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Discrete-time Markov chains

A DTMC M is a tuple (S, P, ιinit, AP,L) with:

• S is a countable nonempty set of states

• P : S × S → [0, 1], transition probability function s.t.
∑

s′ P(s, s′) = 1

– P(s, s′) is the probability to jump from s to s′ in one step

• ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

– ιinit(s) is the probability that system starts in state s

– state s for which ιinit(s) > 0 is an initial state

• L : S → 2AP , the labelling function
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Paths in a DTMC

• State graph of DTMC M is a digraph G = (V,E) with

– vertices in V are states of M, and (s, s′) ∈ E if and only if P(s, s′) > 0

• Paths in M are maximal (i.e., infinite) paths in its state graph

– infinite sequence of states s0s1s2 . . . . . .

– Paths(M) and Pathsfin(M) denote the set of (finite) paths in M

• Direct successors and predecessors

– Post(s) = {s′ ∈ S | P(s, s′) > 0} and Pre(s) = {s′ ∈ S | P(s′, s) > 0}
– Post∗(s) and Pre∗(s) are reflexive and transitive closure of Post and Pre
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Paths and probabilities
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Probability space on DTMC paths

• Events are infinite paths in the DTMC M, i.e., Ω = Paths(M)

• σ-algebra on M is generated by cylinder sets of finite paths π̂:

Cyl(π̂) =
{

π ∈ Paths(M) | π̂ is a prefix of π
}

– cylinder sets serve as events of the smallest σ-algebra on Paths(M)

• Pr is the probability measure on the σ-algebra on Paths(M):

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 . . . sn)

– where P(s0 s1 . . . sn) =
Q

0�i<n

P(si, si+1) if n > 0

– and P(s0) = 1 for paths containing a single state
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Reachability probabilities in finite DTMCs

• Let Pr(s |= �B) = Prs(�B) = Prs{π ∈ Paths(s) | π |= �B}
– where Prs is the probability measure in M with only initial state s

• Let variable xs = Pr(s |= �B) for any state s

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Pre∗(B) \ B:

xs =
∑

t∈S\B

P(s, t) · xt

︸ ︷︷ ︸
reach B via t

+
∑
u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step
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Example
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Unique solution
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Linear equation system

• These equations can be rewritten into the following form:

x = Ax + b

– where vector x = (xs)s∈S̃ with S̃ = Pre∗(B) \ B

– A =
“

P(s, t)
”

s,t∈S̃
, the transition probabilities in S̃

– b =
“

bs

”
s∈S̃

contains the probabilities to reach B within one step

• Linear equation system: (I − A)x = b

– note: more than one solution may exist if I − A has no inverse (i.e., is singular)
⇒ characterize the desired probability as least fixed point
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Example

Let B =
{

delivered
}

S̃ =
{

init, try, lost
}

and the equations:

xinit = xtry

xtry = 1
10 · xlost + 9

10
xlost = xtry

which can be rewritten as:

 1 −1 0

0 1 − 1
10

0 −1 1


 · x =


 0

9
10
0




and yields the (unique) solution: xtry = xinit = xlost = 1.
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Constrained reachability

• Let M = (S, P, ιinit, AP, L) be a (possibly infinite) DTMC and B, C ⊆ S

• C U �nB is the union of the basic cylinders of path fragments:

– s0 s1 . . . sk with k � n and si ∈ C for all 0 � i < k and sk ∈ B

• Let S=0, S=1, S? be a partition of S such that:

– B ⊆ S=1 ⊆ {s ∈ S | Pr(s |= C U B) = 1}
– S \ (C ∪ B) ⊆ S=0 ⊆ {s ∈ S | Pr(s |= C U B) = 0}
– so: all states in S? belong to C \ B

• Let A =
(

P(s, t)
)
s,t∈S?

and
(
bs

)
s∈S?

where bs = P(s, S=1)
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Least fixed point characterization

