© JPK

Simulation Quotienting
Lecture #3 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

April 22, 2009

Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) TS prior or during model checking

Relevant issues:

e What is the formal relationship between TS and TS?

e Can TS be obtained algorithmically and efficiently?

e Which logical fragment (of LTL, CTL, CTL*) is preserved?

e And in what sense?

— “strong” preservation: positive and negative results carry over
— “weak” preservation: only positive results carry over
— “match”: logic equivalence coincides with formal relation

© JPK 1

Advanced model checking

Current state of affairs

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
PTIME
CTL™

strong match

bisimulation is strictly finer than trace equivalence

© JPK

Advanced model checking

Outlook of today’s lecture (1)

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
PTIME
CTL™

strong match

simulation
PTIME
VCTL™

weak match

bisimulation is strictly finer than simulation equivalence

© JPK

Advanced model checking

Outlook of today’s lecture (2)

bisimulation equivalence

/ TSl - TS2 \

simulation equivalence trace equivalence
TS] >~ TSq Traces(TSy) = Traces(TSs)

\ finite trace equivalenC/

Traces g, (TSq) = Traces fin (TS9)

simulation order trace inclusion
TS1 X TSy Traces(TSy) C Traces(TS9)

\ finite trace inclusion /

Traces ﬁn(Tsl) C Tracesg, (TS9)

© JPK

Advanced model checking

Simulation order

R C S x Sisasimulation on TS if for any (s1, s2) € R:
® L(Sl) = L(Sg)
e if s7 € Post(s;) then there exists an s, € Post(ss) with (s, s5) € R

so simulates s, denoted s; <ts s2, if (s1, s2) € R for some simulation R on TS

© JPK 5

Advanced model checking

but not necessarily:

S1

R

So — S

Simulation order

can be completed to

can be completed to

© JPK

Advanced model checking

Simulation order

R C S x Sisasimulation on TS if for any (s1, s2) € R:
® L(s1) = L(s2)
e if s7 € Post(s;) then there exists an s, € Post(ss) with (s, s5) € R

so simulates s1, s1 =<1s s2, if (s1, s2) € R for some simulation R on TS

Facts: <ts is a preorder and the coarsest simulation for TS

© JPK

Advanced model checking

Simulation on paths

Whenever we have:

s — S1 — S22 — 83 — 54

R
lo

for simulation relation ‘R, then this can be completed to:
s — S1 — S22 — 83 — 54

R R R R R

t() — tl — tz — t3 — t4

proof: by induction on the length of a path

© JPK

Advanced model checking

Simulation of transition systems

TS, X TS,

iff Vsy € I1.3s2 € I2. 51 =15,0Ts, S2

© JPK

Advanced model checking

Abstraction function

AN

e f:5 — Sisan abstraction function if f(s) = f(s’) = L(s) = L(s')
— S is a set of concrete states and S a set of abstract states, i.e. |§| < |S]
e Abstraction functions are useful for:
— data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
— predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
— localization reduction: partition program variables into visible and invisible

f : all variables — visible variables

© JPK 10

Advanced model checking

Abstract transition system
For TS = (S, Act, —, I, AP, L) and abstraction function f : S — S let:

TS, = (§, Act,—, I+,AP, L), the abstraction of TS under f

where
e /
S—S
e —; Is defined by: =
! f(5) -5 £(5)

o Iy ={f(s)[secl}

o Li(f(s)) = L(s), fors e S\ f(9), labeling is undefined

© JPK 11

Advanced model checking

Abstract transition system
For TS = (S, Act, —, I, AP, L) and abstraction function f : S — S let:

TS, = (§, Act,—¢, I¢+,AP,L;), the abstraction of TS under f

where
s 254
o —, Is defined by:
f(s) == f(s")

o Ir={f(s)|sel}

e L;(f(s))=L(s), forse S\ £(9), labeling is undefined

R ={(s,f(s))| s € S}isasimulation for (TS, TSy)

© JPK 12

Advanced model checking

Example: program abstraction

© JPK

13

Advanced model checking

Simulation equivalence

TS, and TS, are simulation equivalent, denoted TS ~ TS,
If TS <X TS, and TS, < TS,

© JPK

14

Advanced model checking

Simulation quotient

For TS = (S, Act, —, I, AP, L) and simulation equivalence ~ C S x S let
TS/ ~= (8 {r},—',I')AP, L"), the quotient of TS under ~

where

o '=5/~= {[sl~|seS}tandI'={[s|~|sel}

« /
S—S

[s]~ = [s]~

e —'is defined by:

o L'([s]~) = L(s)

