^{(n+1)} = F(\mathbf{x}^{(n)})$  for  $n \geq 0$ :

- $\mathbf{x}^{(n)} = (x_s^{(n)})_{s \in S?}$  where for any  $s$ :  $x_s^{(n)} = \Pr(s \models \mathcal{C} \cup^{\leq n} S_{=1})$
- $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$ , and
- $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

# Proof

## Constrained reachability probabilities

- So:  $\mathbf{x}$  is the *least* solution of  $\mathbf{Ax} + \mathbf{b} = \mathbf{x}$  in  $[0, 1]^{S_?}$
- And: can be approximated by:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(n+1)} = \mathbf{Ax}^{(n)} + \mathbf{b} \quad \text{for } n \geq 0$$

- *Power method*: compute vectors  $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$  and abort if:

$$\max_{s \in S_?} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{for some small tolerance } \varepsilon$$

- convergence guaranteed
- alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation

## Unique solution

Let  $\mathcal{M}$  be a finite DTMC with state space  $S$  partitioned into:

- $S_{=0} = \text{Sat}(\neg \exists(\textcolor{red}{C} \cup \textcolor{blue}{B}))$
- $S_{=1}$  a subset of  $\{s \in S \mid \text{Pr}(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}) = 1\}$  that contains  $\textcolor{blue}{B}$
- $S_? = S \setminus (S_{=0} \cup S_{=1})$

For  $\textcolor{blue}{B}, \textcolor{red}{C} \subseteq S$ , the vector

$$(\text{Pr}(s \models \textcolor{red}{C} \cup \textcolor{blue}{B}))_{s \in S_?}$$

is the *unique* solution of the linear equation system:

$$\mathbf{x} = \mathbf{Ax} + \mathbf{b} \quad \text{where} \quad \mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?} \quad \text{and} \quad \mathbf{b} = (\mathbf{P}(s, S_{=1}))_{s \in S_?}$$

## Computing constrained reachability probabilities

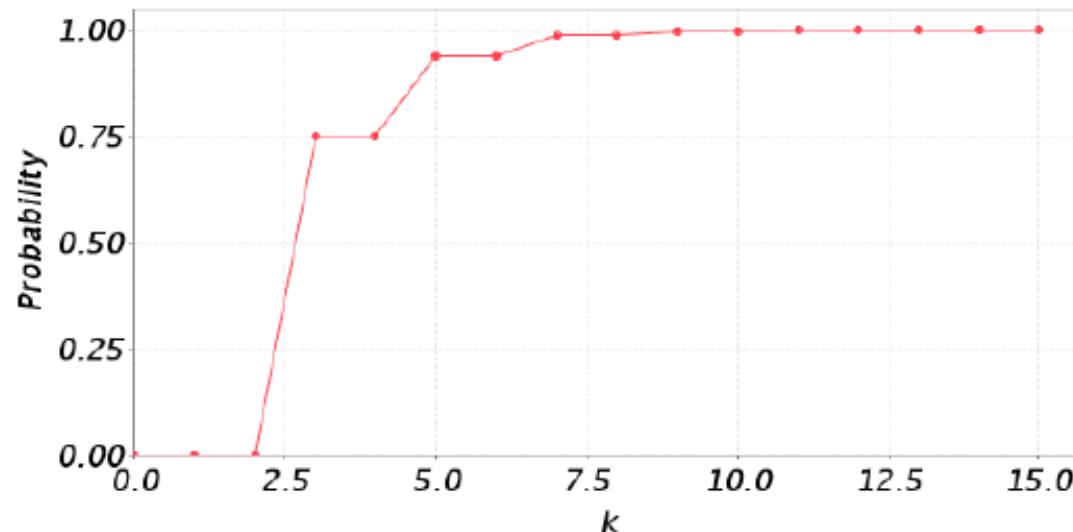
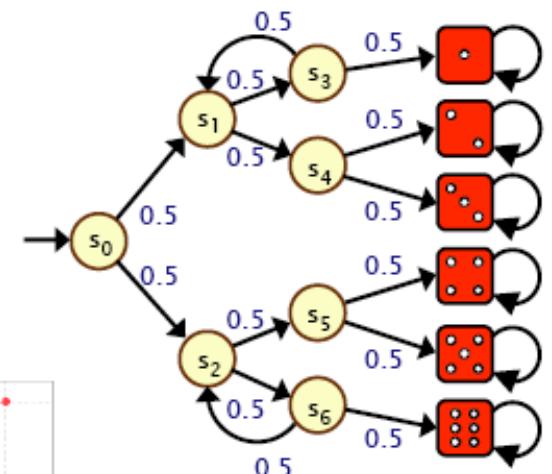
- The probabilities of the events  $C \cup^{\leq n} B$  can be obtained iteratively:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)} + \mathbf{b} \text{ for } 0 \leq i < n$$

