

Stutter Trace and Bisimulation Equivalence

Lecture #5 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 29, 2009

Motivation

- Bisimulation, simulation and trace equivalence are *strong*
 - each transition $s \rightarrow s'$ must be matched by a **transition** of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of “invisible” actions
 - each transition $s \rightarrow s'$ must be matched by a **path fragment** of a related state
 - matching means: ending in a state related to s' , and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?

Motivating example

Let TS_{conc} model the concrete program fragment

```
i := y; z := 1;  
while i > 1 do  
    z := z * i; i := i - 1;  
od  
x := z;
```

that computes the factorial of y iteratively.

Let TS_{abs} be the transition system of the (abstract) program $x := y!$

Clearly, TS_{abs} and TS_{conc} are in some sense equivalent

Outlook of today's lecture

formal relation complexity	trace equivalence PSPACE-complete	bisimulation PTIME	simulation PTIME
logical fragment preservation	LTL strong	CTL* strong match	\forall CTL* weak match

formal relation complexity	stutter trace equivalence PSPACE-complete	stutter bisimulation PTIME
logical fragment preservation	LTL \setminus \bigcirc strong	— —

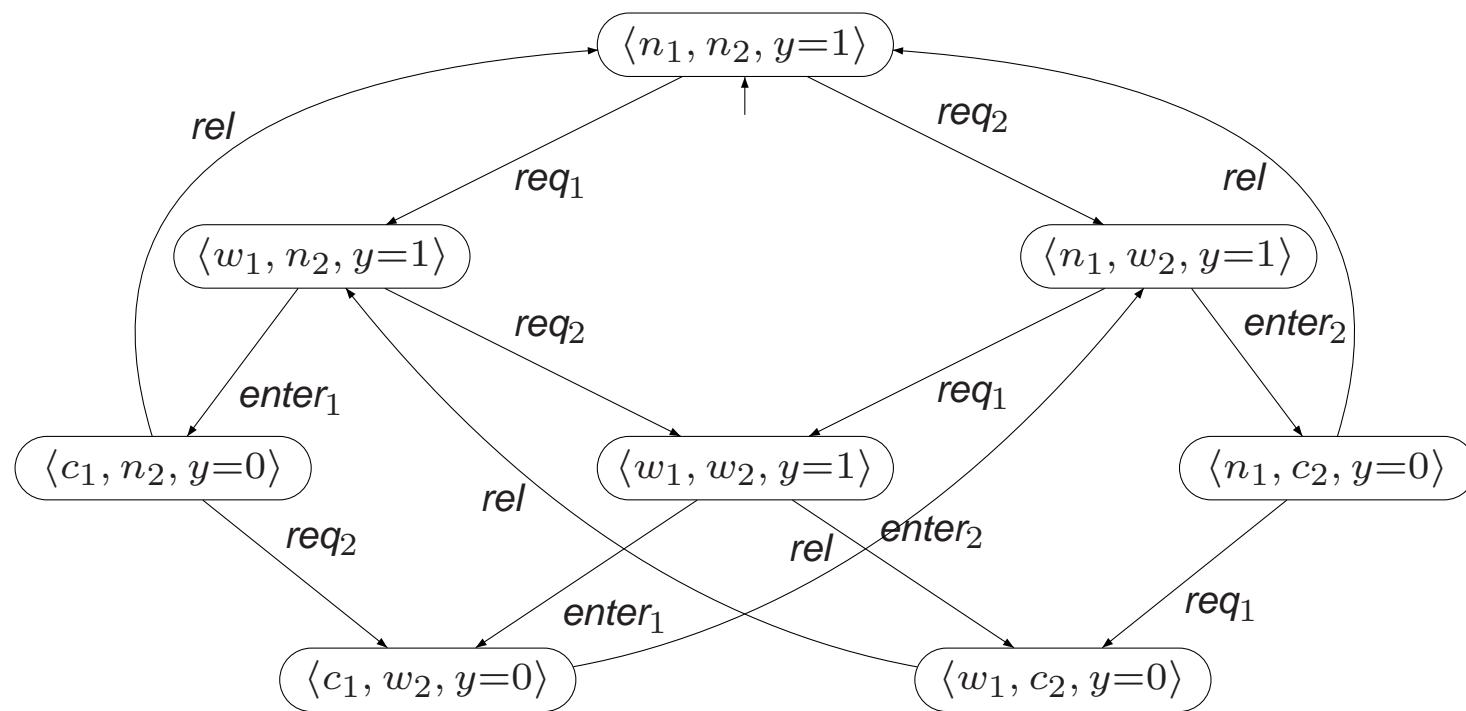
Stuttering equivalence

- $s \rightarrow s'$ in transition system TS is a *stutter step* if $L(s) = L(s')$
 - stutter steps do not affect the state labels of successive states
- Paths π_1 and π_2 are *stuttering equivalent*, denoted $\pi_1 \triangleq \pi_2$:
