

Stutter Bisimulation Quotienting

Lecture #6 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 6, 2009

Motivation

- Bisimulation, simulation and trace equivalence are *strong*
 - each transition $s \rightarrow s'$ must be matched by a **transition** of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of “invisible” actions
 - each transition $s \rightarrow s'$ must be matched by a **path fragment** of a related state
 - matching means: ending in a state related to s' , and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: can such quotients still be obtained efficiently?
 - but: how to treat infinite internal computations?

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$
 \mathcal{R} is a *stutter-bisimulation* for TS if for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \dots u_n s'_2$ with $n \geq 0$ and $(s_2, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
3. if $s'_2 \in Post(s_2)$ with $(s_2, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \dots v_n s'_1$ with $n \geq 0$ and $(s_1, v_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

s_1, s_2 are *stutter-bisimulation equivalent*, denoted $s_1 \approx_{TS} s_2$,
if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

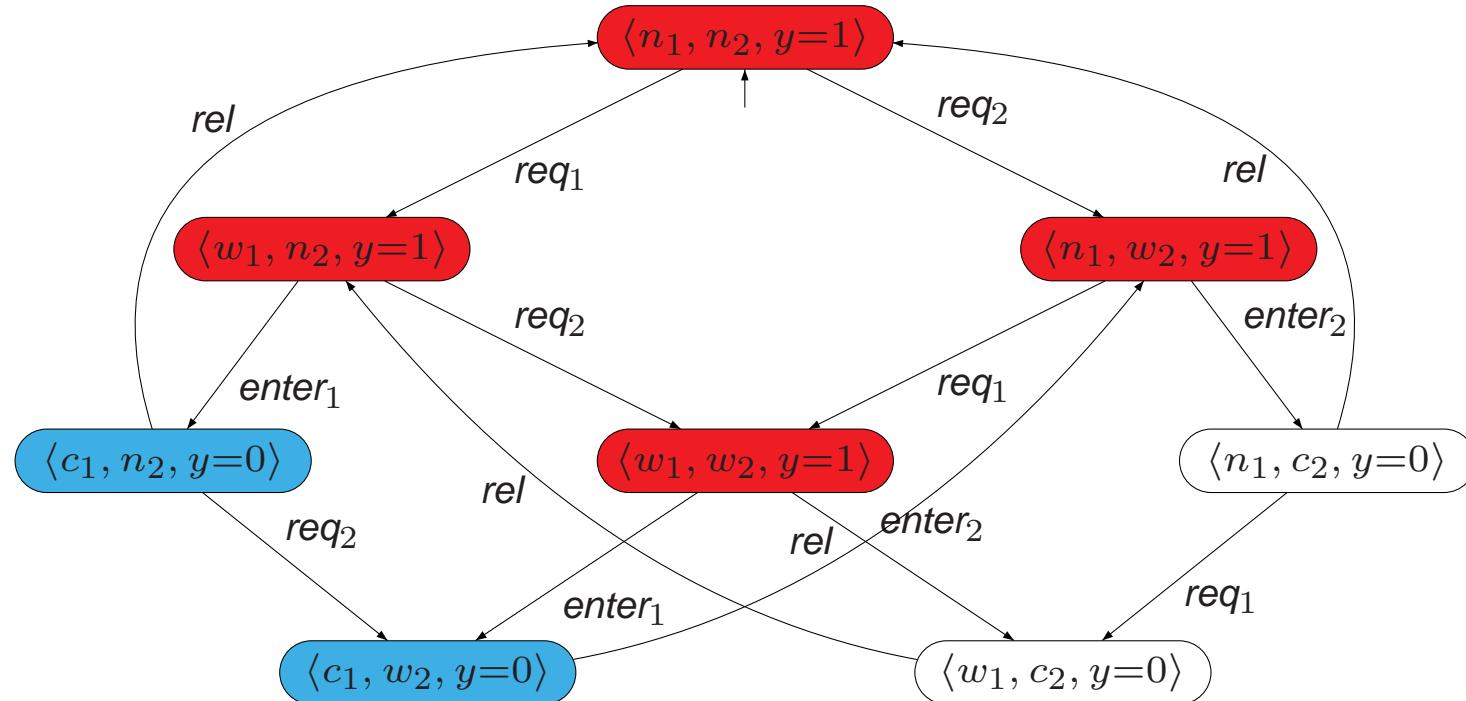
Stutter bisimulation

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s'_1 \end{array} \quad \text{(with } s_1 \not\approx s'_1\text{)}$$

can be completed to

$$\begin{array}{c} s_1 \approx s_2 \\ \downarrow \\ s_1 \approx u_1 \\ \downarrow \\ s_1 \approx u_2 \\ \vdots \\ \downarrow \\ s_1 \approx u_n \\ \downarrow \\ s'_1 \approx s'_2 \end{array}$$