- where  $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in C \setminus B}$  and  $\mathbf{b} = (\mathbf{P}(s, B))_{s \in C \setminus B}$
- Then:  $\mathbf{x}^{(n)}(s) = \Pr(s \models C \cup^{\leq n} B)$  for  $s \in C \setminus B$

## Bounded reachability probabilities

- $\text{ProbReach}(s_0, \{1,2,3,4,5,6\}) = 1$
- $\text{ProbReach}^{\leq k}(s_0, \{1,2,3,4,5,6\}) = \dots$



## Example on constrained reachability

## Transient probabilities

- Given that  $\mathbf{A}^n(s, t) = \Pr(s \models S_? \cup^{=n} t)$ 
  - if  $B = \emptyset$ ,  $C = S$ , we have  $S_{=1} = S_{=0} = \emptyset$  and  $S_? = S$  and  $\mathbf{A} = \mathbf{P}$
  - $\mathbf{P}^n(s, t)$  is the probability to be in state  $t$  after  $n$  steps once started in  $s$
- Transient probability:  $\Theta_n^{\mathcal{M}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$
- $\Theta_n^{\mathcal{M}} = \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \dots \cdot \mathbf{P}}_{n \text{ times}} \cdot \iota_{\text{init}} = \mathbf{P}^n \cdot \iota_{\text{init}}$ 
  - where the initial distribution  $\iota_{\text{init}}$  is viewed as column-vector
- Compute  $\Theta_n^{\mathcal{M}}$  by successive vector-matrix multiplication:

$$\Theta_0^{\mathcal{M}} = \iota_{\text{init}}, \quad \Theta_n^{\mathcal{M}} = \mathbf{P} \cdot \Theta_{n-1}^{\mathcal{M}} \text{ for } n \geq 1$$

## Reachability = transient probabilities

- Suppose we want to compute probabilities for  $\diamond^{\leq n} B$  in  $\mathcal{M}$ 
  - observe: once  $B$  is reached, remaining behaviour is not important
- Adapt  $\mathcal{M}$  by making all states in  $B$  absorbing
  - $\mathbf{P}_B(s, t) = \mathbf{P}(s, t)$  if  $s \notin B$  and  $\mathbf{P}_B(s, s) = 1$  for  $s \in B$
  - all outgoing transitions of  $s \in B$  are replaced by a single self-loop at  $s$
- Then:

$$\underbrace{\Pr^{\mathcal{M}}(\diamond^{\leq n} B)}_{\text{reachability in } \mathcal{M}} = \underbrace{\sum_{s' \in B} \Theta_n^{\mathcal{M}_B}(s')}_{\text{transient probability in } \mathcal{M}_B}$$

## Constrained reachability = transient probabilities

- Suppose we want to compute probabilities for  $\mathcal{C} \cup \leq^n \mathcal{B}$  in  $\mathcal{M}$ 
  - observe: once  $\mathcal{B}$  is reached, remaining behaviour is not important
  - observe: once  $s \in S \setminus (\mathcal{C} \cup \mathcal{B})$  is reached, remaining behaviour not important
- Adapt  $\mathcal{M}$  by making all states in  $\mathcal{B}$  and  $S \setminus (\mathcal{C} \cup \mathcal{B})$  absorbing
  - $\mathbf{P}_B(s, t) = \mathbf{P}(s, t)$  if  $s \notin \mathcal{B}$  and  $\mathbf{P}_B(s, s) = 1$  for  $s \in \mathcal{B}$  or  $s \in \mathcal{C} \cup \mathcal{B}$
- Then:

$$\underbrace{\Pr^{\mathcal{M}}(\mathcal{C} \cup \leq^n \mathcal{B})}_{\text{reachability in } \mathcal{M}} = \underbrace{\sum_{s' \in \mathcal{B}} \Theta_n^{\mathcal{M}_{\mathcal{C}, \mathcal{B}}}(s')}_{\text{transient probability in } \mathcal{M}_{\mathcal{C}, \mathcal{B}}}$$