 - if there exists an infinite sequence $A_0 A_1 A_2 \dots$ with $A_i \subseteq AP$ and
 - natural numbers $n_0, n_1, n_2, \dots, m_0, m_1, m_2, \dots \geq 1$ such that:

$$\begin{aligned} \text{trace}(\pi_1) &= \underbrace{A_0 \dots A_0}_{n_0\text{-times}} \underbrace{A_1 \dots A_1}_{n_1\text{-times}} \underbrace{A_2 \dots A_2}_{n_2\text{-times}} \dots \\ \text{trace}(\pi_2) &= \underbrace{A_0 \dots A_0}_{m_0\text{-times}} \underbrace{A_1 \dots A_1}_{m_1\text{-times}} \underbrace{A_2 \dots A_2}_{m_2\text{-times}} \dots \end{aligned}$$

$\Rightarrow \pi_1 \triangleq \pi_2$ if their traces only differ in their stutter steps
 \Rightarrow i.e., if both their traces are of the form $A_0^+ A_1^+ A_2^+ \dots$ for $A_i \subseteq AP$

Semaphore-based mutual exclusion



Stutter equivalent traces

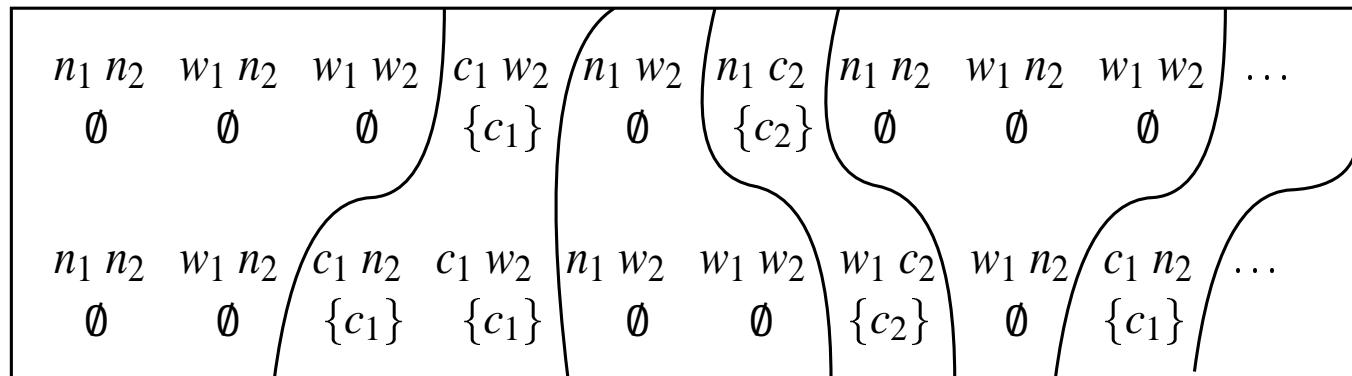
the following two infinite paths in TS_{Sem} :

$$\begin{aligned}\pi_1 &= \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, w_2 \rangle \rightarrow \\ &\quad \langle n_1, c_2 \rangle \rightarrow \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle w_1, w_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \dots \\ \pi_2 &= \langle n_1, n_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \langle c_1, w_2 \rangle \rightarrow \langle n_1, w_2 \rangle \rightarrow \\ &\quad \langle w_1, w_2 \rangle \rightarrow \langle w_1, c_2 \rangle \rightarrow \langle w_1, n_2 \rangle \rightarrow \langle c_1, n_2 \rangle \rightarrow \dots\end{aligned}$$