Semaphore-based mutual exclusion



stutter-bisimilar states for $AP = \{ crit_1, crit_2 \}$

Stutter-bisimilar transition systems

Let $TS_i = (S_i, \mathit{Act}_i, \rightarrow_i, I_i, \mathit{AP}, L_i)$, $i = 1, 2$, be transition systems

TS_1 and TS_2 are stutter bisimilar, denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation \mathcal{R} on $TS_1 \oplus TS_2$ such that:

$$\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}) \text{ and } \forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$$

Divergence sensitivity

- *Stutter paths* are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by a stutter bisimulation
⇒ stutter trace-equivalence (\triangleq) and stutter bisimulation (\approx) are incomparable
 - ⇒ \approx and $LTL_{\setminus \Diamond}$ equivalence are incomparable
- Stutter paths *diverge*: they never leave an equivalence class
- Remedy: only relate *divergent* states or *non-divergent* states
 - divergent state = a state that has a stutter path
 - ⇒ relate states only if they either both have stutter paths or none of them
- This yields *divergence-sensitive stutter bisimulation* (\approx^{div})
⇒ \approx^{div} is strictly finer than \triangleq (and \approx)

Outlook

formal relation	trace equivalence	bisimulation	simulation
complexity	PSPACE-complete	PTIME	PTIME
logical fragment	LTL	CTL [*]	∀CTL [*]
preservation	strong	strong match	weak match

formal relation	stutter trace equivalence	divergence-sensitive stutter bisimulation
complexity	PSPACE-complete	PTIME
logical fragment	LTL $\setminus \circ$	CTL $^* \setminus \circ$
preservation	strong	strong match

Divergence sensitivity

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- s is **\mathcal{R} -divergent** if there exists an infinite path fragment $s s_1 s_2 \dots \in \text{Paths}(s)$ such that $(s, s_j) \in \mathcal{R}$ for all $j > 0$
 - s is \mathcal{R} -divergent if there is an infinite path starting in s that only visits $[s]_{\mathcal{R}}$
- \mathcal{R} is **divergence sensitive** if for any $(s_1, s_2) \in \mathcal{R}$:
 - s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent
 - \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none states are \mathcal{R} -divergent

Divergent-sensitive stutter bisimulation

s_1, s_2 are *divergent-sensitive stutter-bisimilar*, denoted $s_1 \approx_{TS}^{div} s_2$, if:

\exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$

\approx_{TS}^{div} is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Divergence-sensitive stutter bisimilar paths

For infinite path fragments $\pi_i = s_{0,i} s_{1,i} s_{2,i} \dots$, $i = 1, 2$, in TS , let:

$$\pi_1 \approx_{TS}^{div} \pi_2$$

if and only if there exists an infinite sequence of indexes

$$0 = j_0 < j_1 < j_2 < \dots \quad \text{and} \quad 0 = k_0 < k_1 < k_2 < \dots$$

with:

$$s_{j,1} \approx_{TS}^{div} s_{k,2} \text{ for all } j_{r-1} \leq j < j_r \text{ and } k_{r-1} \leq k < k_r \text{ with } r = 1, 2, \dots$$

State vs path equivalence

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system, $s_1, s_2 \in S$. Then:

$s_1 \approx_{TS}^{div} s_2$ implies $\forall \pi_1 \in \text{Paths}(s_1). \left(\exists \pi_2 \in \text{Paths}(s_2). \pi_1 \approx_{TS}^{div} \pi_2 \right)$

Proof

Stutter trace vs stutter bisimulation

Let TS_1 and TS_2 be transition systems over AP . Then:

