
Simulation Quotienting
Lecture #3 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 22, 2009

c© JPK

Advanced model checking

Abstraction

Reduce (a huge) TS to (a small) T̂S prior or during model checking

Relevant issues:

• What is the formal relationship between TS and T̂S?

• Can T̂S be obtained algorithmically and efficiently?

• Which logical fragment (of LTL, CTL, CTL∗) is preserved?

• And in what sense?

– “strong” preservation: positive and negative results carry over
– “weak” preservation: only positive results carry over
– “match”: logic equivalence coincides with formal relation

c© JPK 1

Advanced model checking

Current state of affairs

formal relation trace equivalence bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL CTL∗

preservation strong strong match

bisimulation is strictly finer than trace equivalence

c© JPK 2

Advanced model checking

Outlook of today’s lecture (1)

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete PTIME PTIME

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

bisimulation is strictly finer than simulation equivalence

c© JPK 3

Advanced model checking

Outlook of today’s lecture (2)

simulation equivalence

bisimulation equivalence

trace equivalence
Traces(TS1) = Traces(TS2)

TS1 ∼ TS2

finite trace inclusion

finite trace equivalence
Tracesfin(TS1) = Tracesfin(TS2)

Tracesfin(TS1) ⊆ Tracesfin(TS2)

TS1 � TS2

TS1 � TS2

simulation order trace inclusion
Traces(TS1) ⊆ Traces(TS2)

c© JPK 4

Advanced model checking

Simulation order

R ⊆ S × S is a simulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

s2 simulates s1, denoted s1 �TS s2, if (s1, s2) ∈ R for some simulation R on TS

c© JPK 5

Advanced model checking

Simulation order

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

but not necessarily:

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 6

Advanced model checking

Simulation order

R ⊆ S × S is a simulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

s2 simulates s1, s1 �TS s2, if (s1, s2) ∈ R for some simulation R on TS

Facts: �TS is a preorder and the coarsest simulation for TS

c© JPK 7

Advanced model checking

Simulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R
t0

for simulation relation R, then this can be completed to:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on the length of a path

c© JPK 8

Advanced model checking

Simulation of transition systems

TS1 � TS2 iff ∀s1 ∈ I1. ∃s2 ∈ I2. s1 �TS1⊕TS2
s2

c© JPK 9

Advanced model checking

Abstraction function

• f : S → Ŝ is an abstraction function if f(s) = f(s′) ⇒ L(s) = L(s′)

– S is a set of concrete states and bS a set of abstract states, i.e. |bS| << |S|

• Abstraction functions are useful for:

– data abstraction: abstract from values of program or control variables

f : concrete data domain → abstract data domain

– predicate abstraction: use predicates over the program variables

f : state → valuations of the predicates

– localization reduction: partition program variables into visible and invisible

f : all variables → visible variables

c© JPK 10

Advanced model checking

Abstract transition system
For TS = (S, Act,→, I, AP, L) and abstraction function f : S → Ŝ let:

TSf = (Ŝ, Act,→f , If , AP, Lf), the abstraction of TS under f

where

• →f is defined by:
s α−−→ s′

f(s) α−−→f f(s′)

• If = { f(s) | s ∈ I }

• Lf(f(s)) = L(s); for s ∈ Ŝ \ f(S), labeling is undefined

c© JPK 11

Advanced model checking

Abstract transition system
For TS = (S, Act,→, I, AP, L) and abstraction function f : S → Ŝ let:

TSf = (Ŝ, Act,→f , If , AP, Lf), the abstraction of TS under f

where

• →f is defined by:
s α−−→ s′

f(s) α−−→f f(s′)

• If = { f(s) | s ∈ I }

• Lf(f(s)) = L(s); for s ∈ Ŝ \ f(S), labeling is undefined

R = { (s, f(s)) | s ∈ S } is a simulation for (TS, TSf)

c© JPK 12

Advanced model checking

Example: program abstraction

c© JPK 13

Advanced model checking

Simulation equivalence

TS1 and TS2 are simulation equivalent, denoted TS1 � TS2,

if TS1 � TS2 and TS2 � TS1

c© JPK 14

Advanced model checking

Simulation quotient

For TS = (S, Act,→, I, AP, L) and simulation equivalence � ⊆ S ×S let

TS/� = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under �

where

• S′ = S/�= { [s]� | s ∈ S } and I ′ = { [s]� | s ∈ I }

• →′ is defined by:
s α−−→ s′

[s]�
τ−→′ [s′]�

• L′([s]�) = L(s)

TS � TS/� ; proof on blackboard

c© JPK 15

Advanced model checking

Trace, bisimulation, and simulation equivalence

simulation equivalence

bisimulation equivalence

trace equivalence
Traces(TS1) = Traces(TS2)

TS1 ∼ TS2

finite trace inclusion

finite trace equivalence
Tracesfin(TS1) = Tracesfin(TS2)

Tracesfin(TS1) ⊆ Tracesfin(TS2)