Hence, $\pi_1 \triangleq \pi_2$, since for $AP = \{ crit_1, crit_2 \}$:

$$\begin{aligned}trace(\pi_1) &= \emptyset^3 \{ crit_1 \} \emptyset \{ crit_2 \} \emptyset^3 \{ crit_1 \} \dots \text{ and} \\ trace(\pi_2) &= \emptyset^2 (\{ crit_1 \})^2 \emptyset^2 \{ crit_2 \} \emptyset \{ crit_1 \} \dots\end{aligned}$$

Pictorially



Stutter trace equivalence

Transition systems TS_i over AP , $i=1, 2$, are *stutter-trace equivalent*:

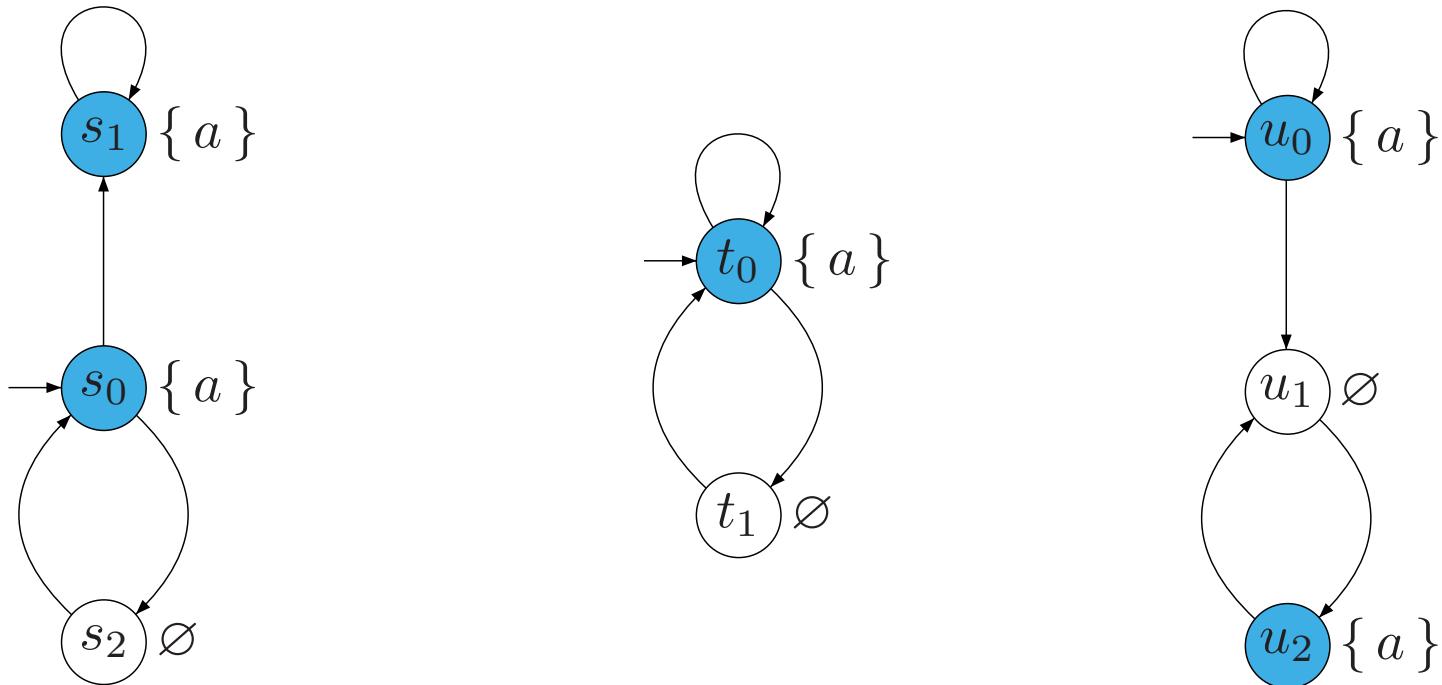
$$TS_1 \triangleq TS_2 \quad \text{if and only if} \quad TS_1 \trianglelefteq TS_2 \text{ and } TS_2 \trianglelefteq TS_1$$

where \trianglelefteq , pronounced *stutter trace inclusion*, is defined by:

$$TS_1 \trianglelefteq TS_2 \quad \text{iff} \quad \forall \sigma_1 \in \text{Traces}(TS_1) \left(\exists \sigma_2 \in \text{Traces}(TS_2). \ \sigma_1 \triangleq \sigma_2 \right)$$