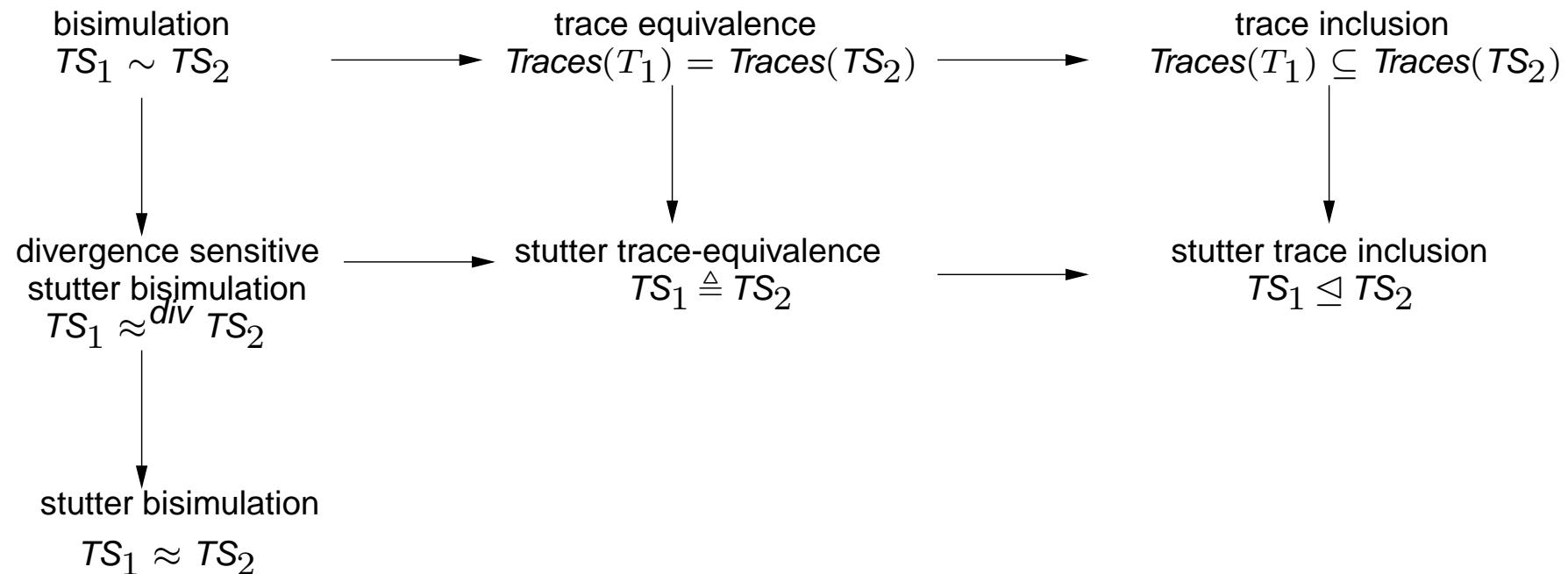
$$TS_1 \approx^{\text{div}} TS_2 \quad \text{implies} \quad TS_1 \triangleq TS_2$$

stutter-bisimulation equivalence
with divergence

stutter-trace equivalence

whereas the reverse implication does not hold in general

Relationship between equivalences



$CTL_{\setminus \circlearrowleft}^*$ and $CTL_{\setminus \circlearrowleft}$ equivalence vs \approx^{div}

For finite transition system TS without terminal states, and s_1, s_2 in TS :

$$s_1 \approx_{TS}^{div} s_2 \quad \text{iff} \quad s_1 \equiv_{CTL_{\setminus \circlearrowleft}^*} s_2 \quad \text{iff} \quad s_1 \equiv_{CTL_{\setminus \circlearrowleft}} s_2$$

divergent-sensitive stutter bisimulation coincides with $CTL_{\setminus \circlearrowleft}$ and $CTL_{\setminus \circlearrowleft}^*$ equivalence

Proof of $\equiv_{CTL \setminus \bigcirc} \subseteq \approx_{\tau s}^{div}$

A producer-consumer example

Producer

```
in := 0;  
while true {  
    produce  $d_1, \dots, d_n$ ;  
    for  $i = 1$  to  $n$  {  
        wait until ( $buffer[in] = \perp$ ) {  
             $buffer[in] := d_i$ ;  
             $in := (in + 1) \bmod m$ ;  
        }  
    }  
}
```

Consumer

```
out := 0;  
while true {  
    for  $j = 1$  to  $n$  {  
        wait until ( $buffer[out] \neq \perp$ ) {  
             $e_j := buffer[out]$ ;  
             $buffer[out] := \perp$ ;  
             $out := (out + 1) \bmod m$ ;  
        }  
    }  
    consume  $e_1, \dots, e_n$   
}
```

