
Stutter Trace and Bisimulation Equivalence
Lecture #5 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 29, 2009

c© JPK

Advanced model checking

Motivation

• Bisimulation, simulation and trace equivalence are strong

– each transition s → s′ must be matched by a transition of a related state
– for comparing models at different abstraction levels, this is too fine
– consider e.g., modeling an abstract action by a sequence of concrete actions

• Idea: allow for sequences of “invisible” actions

– each transition s → s′ must be matched by a path fragment of a related state
– matching means: ending in a state related to s′, and all previous states invisible

• Abstraction of such internal computations yields coarser quotients

– but: what kind of properties are preserved?
– but: can such quotients still be obtained efficiently?
– but: how to treat infinite internal computations?

c© JPK 1

Advanced model checking

Motivating example

Let TSconc model the concrete program fragment

i := y; z := 1;
while i > 1 do

z := z ∗ i; i := i − 1;
od
x := z;

that computes the factorial of y iteratively.

Let TSabs be the transition system of the (abstract) program x := y!

Clearly, TSabs and TSconc are in some sense equivalent

c© JPK 2

Advanced model checking

Outlook of today’s lecture

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete PTIME PTIME

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence stutter bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL\© –

preservation strong –

c© JPK 3

Advanced model checking

Stuttering equivalence

• s → s′ in transition system TS is a stutter step if L(s) = L(s′)

– stutter steps do not affect the state labels of successive states

• Paths π1 and π2 are stuttering equivalent , denoted π1 � π2:

– if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
– natural numbers n0, n1, n2, . . ., m0,m1,m2, . . . � 1 such that:

trace(π1) = A0 . . .A0| {z }
n0-times

A1 . . . A1| {z }
n1-times

A2 . . .A2| {z }
n2-times

. . .

trace(π2) = A0 . . .A0| {z }
m0-times

A1 . . . A1| {z }
m1-times

A2 . . .A2| {z }
m2-times

. . .

⇒ π1 �π2 if their traces only differ in their stutter steps
⇒ i.e., if both their traces are of the form A0

+A1
+A2

+ . . . for Ai ⊆ AP

c© JPK 4

Advanced model checking

Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 5

Advanced model checking

Stutter equivalent traces
the following two infinite paths in TSSem:

π1 = 〈n1, n2〉 → 〈w1, n2〉 → 〈w1, w2〉 → 〈c1, w2〉 → 〈n1, w2〉 →
〈n1, c2〉 → 〈n1, n2〉 → 〈w1, n2〉 → 〈w1, w2〉 → 〈c1, w2〉 → . . .

π2 = 〈n1, n2〉 → 〈w1, n2〉 → 〈c1, n2〉 → 〈c1, w2〉 → 〈n1, w2〉 →
〈w1, w2〉 → 〈w1, c2〉 → 〈w1, n2〉 → 〈c1, n2〉 → . . .

Hence, π1 � π2, since for AP = { crit1, crit2 }:

trace(π1) = ∅
3 { crit1 }∅ { crit2 }∅

3 { crit1 } . . . and

trace(π2) = ∅
2 ({ crit1 })2 ∅

2 { crit2 }∅ { crit1 } . . .

c© JPK 6

Advanced model checking

Pictorially

n1 n2 w1 n2 w1 w2 c1 w2 n1 w2 n1 c2 n1 n2 w1 n2 w1 w2 � � �

n1 n2 w1 n2 c1 n2 c1 w2 n1 w2 w1 w2 w1 c2 w1 n2 c1 n2 � � �

/0 /0 /0 /0 /0 /0 /0�c1� �c2�

/0 /0 /0 /0 /0�c1� �c2��c1� �c1�
c© JPK 7

Advanced model checking

Stutter trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent :

TS1 � TS2 if and only if TS1 � TS2 and TS2 � TS1

where � , pronounced stutter trace inclusion, is defined by:

TS1 � TS2 iff ∀σ1 ∈ Traces(TS1)
(
∃σ2 ∈ Traces(TS2). σ1 � σ2

)

Traces(TS1) = Traces(TS2) implies TS1 � TS2, but not always the converse

c© JPK 8

Advanced model checking

Example

s1 { a }

s0 { a }

s2 ∅

t0 { a }

t1 ∅

u0 { a }

u1 ∅

u2 { a }

TS1 � TS2, TS1
 � TS3 and TS2
 � TS3, but TS3 � TS2 and TS3 � TS1

c© JPK 9

Advanced model checking

The © operator

Stuttering equivalence does not preserve the validity of next-formulas:

σ1 = A B B B . . . and σ2 = A A A B B B B . . . for A,B ⊆ AP and A
= B

Then for b ∈ B \ A:

σ1 �σ2 but σ1 |= © b and σ2
|= © b.