$\text{Traces}(TS_1) = \text{Traces}(TS_2)$ implies $TS_1 \triangleq TS_2$, but not always the converse

Example



$TS_1 \triangleq TS_2$, $TS_1 \not\sqsubseteq TS_3$ and $TS_2 \not\sqsubseteq TS_3$, but $TS_3 \sqsubseteq TS_2$ and $TS_3 \sqsubseteq TS_1$

The \bigcirc operator

Stuttering equivalence does **not** preserve the validity of next-formulas:

$\sigma_1 = ABBB\dots$ and $\sigma_2 = AAABBBB\dots$ for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

$$\sigma_1 \stackrel{\triangle}{=} \sigma_2 \quad \text{but} \quad \sigma_1 \models \bigcirc b \quad \text{and} \quad \sigma_2 \not\models \bigcirc b.$$

⇒ a logical characterization of $\stackrel{\triangle}{=}$ can only be obtained by omitting \bigcirc

in fact, it turns out that this is the only modal operator that is not preserved by $\stackrel{\triangle}{=}$!

Stutter trace and $LTL_{\setminus \bigcirc}$ equivalence

For traces σ_1 and σ_2 over 2^{AP} it holds:

$$\sigma_1 \triangleq \sigma_2 \Rightarrow (\sigma_1 \models \varphi \text{ if and only if } \sigma_2 \models \varphi)$$

for any $LTL_{\setminus \bigcirc}$ formula φ over AP

$LTL_{\setminus \bigcirc}$ denotes the class of LTL formulas without the next step operator \bigcirc

Proof

Stutter trace and $LTL_{\setminus \bigcirc}$ equivalence

For transition systems TS_1 , TS_2 (over AP) without terminal states:

- (a) $TS_1 \triangleq TS_2$ implies $(TS_1 \equiv_{LTL \setminus \bigcirc} TS_2)$
- (b) if $TS_1 \trianglelefteq TS_2$ then for any $LTL_{\setminus \bigcirc}$ formula φ : $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

A more general result can be established by considering
stutter-insensitive LT properties

Stutter insensitivity

- LT property P is *stutter-insensitive* if $[\sigma]_{\trianglelefteq} \subseteq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P :

$$TS_1 \trianglelefteq TS_2 \text{ implies } (TS_1 \models P \text{ iff } TS_2 \models P)$$

- Moreover: $TS_1 \trianglelefteq TS_2$ implies $(TS_2 \models P \text{ implies } TS_1 \models P)$
- For any $LTL_{\setminus \bigcirc}$ formula φ , LT property $Words(\varphi)$ is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in $LTL_{\setminus \bigcirc}$
 - for LTL formula φ with $Words(\varphi)$ stutter insensitive:
 - there exists $\psi \in LTL_{\setminus \bigcirc}$ such that $\psi \equiv_{LTL} \varphi$

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$

\mathcal{R} is a *stutter-bisimulation* for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \dots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \dots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are *stutter-bisimulation equivalent*, denoted $s_1 \approx_{TS} s_2$,
if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