TS ~ TS/~ ; proof on blackboard

© JPK 15

Advanced model checking

Trace, bisimulation, and simulation equivalence

bisimulation equivalence

/ TSl - TS2 \

simulation equivalence trace equivalence
TS) =TS9 Traces(TS1) = Traces(TSo)

\ finite trace equivalenC/

Traces g, (TSq) = Traces fin (TS9)

simulation order trace inclusion
TS1 X TSy Traces(TSq) C Traces(TS9)

\ finite trace inclusion /

Traces ﬁn(Tsl) C Tracesg, (TS9)

© JPK 16

Advanced model checking

Similar but not bisimilar

(s1){a} (t){a}
(52, (53)2 OF

saj{b} (s5){c} (ts){b} (t){c}

TSleft =~ TSright but TSleft ’7(‘ TSrz'ght

© JPK

17

Advanced model checking

Simulation vs. trace equivalence
For transition systems TS; and TS, over AP:

e TS; ~ TSy, implies Tracesg,(TS;) = Tracesg, (TSz2)
e If TS; and TS, do not have terminal states:

TS; <X TS, implies Traces(TS;) C Traces(TSs)

e If TS; and TS, are AP-deterministic:

TS, ~ TS, iff Traces(TS;) = Traces(TSy) iff TS; ~ TS,

TS is AP-deterministic if all initial states are labeled differently,

and this also applies to all direct successors of any state in TS

© JPK 18

Advanced model checking

Simulation and safety properties

e TS; <X TS, Iimplies Tracesg,(TS;) C Tracesg,(TSs)

e For safety LT-property Ps,. and TS;, TS, without terminal states:

TS; X TSy implies (TSy = Py implies TS; = Pyype)

LT property is a safety property if its violation can be shown by a finite trace

© JPK 19

Advanced model checking

Logical characterization of <

e Negation of formulas is problematic as <+g IS not symmetric

e Let L be a fragment of CTL™ which is closed under negation
e And assume L weakly matches =g, that is:

s1 =1s so iff for all state formulae ® of L: s5 = ® — s &= ®.
e Let s; <5 s2. Then, for any state formula ¢ of L:
81’:(1) — Sll;é_lq) — 82\7&_1(13 — SQ’ZCI).

e Hence, s, <15 s1 Which requires <5 to be symmetric

© JPK

20

Advanced model checking

Universal fragment of CTL*

VCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Vo

where a € AP and ¢ Is a path-formula

VCTL" path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in VCTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 21

Advanced model checking

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL™ formula

© JPK

22

Advanced model checking

Simulation order and VCTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =15 &
(2) for all VCTL*-formulas ®: s’ = ® implies s = ®
(3) for all VCTL-formulas ®: s’ = ® implies s = ®

proof is carried out in three steps: (1) = (2) = (3) = (1)

© JPK 23

Advanced model checking

Proof

© JPK

24

Advanced model checking

Distinguishing nonsimilar transition systems

© JPK

25

Advanced model checking

Existential fragment of CTL*

JCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Jp

where a € AP and ¢ Is a path-formula

JCTL™ path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in ACTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 26

Advanced model checking

Simulation order and 3CTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =7s s
(2) for all 3CTL*-formulas ®: s = ® implies s’ |= ®
(3) for all ICTL-formulas ®: s |= ® implies s’ |= ®

© JPK 27

Advanced model checking

~, VCTL", and 3CTL" equivalence

For finite transition system TS without terminal states:

=Ts = =yCTL* — =VvCTL = =3CTL* = =3CTL

But how to compute the quotient under ~+1g?

© JPK

28

Advanced model checking

Basic fixpoint characterization
Consider the function G : 25%5 — 25%5:

GR) = { (s,t)]|L(s)=L(t) N Vs €8S.
(s—5¢ = T eSSt N (s,t)ER)

<1s = G(=Z1s) and for any R such that G(R) = R itholds R C <+

© JPK

29

Advanced model checking

How to compute the fixpoint of G?