# Example

## Qualitative properties

- Quantitative properties
  - what is the probability of an event?
- Qualitative properties
  - does an event happen with probability **one?**, or
  - does an event happen with probability **larger than zero?**
- For **finite** MCs, qualitative properties do only depend on state graph
  - and **not** on the transition probabilities!
  - e.g., limit behaviour depends on the bottom strongly connected components
  - and almost sure reachability or repeated reachability are graph properties

## Measurability of some events

Let  $T \subseteq S$  a subset of states in a (possibly infinite) DTMC.

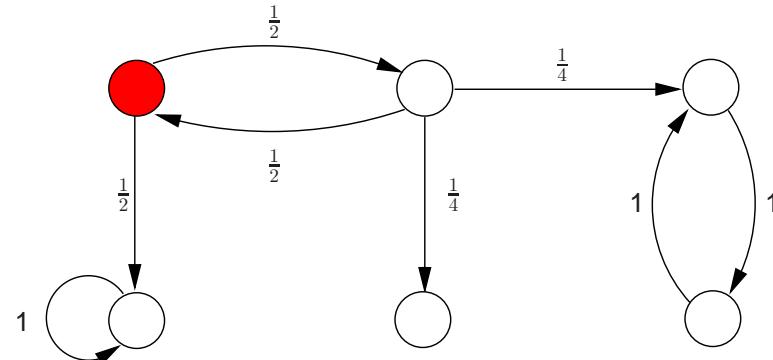
- The event  $\square \diamond T$  is measurable
  - $\square \diamond T$  can be written as countable intersection of countable unions of cylinder sets:
$$\square \diamond T = \bigcap_{n \geq 0} \bigcup_{m \geq n} \text{Cyl}(\text{"(m+1)-st state is in } T\text{"})$$
where  $\text{Cyl}(\dots)$  is the union of all cylinder sets  $\text{Cyl}(t_0 \dots t_m)$  for  $t_0 \dots t_m \in \text{Paths}_{fin}(\mathcal{M})$  and  $t_m \in T$
- The event  $\diamond \square T$  is measurable
  - as it is the complement of the measurable event  $\square \diamond (S \setminus T)$

## Graph notions

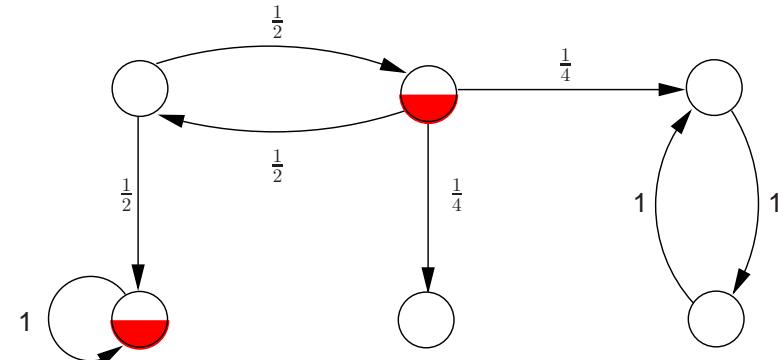
Let  $\mathcal{M} = (S, \mathbf{P}, \nu_{\text{init}}, AP, L)$  be a *finite* Markov chain

- $T \subseteq S$  is *strongly connected* if:
  - $s \in T$  and  $t \in T$  are mutually reachable via edges in  $T$
- $T$  is a *strongly connected component* (SCC) of  $\mathcal{M}$  if:
  - it is strongly connected and no proper superset of  $T$  is strongly connected
- $T$  is a *bottom SCC* (BSCC) if:
  - it is an SCC and no state outside  $T$  is reachable from  $T$
  - for any state  $t \in T$  it holds  $\mathbf{P}(s, T) = \sum_{t \in T} \mathbf{P}(s, t) = 1$
  - let  $BSCC(\mathcal{M})$  denote the set of BSCCs of  $\mathcal{M}$