• An alternative: least fixed point characterization

• Consider functions of the form F : [0, 1]S → [0, 1]S

– F thus maps vectors of probabilities (of length |S|) to such vectors

• Define y � y′ if and only if ys � y′
s for all s ∈ S

• y is a fixed point of F if F (y) = y

• A fixed point x is the least fixed point of F if

– x � y for any other fixed point y of F
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Least fixed point characterization

The vector x =
(

Pr(s |= C UB)
)
s∈S?

is the least fixed point of:

F : [0, 1]S? → [0, 1]S? given by F (y) = A · y + b

Furthermore, for x(0) = 0 and x(n+1) = F (x(n)) for n � 0:

• x(n) = (x(n)
s )s∈S?

where for any s: x
(n)
s = Pr(s |= C U�n S=1)

• x(0) � x(1) � x(2) � . . . � x, and

• x = lim
n→∞ x(n)
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Proof
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Constrained reachability probabilities

• So: x is the least solution of Ax + b = x in [0, 1]S?

• And: can be approximated by:

x(0) = 0 and x(n+1) = Ax(n) + b for n � 0

• Power method: compute vectors x(0), x(1), x(2), . . . and abort if:

max
s∈S?

|x(n+1)
s − x(n)

s | < ε for some small tolerance ε

– convergence guaranteed
– alternative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation
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Unique solution

Let M be a finite DTMC with state space S partitioned into:

• S=0 = Sat(¬∃(C U B))

• S=1 a subset of {s ∈ S | Pr(s |= C U B) = 1} that contains B

• S? = S \ (S=0 ∪ S=1)

For B, C ⊆ S, the vector

(
Pr(s |= C U B)

)
s∈S?

is the unique solution of the linear equation system:

x = Ax + b where A =
(

P(s, t)
)
s,t∈S?

and b =
(

P(s, S=1)
)
s∈S?
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Computing constrained reachability probabilities

• The probabilities of the events C U �nB can be obtained iteratively:

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n

• where A =
(

P(s, t)
)
s,t∈C\B

and b =
(

P(s,B)
)
s∈C\B

• Then: x(n)(s) = Pr(s |= C U �nB) for s ∈ C \ B
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Bounded reachability probabilities
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Example on constrained reachability
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Transient probabilities

• Given that An(s, t) = Pr(s |= S? U =n t)

– if B = ∅, C = S, we have S=1 = S=0 = ∅ and S? = S and A = P
– Pn(s, t) is the probability to be in state t after n steps once started in s

• Transient probability: ΘM
n (t) =

∑
s∈S ιinit(s) · Pn(s, t)

• ΘM
n = P · P · . . . · P︸ ︷︷ ︸

n times

· ιinit = Pn · ιinit

– where the initial distribution ιinit is viewed as column-vector

• Compute ΘM
n by successive vector-matrix multiplication:

ΘM
0 = ιinit, ΘM

n = P · ΘM
n−1 for n � 1
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Reachability = transient probabilities

• Suppose we want to compute probabilities for ��nB in M
– observe: once B is reached, remaining behaviour is not important

• Adapt M by making all states in B absorbing

– PB(s, t) = P(s, t) if s /∈ B and PB(s, s) = 1 for s ∈ B

– all outgoing transitions of s ∈ B are replaced by a single self-loop at s

• Then:
PrM(��nB)︸ ︷︷ ︸
reachability in M

=
∑
s′∈B

ΘMB
n (s′)

︸ ︷︷ ︸
transient probability in MB
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Constrained reachability = transient probabilities

• Suppose we want to compute probabilities for C U �nB in M
– observe: once B is reached, remaining behaviour is not important
– observe: once s ∈ S \ (C ∪ B) is reached, remaining behaviour not important

• Adapt M by making all states in B and S \ (C ∪ B) absorbing

– PB(s, t) = P(s, t) if s /∈ B and PB(s, s) = 1 for s ∈ B or s ∈ C ∪ B

• Then:
PrM(C U �nB)︸ ︷︷ ︸

reachability in M
=

∑
s′∈B

Θ
MC,B
n (s′)

︸ ︷︷ ︸
transient probability in MC,B
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Example
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Qualitative properties

• Quantitative properties

– what is the probability of an event?