An abstraction

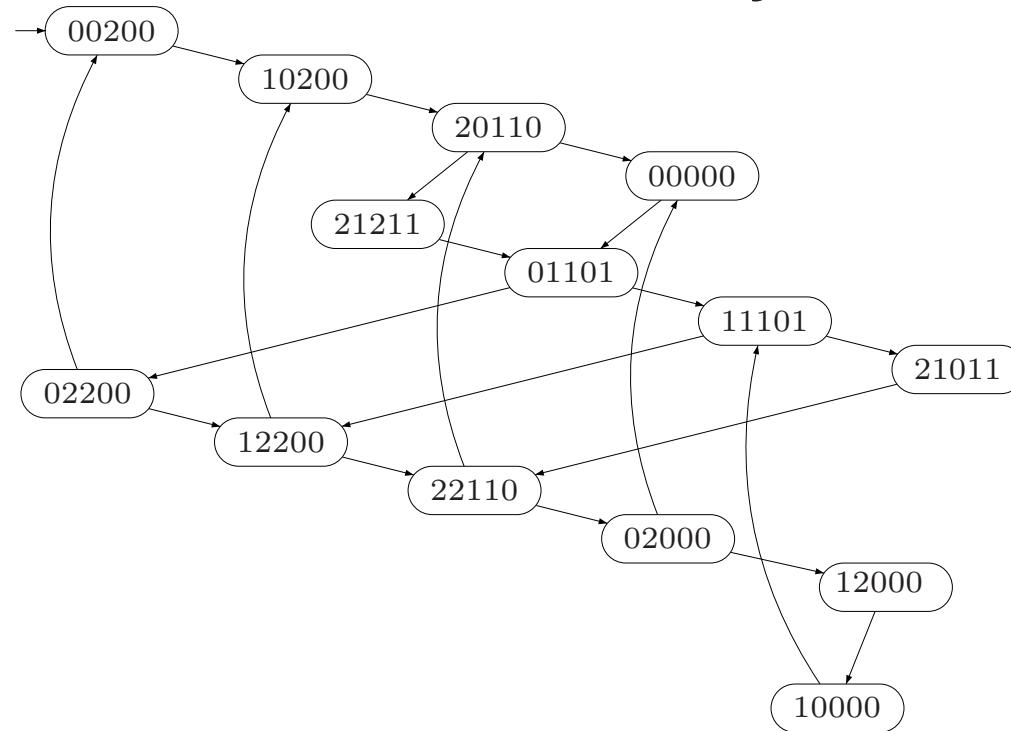
Producer

```
while true {  
    produce;  
    for i = 1 to n {  
        wait until (free > 0) {  
            free := free - 1;  
        }  
    }  
}
```

Consumer

```
while true {  
    for j = 1 to n {  
        wait until (free < m) {  
            free := free + 1;  
        }  
    }  
    consume  
}
```