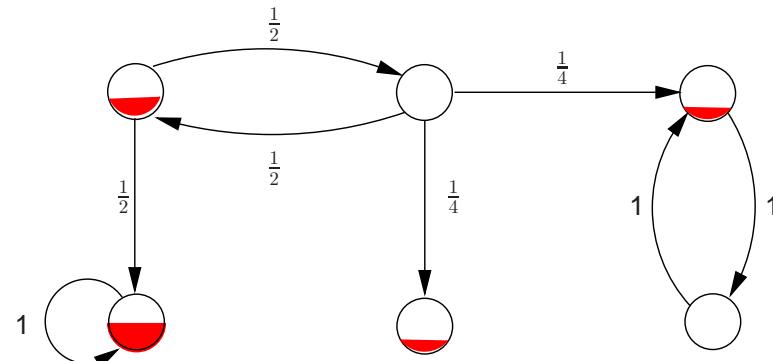
## Evolution of an example DTMC



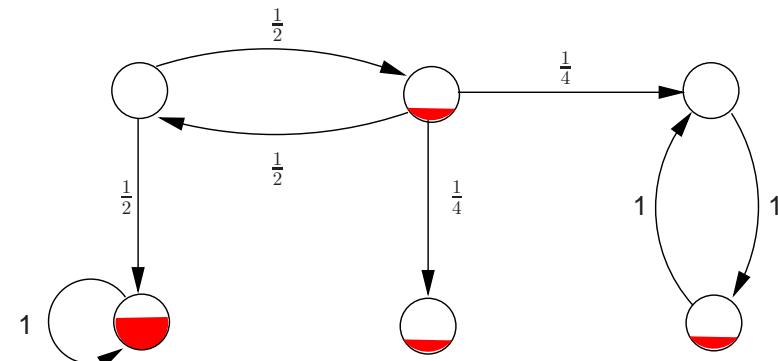
zero-th epoch



first epoch

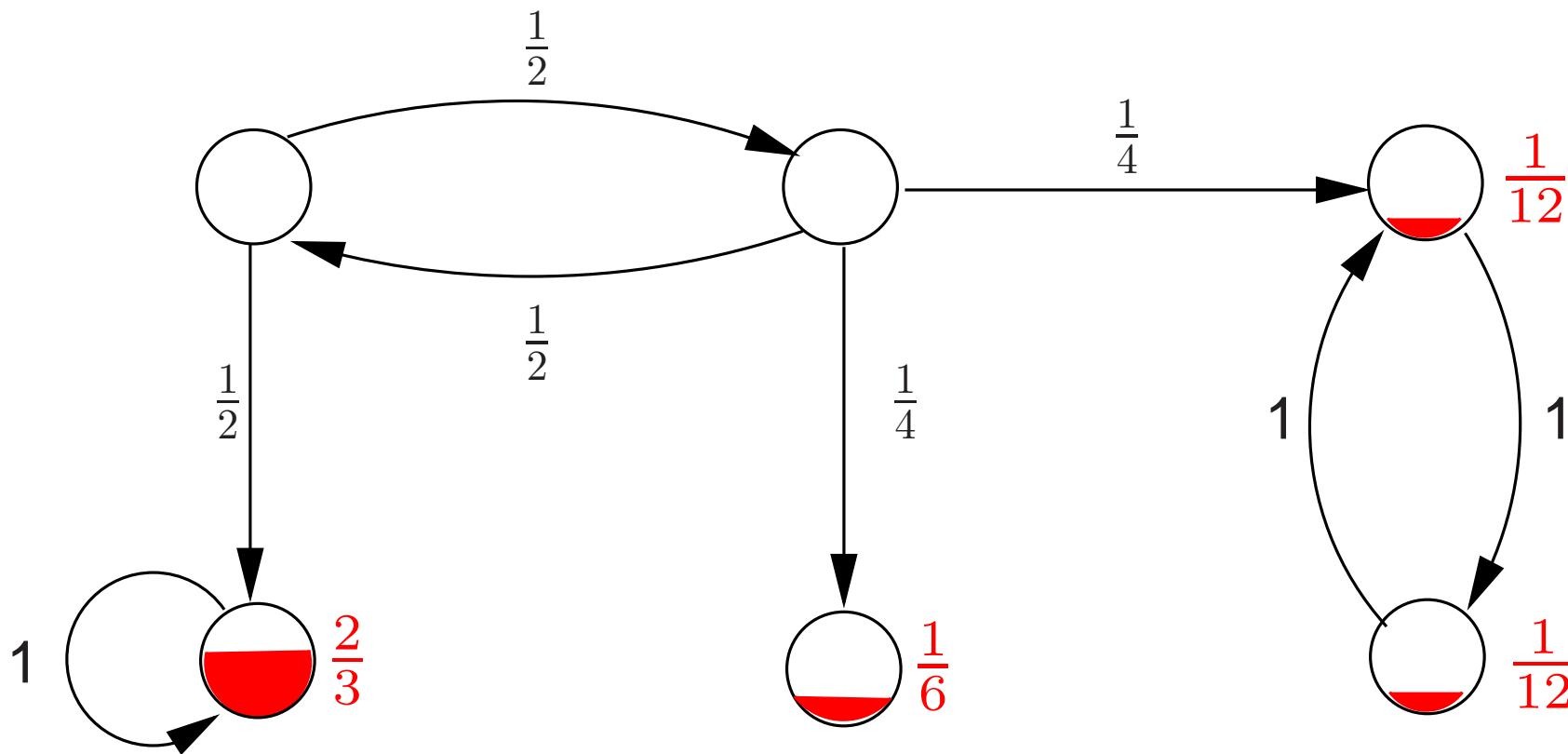


second epoch