TS1 � TS2

TS1 � TS2

simulation order trace inclusion
Traces(TS1) ⊆ Traces(TS2)

c© JPK 16

Advanced model checking

Similar but not bisimilar

s1 { a }

s2 ∅ s3 ∅

s4 { b } s5 { c }

t1 { a }

t2 ∅

t3 { b } t4 { c }

TSleft � TSright but TSleft �∼ TSright

c© JPK 17

Advanced model checking

Simulation vs. trace equivalence
For transition systems TS1 and TS2 over AP:

• TS1 � TS2 implies Tracesfin(TS1) = Tracesfin(TS2)

• If TS1 and TS2 do not have terminal states:

TS1 � TS2 implies Traces(TS1) ⊆ Traces(TS2)

• If TS1 and TS2 are AP-deterministic:

TS1 � TS2 iff Traces(TS1) = Traces(TS2) iff TS1 ∼ TS2

TS is AP-deterministic if all initial states are labeled differently,

and this also applies to all direct successors of any state in TS

c© JPK 18

Advanced model checking

Simulation and safety properties

• TS1 � TS2 implies Tracesfin(TS1) ⊆ Tracesfin(TS2)

• For safety LT-property Psafe and TS1, TS2 without terminal states:

TS1 � TS2 implies (TS2 |= Psafe implies TS1 |= Psafe)

LT property is a safety property if its violation can be shown by a finite trace

c© JPK 19

Advanced model checking

Logical characterization of �TS

• Negation of formulas is problematic as �TS is not symmetric

• Let L be a fragment of CTL∗ which is closed under negation

• And assume L weakly matches �TS, that is:

s1 �TS s2 iff for all state formulae Φ of L: s2 |= Φ =⇒ s1 |= Φ.

• Let s1 �TS s2. Then, for any state formula Φ of L:

s1 |= Φ =⇒ s1 	|= ¬Φ =⇒ s2 	|= ¬Φ =⇒ s2 |= Φ.

• Hence, s2 �TS s1 which requires �TS to be symmetric

c© JPK 20

Advanced model checking

Universal fragment of CTL∗

∀CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path-formula

∀CTL∗ path-formulas are formed according to:

ϕ ::= Φ
∣∣∣ © ϕ

∣∣∣ ϕ1∧ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ ϕ1 Uϕ2

∣∣∣ ϕ1 Rϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in ∀CTL, the only path operators are ©Φ, Φ1 U Φ2 and Φ1 R Φ2

c© JPK 21

Advanced model checking

Universal CTL∗ contains LTL

For every LTL formula there exists an equivalent ∀CTL∗ formula

c© JPK 22

Advanced model checking

Simulation order and ∀CTL∗

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s �TS s′

(2) for all ∀CTL∗-formulas Φ: s′ |= Φ implies s |= Φ

(3) for all ∀CTL-formulas Φ: s′ |= Φ implies s |= Φ

proof is carried out in three steps: (1) ⇒ (2) ⇒ (3) ⇒ (1)

c© JPK 23

Advanced model checking

Proof

c© JPK 24

Advanced model checking

Distinguishing nonsimilar transition systems

c© JPK 25

Advanced model checking

Existential fragment of CTL∗

∃CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

∃CTL∗ path-formulas are formed according to:

ϕ ::= Φ
∣∣∣ © ϕ

∣∣∣ ϕ1∧ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ ϕ1 Uϕ2

∣∣∣ ϕ1 Rϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in ∃CTL, the only path operators are ©Φ, Φ1 U Φ2 and Φ1 R Φ2

c© JPK 26

Advanced model checking

Simulation order and ∃CTL∗

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s �TS s′

(2) for all ∃CTL∗-formulas Φ: s |= Φ implies s′ |= Φ

(3) for all ∃CTL-formulas Φ: s |= Φ implies s′ |= Φ

c© JPK 27

Advanced model checking

�, ∀CTL∗, and ∃CTL∗ equivalence

For finite transition system TS without terminal states:

�TS = ≡∀CTL∗ = ≡∀CTL = ≡∃CTL∗ = ≡∃CTL

But how to compute the quotient under �TS?

c© JPK 28

Advanced model checking

Basic fixpoint characterization

Consider the function G : 2S×S → 2S×S:

G(R) = { (s, t) | L(s) = L(t) ∧ ∀s′ ∈ S.(
s α−−→ s′ ⇒ ∃t′ ∈ S. t α−−→ t′ ∧ (s′, t′) ∈ R)

}

�TS = G(�TS) and for any R such that G(R) = R it holds R ⊆ �TS

c© JPK 29

Advanced model checking

How to compute the fixpoint of G?