Abstract transition system

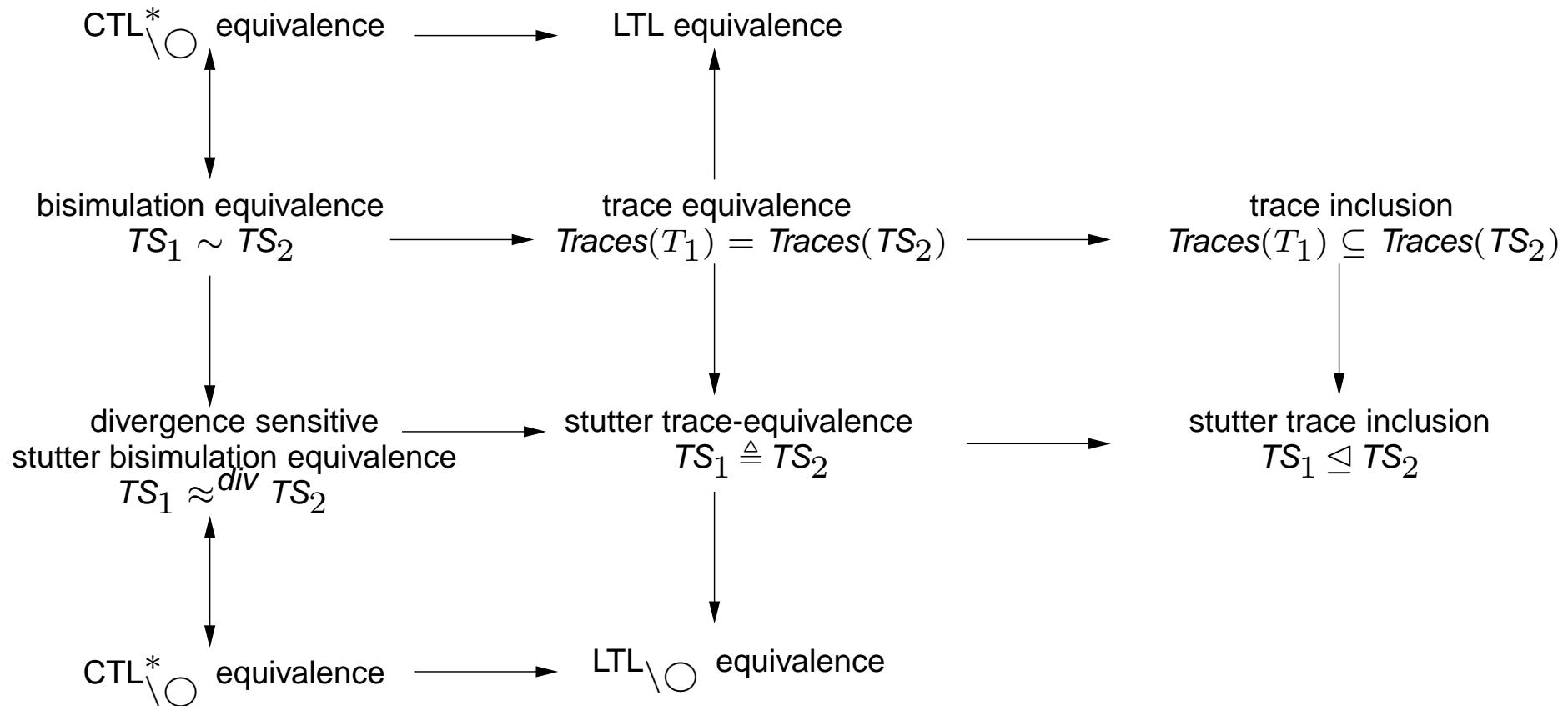


ℓ_0 : *produce*

ℓ_1 : $\langle \text{if } (\text{free} > 0) \text{ then } i := 1; \text{free}-- \text{ fi} \rangle$

ℓ_2 : $\langle \text{if } (\text{free} > 0) \text{ then } i := 0; \text{free}-- \text{ fi} \rangle ; \text{ goto } \ell_0$

Equivalences and logical equivalence



Quotienting: Motivation

- Quotienting wrt. \approx^{div} allows to *abstract from stutter steps*
 - in particular $TS \approx^{\text{div}} TS/\approx^{\text{div}}$
 - typically we have $|TS| \gg |TS/\approx^{\text{div}}|$
- $TS_1 \approx^{\text{div}} TS_2$ if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$
 - for any $\text{CTL}_{\setminus \bigcirc}^*$ (or $\text{CTL}_{\setminus \bigcirc}$) formula Φ

\Rightarrow To check $TS \models \Phi$, it suffices to check whether $TS/\approx^{\text{div}} \models \Phi$

- quotienting with respect to \approx^{div} is a useful preprocessing step of model checking
- quotienting can be used to determine whether $TS_1 \approx^{\text{div}} TS_2$

Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/\approx :

- remove *stutter cycles* from TS
- a refine operator to *efficiently split* (blocks of) partitions
- exploit partition-refinement (as for bisimulation \sim)

2. A quotienting algorithm to determine TS/\approx^{div} :

- *transform* TS into a (divergence-sensitive) transition system \overline{TS}
- \overline{TS} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx_{\overline{TS}}^{\text{div}}$ coincide
- determine \overline{TS}/\approx using the quotienting algorithm for \approx
- “distill” TS/\approx^{div} from \overline{TS}/\approx

Partition-refinement

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- Initially: Π_0 equals $\Pi_{AP} = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$ as before
- Repeat until no change: $\Pi_{i+1} := \text{Refine}_{\approx}(\Pi_i)$
 - loop invariant: Π_i is coarser than S/\approx and finer than $\{ S \}$
- Return Π_i
 - termination: $\mathcal{R}_{\Pi_0} \supsetneq \mathcal{R}_{\Pi_1} \supsetneq \mathcal{R}_{\Pi_2} \supsetneq \dots \supsetneq \mathcal{R}_{\Pi_i} = \approx_{TS}$
 - time complexity: maximally $|S|$ iterations needed

Theorem

S/\approx is the *coarsest* partition Π of S such that:

- (i) Π is finer than the initial partition Π_{AP} , and
- (ii) $B \cap \text{Pre}(\mathcal{C}) = \emptyset$ or $B \subseteq \text{Pre}_{\Pi}^*(\mathcal{C})$ for all $B, \mathcal{C} \in \Pi$

for partition Π of S and blocks B, \mathcal{C} in Π we have:

$s \in \text{Pre}_{\Pi}^*(\mathcal{C})$ whenever $\underbrace{s_1 s_2 \dots s_{n-1}}_{\in B} \underbrace{s_n}_{\in \mathcal{C}} \in \text{Paths}(s)$

state s can reach \mathcal{C} via a path that is completely in B ($= [s]_{\Pi}$)

The refinement operator

- Let: $\text{Refine}_{\approx}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}_{\approx}(B, C)$ for C a block in Π

– where $\text{Refine}_{\approx}(B, C) = \{B \cap \text{Pre}(C), B \setminus \text{Pre}_{\Pi}^*(C)\} \setminus \{\emptyset\}$

- Basic properties:

– for Π finer than Π_{AP} and coarser than S/\approx :

$\text{Refine}_{\approx}(\Pi, C)$ is finer than Π and $\text{Refine}_{\approx}(\Pi, C)$ is coarser than S/\approx

– Π is strictly coarser than S/\approx if and only if there exists a *splitter* for Π

what is an appropriate splitter for \approx ?

Splitter for \approx

Let Π be a partition of S and let $C, B \in \Pi$.

1. C is a **Π -splitter** for B if and only if:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}_\Pi^*(C) \neq \emptyset$$

2. Π is **C -stable** if there is no $B \in \Pi$ such that C is a Π -splitter for B
3. Π is **stable** if Π is C -stable for all blocks $C \in \Pi$

Partition-refinement

Input: finite transition system TS with state space S

Output: stutter-bisimulation quotient space S/\approx

```

 $\Pi := \Pi_{AP}$ ;                                     (* as before *)
while ( $\exists B, C \in \Pi$ .  $C$  is a  $\Pi$ -splitter for  $B$ ) do
  choose such  $B, C \in \Pi$ ;
   $\Pi := (\Pi \setminus \{B\}) \cup \{ \underbrace{B \cap \text{Pre}_\Pi^*(C)}_{B_1}, \underbrace{B \setminus \text{Pre}_\Pi^*(C)}_{B_2} \} \setminus \{ \emptyset \}$ ;    (* refine  $\Pi$  *)
od
return  $\Pi$ 

```

Stutter cycles

- $s_0 s_1 \dots \underbrace{s_n}_{= s_0}$ is a *stutter cycle* if $s_i s_{i+1}$ is a stutter step
- For stutter cycle $s_0 s_1 s_2 \dots s_n$ in transition system TS :

$$s_0 \approx_{TS}^{div} s_1 \approx_{TS}^{div} \dots \approx_{TS}^{div} s_n$$

- Corollary: for finite TS and state s in TS :

s is \approx^{div} –divergent if and only if
a stutter cycle is reachable from s via a path in $[s]_{div}$

⇒ simplify refinement by removing stutter cycles

Removal of stutter cycles: How?

1. Determine the SCCs in $G(TS)$ that only contain stutter steps
 - use depth-first search to find these strongly connected components (SCCs)
2. Collapse any stutter SCC into a single state
 - $C \rightarrow' C'$ with $C \neq C'$ whenever $s \rightarrow s'$ in TS with $s \in C$ and $s' \in C'$

\Rightarrow Resulting TS' has no stutter cycles

- $s_1 \approx_{TS} s_2$ if and only if $\underbrace{C_1}_{s_1 \in C_1} \approx_{TS'} \underbrace{C_2}_{s_2 \in C_2}$

from now on, assume transition systems have **no** stutter cycles

A “local” splitter characterization

- C is a *Π -splitter* for B if and only if:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}_\Pi^*(C) \neq \emptyset$$

- How to avoid the computation of $\text{Pre}_\Pi^*(C)$ for $C \in \Pi$?
- No stutter cycles \Rightarrow block $B \in \Pi$ has at least one *exit state*
 - exit state = a state with only direct successors outside B :

$$\text{Bottom}(B) = \{s \in B \mid \text{Post}(s) \cap B = \emptyset\}$$

- For finite TS without stutter cycles, C is a Π -splitter for B iff:

$$B \neq C \quad \text{and} \quad B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad \text{Bottom}(B) \setminus \text{Pre}(C) \neq \emptyset$$

Proof

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

The partition-refinement algorithm to compute TS/\approx
has a worst-case time complexity in $\mathcal{O}\left(|S| \cdot (|AP| + M)\right)$