third epoch

## On the long run



probability mass is only left in bottom SCCs

## Fundamental result

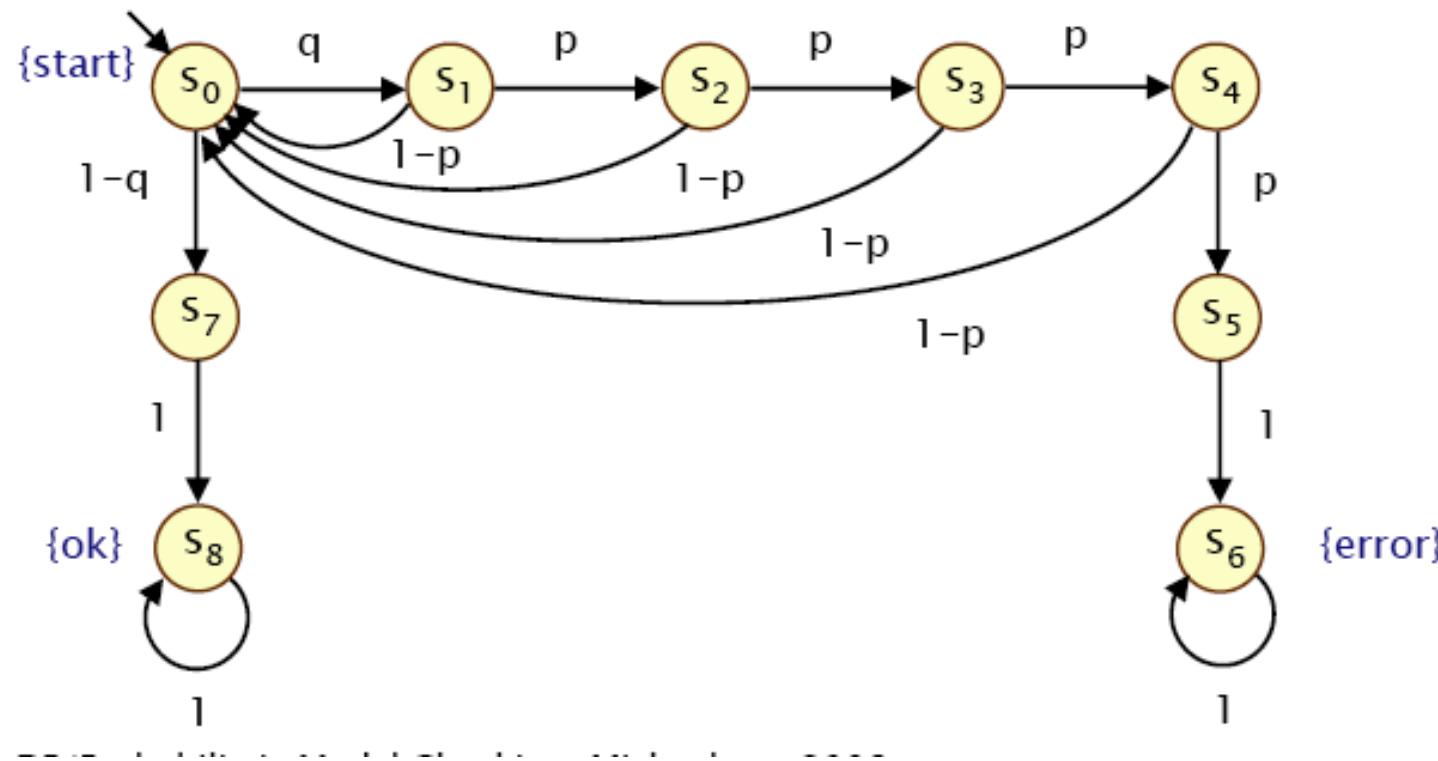
For each state  $s$  of a finite Markov chain  $\mathcal{M}$ :