Let TS = (S, Act,→, I, AP, L) be an image-finite transition system

Then:
�TS =

⋂∞
i=0 �i

where �i is defined by:

�0 = { (s, t) ∈ S × S | L(s) = L(t) }
�i+1 = G(�i)

this constitutes the basis for the algorithms to follow

c© JPK 30

Advanced model checking

Skeleton for simulation preorder checking
Input: finite transition system TS over AP with state space S

Output: simulation order �TS

R := { (s1, s2) | L(s1) = L(s2) };

while R is not a simulation do
pick (s1, s2) ∈ R such that s1 → s′

1, but for all s′
2 with s2 → s′

2 and (s′
1, s′

2) �∈ R;
R := R \ { (s1, s2) };

od
return R

The number of iterations is bounded above by |S|2, since:

S × S ⊇ R0 � R1 � R2 � . . . � Rn = �TS

c© JPK 31

Advanced model checking

Algorithm to compute � (1)
Input: finite transition system TS over AP with state space S

Output: simulation order �TS

for all s1 ∈ S do
Sim(s1) := { s2 ∈ S | L(s1) = L(s2) }; (* initialization *)

od

while ∃(s1, s2) ∈ S × Sim(s1). ∃s′
1 ∈ Post(s1) with Post(s2) ∩ Sim(s′

1) = ∅ do
choose such a pair of states (s1, s2); (* s1 ��TS s2 *)
Sim(s1) := Sim(s1) \ { s2 };

od
(* Sim(s) = SimTS(s) for any s *)

return { (s1, s2) | s2 ∈ Sim(s1) }

SimR(s) = { s′ | (s, s′) ∈ R}, the upward closure of s under R
∅ ⊆ SimR0

(s) ⊆ SimR1
(s) ⊆ . . . ⊆ SimRn(s) = Sim�TS

(s)

c© JPK 32

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

Time complexity of computing ≺TS is O
“

M ·|S|3
”

in each iteration a single pair is deleted; can we do better?

c© JPK 33

Advanced model checking

Proof

c© JPK 34

Advanced model checking

First Observation

s1 −→ s′1
R R
s2 −→ s′2

• Assume: s′2 is the only successor of s2 related to s′1 (∗)
– SimR(s′

1) ∩ Post(s2) = { s′
2 } where SimR(s′

1) = { s ∈ S | (s′
1, s) ∈ R}

• Removing (s′1, s
′
2) from R implies that s1 	� s2

⇒ (s1, s2) can thus also safely be removed from R

• This applies to all direct predecessors of s′2 satisfying (∗)

c© JPK 35

Advanced model checking

Algorithm to compute � (2)
Input: finite transition system TS over AP with state space S

Output: simulation order �TS

for all s1 ∈ S do
Simold(s1) := S;
Sim(s1) := { s2 ∈ S | L(s1) = L(s2) };

od
while (∃s ∈ S with Simold(s) �= Sim(s)) do

choose s′
1 such that Simold(s

′
1) �= Sim(s′

1);

Remove := Pre
“

Simold(s
′
1)

”
\ Pre

“
Sim(s′

1)
”

; (* predecessors that �� s′
1 *)

for all s1 ∈ Pre(s′
1) do

Sim(s1) := Sim(s1) \ Remove;
od
Simold(s

′
1) := Sim(s′

1);
od
return { (s1, s2) | s2 ∈ Sim(s1) }

c© JPK 36

Advanced model checking

Implementation details

• Introduce for any state s′1 the set Remove(s′1)

– contains all states s2 to be removed from Sim(s1) for s1 ∈ Pre(s′
1):

Remove(s′
1) = Pre(Simold(s

′
1)) \ Pre(Sim(s

′
1))

⇒ the sets Simold are superfluous
⇒ termination condition: Remove(s′

1) = ∅ for all s′
1 ∈ S

– adapt the sets Remove on modifying Sim(s1)

• Let s2 ∈ Remove(s′1) and s1 ∈ Pre(s′1)

– then s1 → s′
1 but no transition s2 → s′

2 with s′
2 ∈ Sim(s′

1)

– then s1 �� s2, so s2 can be removed from Sim(s1):
⇒ extend Remove(s1) with s ∈ Pre(s2) and Post(s) ∩ Sim(s1) = ∅

c© JPK 37

Advanced model checking

Algorithm to compute � (3)
for all s1 ∈ S do

Sim(s1) := { s2 ∈ S | L(s1) = L(s2) }; (* initialization *)
Remove(s1) := S \ Pre(Sim(s1));

od
(* loop invariant: Remove(s′1) = Pre

`
Simold(s

′
1)

´ \ Pre
`
Sim(s′1)

´
*)

while (∃s′1 ∈ S with Remove(s′1) �= ∅) do
choose s′1 such that Remove(s′1) �= ∅;
for all s2 ∈ Remove(s′1) do

for all s1 ∈ Pre(s′1) do
if s2 ∈ Sim(s1) then

Sim(s1) := Sim(s1) \ { s2 }; (* s2 ∈ Simold(s1) \ Sim(s1) *)
for all s ∈ Pre(s2) with Post(s) ∩ Sim(s1) = ∅ do

(* s ∈ Pre (Simold(s1)) \ Pre(Sim(s1)) *)
Remove(s1) := Remove(s1) ∪ { s };

od
fi

od
od
Remove(s′1) := ∅; (* Simold(s

′
1) := Sim(s′1) *)

od
return { (s1, s2) | s2 ∈ Sim(s1) }

c© JPK 38

Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

Time complexity of computing ≺TS is O(|S|·|AP| + M ·|S|)

c© JPK 39

Advanced model checking

Proof

c© JPK 40

Advanced model checking

Summary

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete O(M · log |S|) O(M ·|S|)
logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

c© JPK 41