Approach

1. A quotienting algorithm to determine TS/\approx :

- remove *stutter cycles* from TS
- a refine operator to *efficiently split* (blocks of) partitions
- exploit partition-refinement (as for bisimulation \sim)

⇒ A quotienting algorithm to determine TS/\approx^{div} :

- *transform* TS into a (divergence-sensitive) transition system \overline{TS}
- \overline{TS} is divergent-sensitive, i.e., $\approx_{\overline{TS}}$ and $\approx_{\overline{TS}}^{\text{div}}$ coincide
- determine \overline{TS}/\approx using the quotienting algorithm for \approx
- “distill” TS/\approx^{div} from \overline{TS}/\approx

Divergence-sensitive stutter bisimulation

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- \mathcal{R} is *divergence sensitive* if for any $(s_1, s_2) \in \mathcal{R}$:
 - s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent
 - \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none states are \mathcal{R} -divergent
- s_1, s_2 in TS are *divergent stutter-bisimilar*, denoted $s_1 \approx_{TS}^{div} s_2$, if:
 - \exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$
- TS is *divergence sensitive* if \approx_{TS} is so

Quotient transition system under \approx^{div}

$TS/\approx^{\text{div}} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \approx^{div}

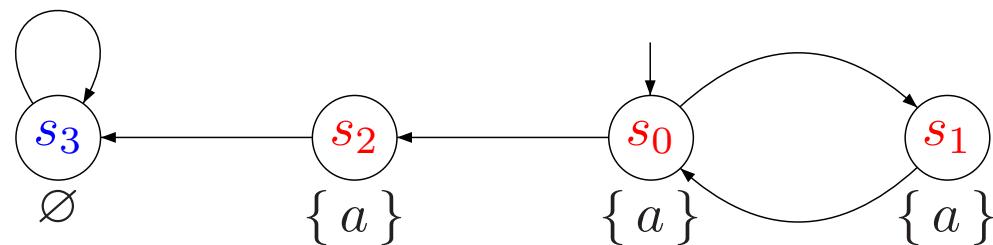
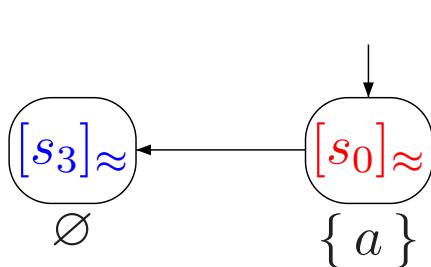
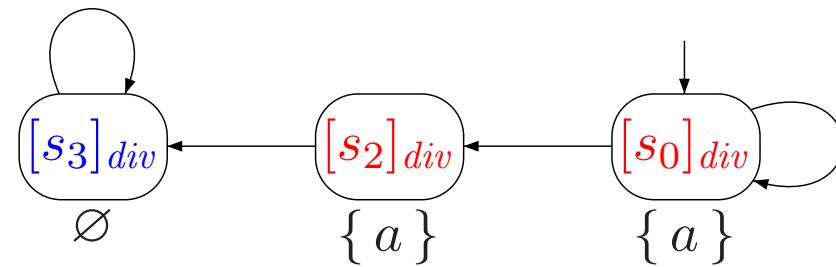
where

- S' , I' and L' are defined as usual (for eq. classes $[s]_{\text{div}}$ under \approx^{div})
- \rightarrow' is defined by:

$$\frac{s \xrightarrow{\alpha} s' \wedge s \not\approx^{\text{div}} s'}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s']_{\text{div}}} \quad \text{and} \quad \frac{s \text{ is } \approx^{\text{div}}\text{-divergent}}{[s]_{\text{div}} \xrightarrow[\text{div}]{\tau} [s]_{\text{div}}}$$