• Qualitative properties

– does an event happen with probability one?, or
– does an event happen with probability larger than zero?

• For finite MCs, qualitative properties do only depend on state graph

– and not on the transition probabilities!
– e.g., limit behaviour depends on the bottom strongly connected components
– and almost sure reachability or repeated reachability are graph properties
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Measurability of some events

Let T ⊆ S a subset of states in a (possibly infinite) DTMC.

• The event ��T is measurable

– ��T can be written as countable intersection of countable unions of cylinder
sets:

��T =
\
n�0

[
m�n

Cyl(“(m+1)-st state is in T ”)

– where Cyl(. . .) is the union of all cylinder sets Cyl(t0 . . . tm) for t0 . . . tm ∈
Pathsfin(M) and tm ∈ T

• The event ��T is measurable

– as it is the complement of the measurable event ��(S \ T )
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Graph notions

Let M = (S, P, ιinit, AP, L) be a finite Markov chain

• T ⊆ S is strongly connected if:

– s ∈ T and t ∈ T are mutually reachable via edges in T

• T is a strongly connected component (SCC) of M if:

– it is strongly connected and no proper superset of T is strongly connected

• T is a bottom SCC (BSCC) if:

– it is an SCC and no state outside T is reachable from T

– for any state t ∈ T it holds P(s, T ) =
P

t∈T P(s, t) = 1

– let BSCC(M) denote the set of BSCCs of M
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Evolution of an example DTMC
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On the long run
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Fundamental result

For each state s of a finite Markov chain M:

Prs
{

π ∈ Paths(s) | inf(π) ∈ BSCC(M)
}

= 1

almost surely any finite DTMC eventually reaches a BSCC
and visits all its states infinitely often
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Zeroconf example
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Almost sure reachability

For finite DTMC with state space S, s ∈ S and
B ⊆ S a set of absorbing states:

Pr(s |= �B) = 1 iff s ∈ S \ Pre∗
“

S \ Pre∗(B)
”
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Proof
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Computing almost sure reachability properties

• Given finite DTMC M and B ⊆ S, determine:

s ∈ S such that Pr(s |= �B) = 1

1. Make all states in B absorbing (yielding MB)

2. Determine S \ Pre∗(S \ Pre∗(B)
)

by a graph analysis

– do a backward search from B in MB to determine Pre∗(B)

– then a backward search from S \ Pre∗(B) in MB

• Time complexity: linear in the size of M
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Qualitative repeated reachability

For finite DTMC with state space S, B ⊆ S, and s ∈ S:

Pr(s |= ��B) = 1 iff for each BSCC T ⊆ Post∗(s). T ∩ B �= ∅
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A remark on infinite Markov chains

• For infinite MCs, qualitative properties may rely on transition probs

• Value of probability p does affect qualitative properties:

Pr(s |= � s0) =

(
1 if p � 1

2

< 1 if p > 1
2

and Pr(s |= �� s0) =

(
1 if p � 1

2

0 if p > 1
2
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Quantitative repeated reachability

For finite DTMC with state space S, B ⊆ S, and s ∈ S:

Pr(s |= ��B) = Pr(s |= �U)

where U is the union of all BSCCs T with T ∩ B �= ∅
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Qualitative persistence

For finite DTMC with state space S, B ⊆ S, and s ∈ S:

Pr(s |= ��B) = 1 iff T ⊆ B for any BSCC T ⊆ Post∗(s)
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Quantitative persistence

For finite DTMC with state space S, B ⊆ S, and s ∈ S:

Pr(s |= ��B) = Pr(s |= �U)

where U is the union of all BSCCs T with T ⊆ B
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