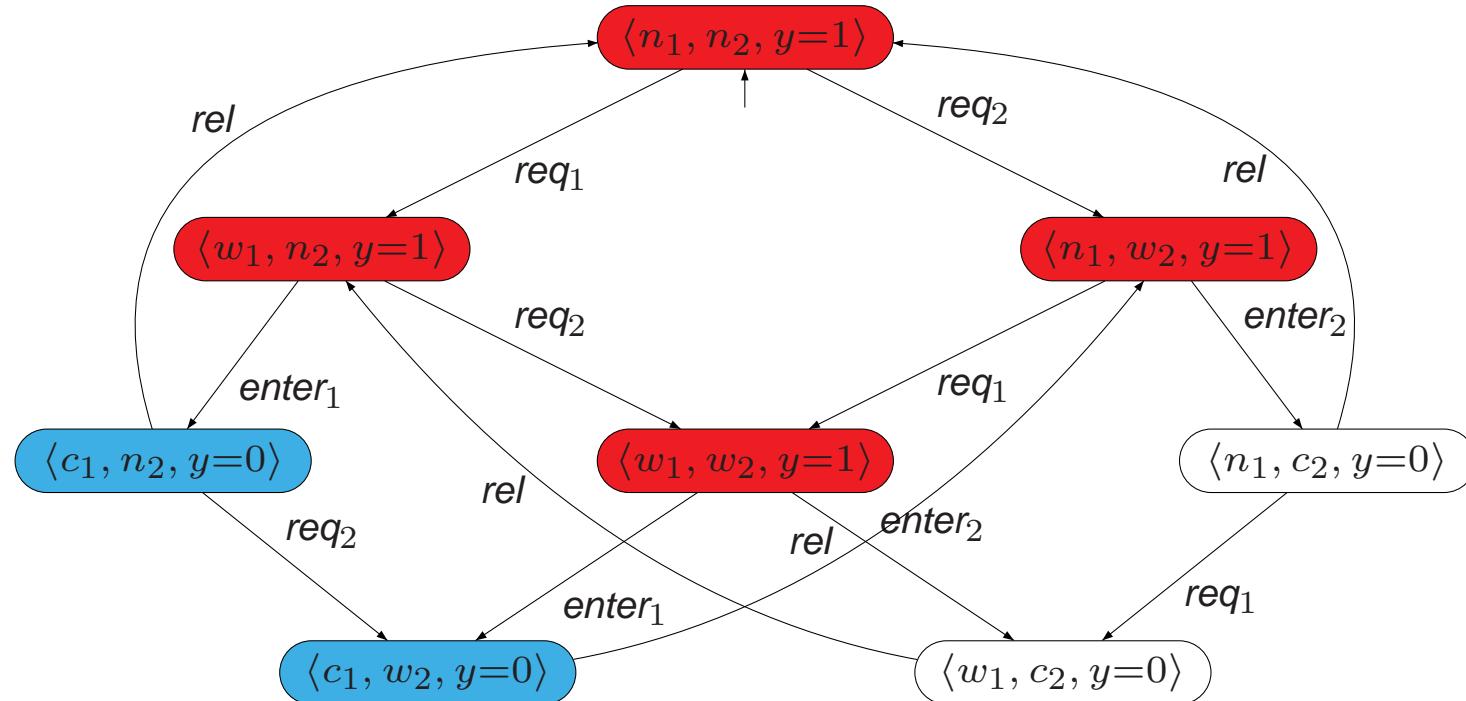
Stutter bisimulation

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s'_1 \end{array} \quad \text{(with } s_1 \not\approx s'_1\text{)}$$

can be completed to

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s_1 \approx u_1 \\ \downarrow \\ s_1 \approx u_2 \\ \vdots \\ \downarrow \\ s_1 \approx u_n \\ \downarrow \\ s'_1 \approx s'_2 \end{array}$$

Semaphore-based mutual exclusion



stutter-bisimilar states for $AP = \{ crit_1, crit_2 \}$

Stutter-bisimilar transition systems

Let $TS_i = (S_i, \mathit{Act}_i, \rightarrow_i, I_i, \mathit{AP}, L_i)$, $i = 1, 2$, be transition systems

TS_1 and TS_2 are stutter bisimilar, denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation \mathcal{R} on $TS_1 \oplus TS_2$ such that:

$$\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}) \text{ and } \forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$$

Stutter bisimulation quotient

Let $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\mathcal{R} \subseteq S \times S$ be an *equivalence*

The *quotient* of TS under \mathcal{R} is defined by:

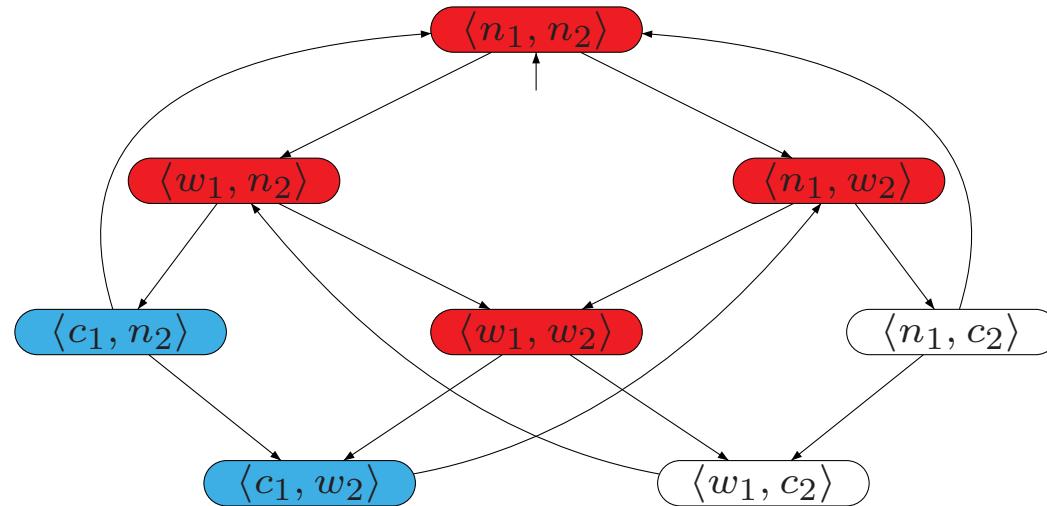
$$TS/\mathcal{R} = (S', \{\tau\}, \rightarrow', I', AP, L')$$

where

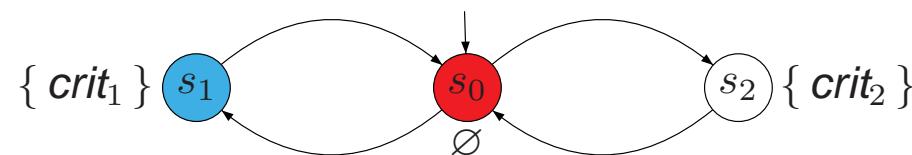
- $S' = S/\mathcal{R} = \{[s]_{\mathcal{R}} \mid s \in S\}$ with $[s]_{\mathcal{R}} = \{s' \in S \mid (s, s') \in \mathcal{R}\}$
- $I' = \{[s]_{\mathcal{R}} \mid s \in I\}$
- $L'([s]_{\mathcal{R}}) = L(s)$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s' \text{ and } (s, s') \notin \mathcal{R}}{[s]_{\mathcal{R}} \xrightarrow{\tau'} [s']_{\mathcal{R}}}$$

note that (a) no self-loops occur in TS/\approx_{TS} and (b) $TS \approx TS/\approx_{TS}$

Semaphore-based mutual exclusion



The stutter-bisimulation quotient:

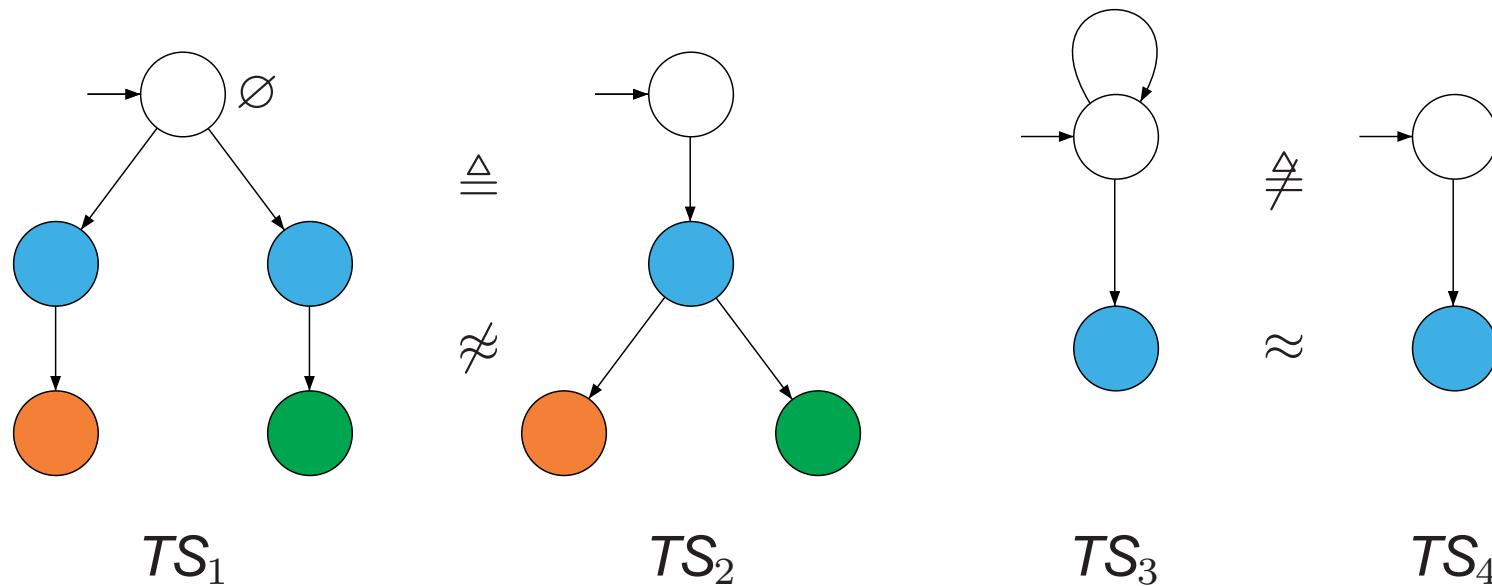


Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP :

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$
- But *not*: $TS_1 \approx TS_2$ implies $TS_1 \triangleq TS_2$!
- So:
 - bisimilar transition systems are trace equivalent
 - **but** stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - **but** \triangleq requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable



Stutter bisimulation does not preserve LTL_{\lozenge}

$TS_{left} \approx TS_{right}$ but $TS_{left} \not\models \lozenge a$ and $TS_{right} \models \lozenge a$

reason: presence of infinite stutter paths in TS_{left}

Divergence sensitivity

- *Stutter paths* are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by a stutter bisimulation
 - ⇒ stutter trace-equivalence (\triangleq) and stutter bisimulation (\approx) are incomparable
 - ⇒ \approx and $LTL_{\setminus \Diamond}$ equivalence are incomparable
- Stutter paths *diverge*: they never leave an equivalence class
- Remedy: only relate *divergent* states or *non-divergent* states
 - divergent state = a state that has a stutter path
 - ⇒ relate states only if they either both have stutter paths or none of them
- This yields *divergence-sensitive stutter bisimulation* (\approx^{div})
 - ⇒ \approx^{div} is strictly finer than \triangleq (and \approx)

Outlook

formal relation	trace equivalence	bisimulation	simulation
complexity	PSPACE-complete	PTIME	PTIME
logical fragment	LTL	CTL [*]	∀CTL [*]
preservation	strong	strong match	weak match

formal relation	stutter trace equivalence	diergence-sensitive stutter bisimulation
complexity	PSPACE-complete	PTIME
logical fragment	LTL $\setminus \circ$	CTL $\setminus \circ$
preservation	strong	strong match

Divergence sensitivity

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- s is **\mathcal{R} -divergent** if there exists an infinite path fragment $s s_1 s_2 \dots \in \text{Paths}(s)$ such that $(s, s_j) \in \mathcal{R}$ for all $j > 0$
 - s is \mathcal{R} -divergent if there is an infinite path starting in s that only visits $[s]_{\mathcal{R}}$
- \mathcal{R} is **divergence sensitive** if for any $(s_1, s_2) \in \mathcal{R}$:
 - s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent
 - \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none states are \mathcal{R} -divergent

Divergent-sensitive stutter bisimulation

s_1, s_2 are *divergent-sensitive stutter-bisimilar*, denoted $s_1 \approx_{TS}^{div} s_2$, if:

\exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$

\approx_{TS}^{div} is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Example

Quotient transition system under \approx^{div}

$TS/\approx^{\text{div}} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \approx^{div}

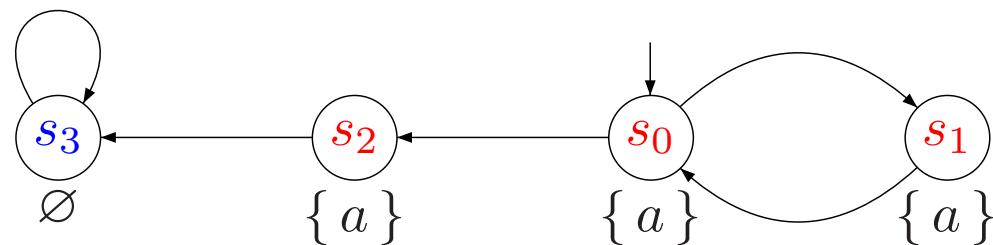
where

- S' , I' and L' are defined as usual (for eq. classes $[s]_{\text{div}}$ under \approx^{div})
- \rightarrow' is defined by:

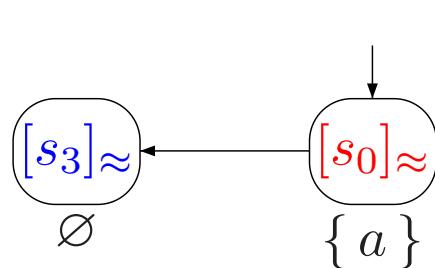
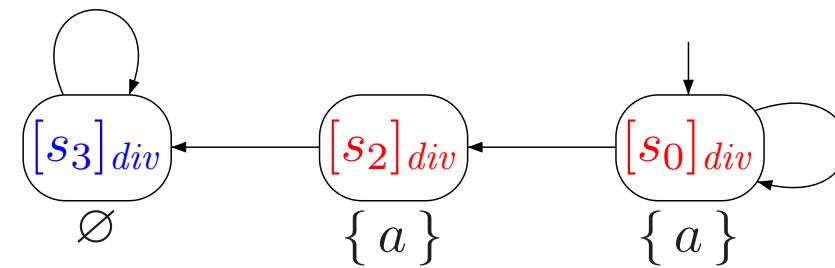
$$\frac{s \xrightarrow{\alpha} s' \wedge s \not\approx^{\text{div}} s'}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s']_{\text{div}}} \quad \text{and} \quad \frac{s \text{ is } \approx^{\text{div}}\text{-divergent}}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s]_{\text{div}}}$$

note that $TS \approx^{\text{div}} TS/\approx^{\text{div}}$

Example



transition system TS



A remark on purely divergent states

- s_{pd} is *purely divergent* if all paths of s are infinite and divergent
- s_{term} is a terminal state if it has no outgoing transitions
- if $L(s_{pd}) = L(s_{term})$ then $s_{term} \approx_{TS} s_{pd}$ and $s_{term} \not\approx_{TS}^{div} s_{pd}$
- $s_{term} \approx_{TS}^{div} s$ implies
 - $L(s) = L(s_{term})$ and each path of s is finite and divergent

Summary

stutter trace inclusion:

$$TS_1 \trianglelefteq TS_2 \quad \text{iff} \quad \forall \sigma_1 \in \text{Traces}(TS_1) \ \exists \sigma_2 \in \text{Traces}(TS_2). \ \sigma_1 \triangleq \sigma_2$$

stutter trace equivalence:

$$TS_1 \triangleq TS_2 \quad \text{iff} \quad TS_1 \trianglelefteq TS_2 \text{ and } TS_2 \trianglelefteq TS_1$$

stutter bisimulation equivalence:

$$TS_1 \approx TS_2 \quad \text{iff} \quad \text{there exists a stutter bisimulation for } (TS_1, TS_2)$$

stutter bisimulation equivalence with divergence:

$$TS_1 \approx^{\text{div}} TS_2 \quad \text{iff} \quad \text{there exists a divergence-sensitive}\\ \text{stutter bisimulation for } (TS_1, TS_2)$$

Relationship between equivalences