note that $TS \approx^{\text{div}} TS/\approx^{\text{div}}$

Example



Divergence expansion

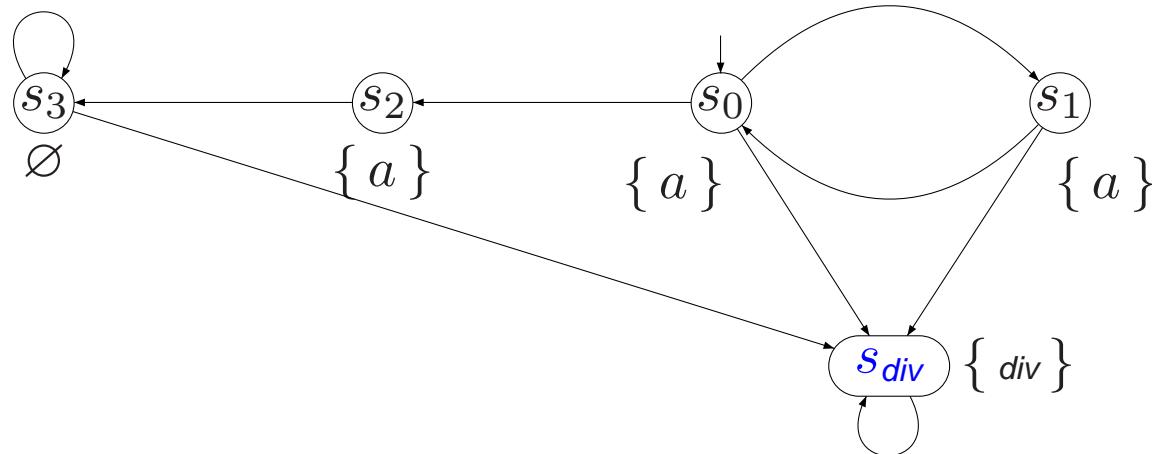
Divergence-sensitive expansion of finite $TS = (S, Act, \rightarrow, I, AP, L)$ is:

$$\overline{TS} = (S \cup \{s_{div}\}, Act \cup \{\tau\}, \rightarrow, I, AP \cup \{\text{div}\}, \overline{L}) \quad \text{where}$$

- $s_{div} \notin S$
- \rightarrow extends the transition relation of TS by:
 - $s_{div} \xrightarrow{\tau} s_{div}$ and
 - $s \xrightarrow{\tau} s_{div}$ for every state $s \in S$ on a stutter cycle in TS
- $\overline{L}(s) = L(s)$ if $s \in S$ and $\overline{L}(s_{div}) = \{\text{div}\}$

$s_{div} \not\approx s$ for any $s \in S$ and s_{div} can only be reached from a \approx^{div} -divergent state

Example



Correctness

For finite transition system TS :

1. \overline{TS} is divergence-sensitive, and
2. for all $s_1, s_2 \in S$: $s_1 \approx_{TS}^{div} s_2$ if and only if $s_1 \approx_{\overline{TS}} s_2$

Proof

Recipe for computing TS/\approx^{div}

1. Construct the divergence-sensitive expansion \overline{TS}

- determine the SCCs in $G_{\text{stutter}}(TS)$, and insert transitions $s_{\text{div}} \rightarrow s_{\text{div}}$ and
- $s \rightarrow s_{\text{div}}$ for any state s in a non-trivial SCC of G_{stutter}

2. Apply partition-refinement to \overline{TS} to obtain $S/\approx_{TS}^{\text{div}} = S/\approx_{\overline{TS}}$

3. Generate \overline{TS}/\approx

- any $C \in S/\approx^{\text{div}}$ that contains an initial state of TS is an initial state
- the labeling of $C \in S/\approx^{\text{div}}$ equals the labeling of any $s \in C$
- any transition $s \rightarrow s'$ with $s \not\approx_{TS}^{\text{div}} s'$ yields a transition between C_s and $C_{s'}$

4. “Distill” $TS \approx^{\text{div}}$ from \overline{TS}/\approx :

- replace transition $s \rightarrow s_{\text{div}}$ in \overline{TS} by the self-loop $[s]_{\text{div}} \rightarrow [s]_{\text{div}}$
- delete state s_{div}

Example

Time complexity

For $TS = (S, Act, \rightarrow, I, AP, L)$ with $M \geq |S|$, the # edges in TS :

The quotient transition system TS/\approx^{div} can be determined with a worst-case time complexity in $\mathcal{O}(|S|+M + |S| \cdot (|AP|+M))$

Summary

formal relation	trace equivalence	bisimulation	simulation
complexity	PSPACE-complete	$\mathcal{O}(M \cdot \log S)$	$\mathcal{O}(M \cdot S)$
logical fragment	LTL	CTL*	\forall CTL*
preservation	strong	strong match	weak match

formal relation	stutter trace equivalence	divergence-sensitive stutter bisimulation
complexity	PSPACE-complete	$\mathcal{O}(M \cdot S)$
logical fragment	$LTL_{\setminus \bigcirc}$	$CTL_{\setminus \bigcirc}^*$
preservation	strong	strong match