$$Pr_s \{ \pi \in Paths(s) \mid \inf(\pi) \in BSCC(\mathcal{M}) \} = 1$$

*almost surely any finite DTMC eventually reaches a BSCC  
and visits all its states infinitely often*

## Zeroconf example

- 2 BSCCs:  $\{s_6\}, \{s_8\}$
- Probability of trying to acquire a new address infinitely often is 0



## Almost sure reachability

For finite DTMC with state space  $S$ ,  $s \in S$  and  
 $B \subseteq S$  a set of absorbing states:

$$\Pr(s \models \diamond B) = 1 \quad \text{iff} \quad s \in S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(B))$$

# Proof

## Computing almost sure reachability properties

- Given finite DTMC  $\mathcal{M}$  and  $B \subseteq S$ , determine:

$$s \in S \quad \text{such that} \quad \Pr(s \models \diamond B) = 1$$

1. Make all states in  $B$  absorbing (yielding  $\mathcal{M}_B$ )
2. Determine  $S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(B))$  by a graph analysis
  - do a backward search from  $B$  in  $\mathcal{M}_B$  to determine  $\text{Pre}^*(B)$
  - then a backward search from  $S \setminus \text{Pre}^*(B)$  in  $\mathcal{M}_B$

- Time complexity: linear in the size of  $\mathcal{M}$

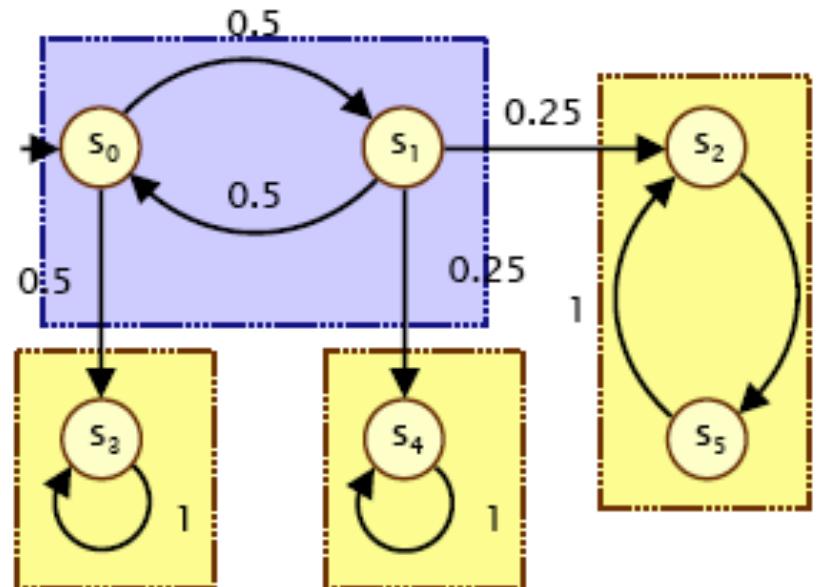
## Qualitative repeated reachability

For finite DTMC with state space  $S$ ,  $B \subseteq S$ , and  $s \in S$ :

$\Pr(s \models \Box \diamond B) = 1 \text{ iff for each BSCC } T \subseteq \text{Post}^*(s). T \cap B \neq \emptyset$