⇒ a logical characterization of � can only be obtained by omitting ©
in fact, it turns out that this is the only modal operator that is not preserved by � !

c© JPK 10

Advanced model checking

Stutter trace and LTL\© equivalence

For traces σ1 and σ2 over 2AP it holds:

σ1 � σ2 ⇒ (σ1 |= ϕ if and only if σ2 |= ϕ)

for any LTL\© formula ϕ over AP

LTL\© denotes the class of LTL formulas without the next step operator ©

c© JPK 11

Advanced model checking

Proof

c© JPK 12

Advanced model checking

Stutter trace and LTL\© equivalence

For transition systems TS1, TS2 (over AP) without terminal states:

(a) TS1 � TS2 implies
“

TS1 ≡LTL\© TS2

”

(b) if TS1 � TS2 then for any LTL\© formula ϕ: TS2 |= ϕ implies TS1 |= ϕ

A more general result can be established by considering
stutter-insensitive LT properties

c© JPK 13

Advanced model checking

Stutter insensitivity

• LT property P is stutter-insensitive if [σ]� ⊆ P , for any σ ∈ P

– P is stutter insensitive if it is closed under stutter equivalence

• For any stutter-insensitive LT property P :

TS1 � TS2 implies (TS1 |= P iff TS2 |= P)

• Moreover: TS1 � TS2 implies (TS2 |= P implies TS1 |= P)

• For any LTL\© formula ϕ, LT property Words(ϕ) is stutter insensitive

– but: some stutter insensitive LT properties cannot be expressed in LTL\©
– for LTL formula ϕ with Words(ϕ) stutter insensitive:

there exists ψ ∈ LTL\© such that ψ ≡LTL ϕ

c© JPK 14

Advanced model checking

Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s1, s
′
1)
∈ R, then there exists a finite path

fragment s2 u1 . . . un s′2 with n � 0 and (s2, ui) ∈ R and (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s2, s
′
2)
∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s1, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2,
if there exists a stutter bisimulation R for TS with (s1, s2) ∈ R

c© JPK 15

Advanced model checking

Stutter bisimulation

s1 ≈ s2

↓
s1 ≈ u1

↓
s1 ≈ s2 s1 ≈ u2

↓ can be completed to ↓
s′1

...
(with s1
≈ s′1) ↓

s1 ≈ un
↓ ↓
s′1 ≈ s′2

c© JPK 16

Advanced model checking

Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

stutter-bisimilar states for AP = { crit1, crit2 }

c© JPK 17

Advanced model checking

Stutter-bisimilar transition systems

Let TSi = (Si, Acti, →i, Ii, AP, Li), i = 1, 2, be transition systems

TS1 and TS2 are stutter bisimilar, denoted TS1 ≈ TS2, if there exists a
stutter bisimulation R on TS1 ⊕ TS2 such that:

∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R)

c© JPK 18

Advanced model checking

Stutter bisimulation quotient

Let TS = (S, Act,→, I, AP, L) and stutter bisimulation R ⊆ S × S be an
equivalence

The quotient of TS under R is defined by:

TS/R = (S
′
, { τ },→′

, I
′
,AP, L′

)

where

• S′ = S/R = { [s]R | s ∈ S } with [s]R = { s′ ∈ S | (s, s′) ∈ R}
• I ′ = { [s]R | s ∈ I }
• L′([s]R) = L(s)

• →′ is defined by:
s α−→ s′ and (s, s′)
∈ R

[s]R τ−→′
[s

′
]R

note that (a) no self-loops occur in TS/≈TS and (b) TS ≈ TS/≈TS

c© JPK 19

Advanced model checking

Semaphore-based mutual exclusion
〈n1, n2〉

〈w1, n2〉 〈n1, w2〉

〈c1, n2〉 〈w1, w2〉 〈n1, c2〉

〈c1, w2〉 〈w1, c2〉

The stutter-bisimulation quotient:

s0

∅

s1{ crit1 } s2 { crit2 }

c© JPK 20

Advanced model checking

Stutter trace and stutter bisimulation

For transition systems TS1 and TS2 over AP:

• Known fact: TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

• But not: TS1 ≈ TS2 implies TS1 � TS2!