Let TS = (S, Act, —, I, AP, L) be an image-finite transition system

Then:
=1s = ﬂ;')i() =i
where =; is defined by:

=0 = {(s,t) e SxS|L(s)=L(t)}

<it1 = G(2))

this constitutes the basis for the algorithms to follow

© JPK 30

Advanced model checking

Skeleton for simulation preorder checking

Input: finite transition system TS over AP with state space S
Output: simulation order <tg

R :={(s1,s2) | L(s1) = L(s2) };

while R is not a simulation do
pick (s1, s2) € R suchthats; — s, butforall s, with s — s and (s, s5) € R;
R :=R\{(s1,s2) };

od

return R

The number of iterations is bounded above by |S|?, since:
SxS DRy 2R1 2 R2 2... 2 Rn = =15

© JPK 31

Advanced model checking

Algorithm to compute < (1)
Input: finite transition system TS over AP with state space S

Output: simulation order <tg

forall s; € Sdo
Sim(s1) := {s2 € S| L(s1) = L(s2) }; (* initialization *)
od

while 3(s1, s2) € S x Sim(sy). 3s| € Post(s;) with Post(sz) N Sim(s}) = @ do

choose such a pair of states (s1, s2); (* 51 A1s 52%)
Sim(81> = Slm(81> \ {82 };
od

(* Sim(s) = Simtg(s) for any s *)
return { (s, s2) | s2 € Sim(sy) }

Simr(s) = {s'| (s,s") € R}, the upward closure of s under R

g C SImRO(S) C Sile(s) C...C SlmRn(S) = SiijS(S)

© JPK 32

Advanced model checking

Time complexity

For TS = (S, Act, —, I, AP, L) with M > |S|, the # edgesin TS:

Time complexity of computing <15 is O (M-\S\?’)

in each iteration a single pair is deleted; can we do better?

© JPK

33

Advanced model checking

Proof

© JPK

34

Advanced model checking

First Observation

e Assume: s is the only successor of s, related to s} (%)

— Simg(s}) N Post(s2) = { s, } where Simg(s}) = {s € S| (s},s) € R}

e Removing (s, s5) from R implies that s; A s

= (s1, s2) can thus also safely be removed from R

e This applies to all direct predecessors of s, satisfying (x)

© JPK 35

Advanced model checking

Algorithm to compute < (2)

Input: finite transition system TS over AP with state space S
Output: simulation order <tg

forall s; € S do
Simold(sl) = S;
Sim(Sl) = {82 e S | L(Sl) = L(SQ) };
od
while (s € S with Sim,;;(s) # Sim(s)) do
choose s such that Sim,;;(s]) # Sim(s});
Remove := Pre (Simold(s’l)) \ Pre (Sim(s’l)); (* predecessors that #£ s *)
for all s; € Pre(s]) do
Sim(sy) := Sim(s1) \ Remove;
od
Sim(s}) := Sim(s});
od
return { (s1, s2) | s2 € Sim(s1) }

© JPK 36

Advanced model checking

Implementation details

e Introduce for any state s} the set Remove(s’)

— contains all states s, to be removed from Sim(s;) for s; € Pre(s)):

Remove(s;) = Pre(Sim,;(s})) \ Pre(Sim(s}))

= the sets Sim,;; are superfluous
= termination condition: Remove(s}) = g forall s| € S
— adapt the sets Remove on modifying Sim(s1)

e Let s, € Remove(s)) and s; € Pre(s))

— then s; — s} but no transition sy, — s, with s}, € Sim(s})
— then s; A s2, SO s, can be removed from Sim(s):
= extend Remove(s;) with s € Pre(sy) and Post(s) N Sim(sy) = @

© JPK

37

Advanced model checking

Algorithm to compute < (3)

forall s; € Sdo

Sim(s1) :={s2 € S| L(s1) = L(s2) }; (* initialization *)
Remove(sy) := S \ Pre(Sim(s1));
od

(* loop invariant: Remove(s}) = Pre (Sim,;;(s})) \ Pre (Sim(s})) *)
while (3s € S with Remove(s)) # @) do
choose s’ such that Remove(s)) # &;
for all s € Remove(s)) do
for all s; € Pre(s)) do
if so € Sim(s1) then
Sim(sy) := Sim(s1) \ { s2 }; (* s2 € Simyy(s1) \ Sim(sy) *)
for all s € Pre(sy) with Post(s) N Sim(s1) = @ do
(* s € Pre (Sim,;;(s1)) \ Pre(Sim(sy)) *)
Remove(s;) := Remove(sy) U {s };
od
fi
od
od
Remove(s}) := &; (* Sim;q(s]) := Sim(s}) %
od
return { (s1,s2) | s2 € Sim(s1) }

© JPK 38

Advanced model checking

Time complexity

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity of computing <+s is O(|S|-|AP| + M-|S])

© JPK

39

Advanced model checking

Proof

© JPK

40

Advanced model checking

Summary

formal relation
complexity

logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
O(M-log|S|)
CTL™

strong match

simulation
O(M-[S])
VCTL"

weak match

© JPK

41