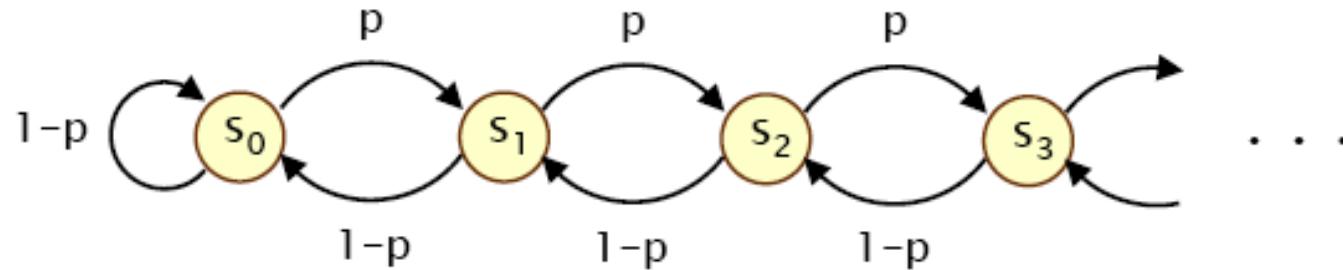
Example:

$$B = \{ s_3, s_4, s_5 \}$$



## A remark on infinite Markov chains

- For infinite MCs, qualitative properties may rely on transition probs



- Value of probability  $p$  **does** affect qualitative properties:

$$Pr(s \models \diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases} \quad \text{and} \quad Pr(s \models \square \diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ 0 & \text{if } p > \frac{1}{2} \end{cases}$$

## Quantitative repeated reachability

For finite DTMC with state space  $S$ ,  $B \subseteq S$ , and  $s \in S$ :

$$\Pr(s \models \Box \Diamond B) = \Pr(s \models \Diamond U)$$

where  $U$  is the union of all BSCCs  $T$  with  $T \cap B \neq \emptyset$

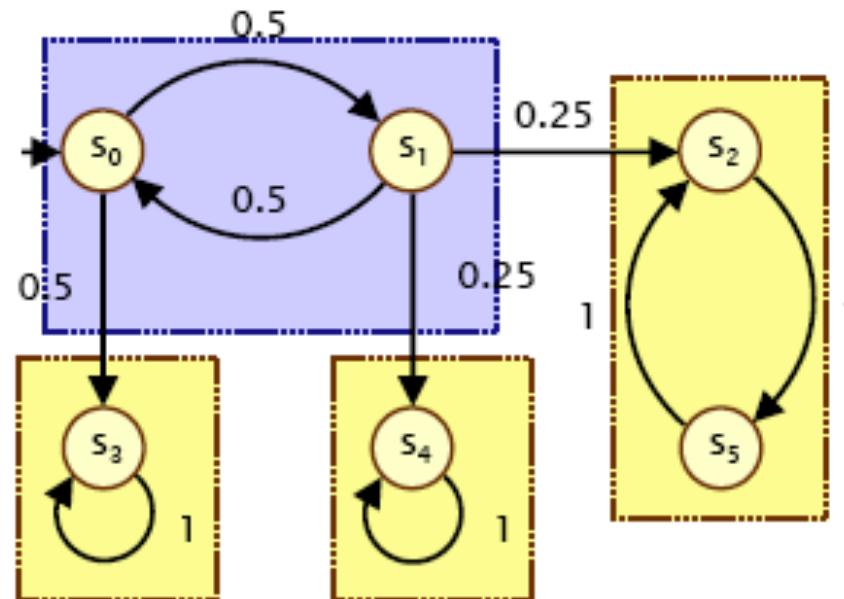
## Qualitative persistence

For finite DTMC with state space  $S$ ,  $B \subseteq S$ , and  $s \in S$ :

$$\Pr(s \models \diamond \square B) = 1 \text{ iff } T \subseteq B \text{ for any BSCC } T \subseteq \text{Post}^*(s)$$

Example:

$$B = \{ s_2, s_3, s_4, s_5 \}$$



## Quantitative persistence

For finite DTMC with state space  $S$ ,  $B \subseteq S$ , and  $s \in S$ :

$$\Pr(s \models \diamond \square B) = \Pr(s \models \diamond U)$$

where  $U$  is the union of all BSCCs  $T$  with  $T \subseteq B$