• So:

– bisimilar transition systems are trace equivalent
– but stutter-bisimilar transition systems are not always stutter trace-equivalent!

• Why? Stutter paths!

– stutter bisimulation does not impose any constraint on such paths
– but � requires the existence of a stuttering equivalent trace

c© JPK 21

Advanced model checking

Stutter trace and stutter bisimulation are incomparable

∅

�

≈

�

≈

TS1 TS2 TS3 TS4

c© JPK 22

Advanced model checking

Stutter bisimulation does not preserve LTL\©

t0
∅

t1

{ a }
s0

∅

s1

{ a }

TSleft ≈ TSright but TSleft
|= � a and TSright |= � a

reason: presence of infinite stutter paths in TS left

c© JPK 23

Advanced model checking

Divergence sensitivity

• Stutter paths are paths that only consist of stutter steps

– no restrictions are imposed on such paths by a stutter bisimulation
⇒ stutter trace-equivalence (�) and stutter bisimulation (≈) are incomparable
⇒ ≈ and LTL\© equivalence are incomparable

• Stutter paths diverge: they never leave an equivalence class

• Remedy: only relate divergent states or non-divergent states

– divergent state = a state that has a stutter path
⇒ relate states only if they either both have stutter paths or none of them

• This yields divergence-sensitive stutter bisimulation (≈div)

⇒ ≈div is strictly finer than � (and ≈)

c© JPK 24

Advanced model checking

Outlook

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete PTIME PTIME

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence diergence-sensitive
stutter bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL\© CTL∗
\©

preservation strong strong match

c© JPK 25

Advanced model checking

Divergence sensitivity

Let TS be a transition system and R an equivalence relation on S

• s is R-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈ R for all j > 0

– s is R-divergent if there is an infinite path starting in s that only visits [s]R

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent

c© JPK 26

Advanced model checking

Divergent-sensitive stutter bisimulation

s1, s2 are divergent-sensitive stutter-bisimilar , denoted s1 ≈div
TS s2, if:

∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

≈div
TS is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

c© JPK 27

Advanced model checking

Example

c© JPK 28

Advanced model checking

Quotient transition system under ≈div

TS/≈div = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈div

where

• S′, I ′ and L′ are defined as usual (for eq. classes [s]div under ≈div)

• →′ is defined by:

s α−−→ s′ ∧ s
≈div s′

[s]div
τ−→ ′

div [s′]div

and
s is ≈div-divergent

[s]div
τ−→ ′

div [s]div

note that TS ≈div TS/≈div

c© JPK 29

Advanced model checking

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div

c© JPK 30

Advanced model checking

A remark on purely divergent states

• spd is purely divergent if all paths of s are infinite and divergent

• sterm is a terminal state if it has no outgoing transitions

• if L(spd) = L(sterm) then sterm ≈TS spd and sterm
≈div
TS spd

• sterm ≈div
TS s implies

– L(s) = L(sterm) and each path of s is finite and divergent

c© JPK 31

Advanced model checking

Summary

stutter trace inclusion:
TS1 � TS2 iff ∀σ1 ∈ Traces(TS1) ∃σ2 ∈ Traces(TS2). σ1 �σ2

stutter trace equivalence:
TS1 � TS2 iff TS1 � TS2 and TS2 � TS1

stutter bisimulation equivalence:
TS1 ≈ TS2 iff there exists a stutter bisimulation for (TS1, TS2)

stutter bisimulation equivalence with divergence:

TS1 ≈div TS2 iff there exists a divergence-sensitive
stutter bisimulation for (TS1, TS2)

c© JPK 32

Advanced model checking

Relationship between equivalences

TS1 � TS2

bisimulation
TS1 ∼ TS2

stutter bisimulation
divergence sensitive

TS1 ≈div TS2

stutter bisimulation

TS1 ≈ TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 � TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion

c© JPK 33

