© JPK

Stutter Bisimulation Quotienting
Lecture #6 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

May 6, 2009

Advanced model checking

Motivation

e Bisimulation, simulation and trace equivalence are strong

— each transition s — s’ must be matched by a transition of a related state
— for comparing models at different abstraction levels, this is too fine
— consider e.g., modeling an abstract action by a sequence of concrete actions

e Idea: allow for sequences of “invisible” actions

— each transition s — s’ must be matched by a path fragment of a related state
— matching means: ending in a state related to s’, and all previous states invisible

e Abstraction of such internal computations yields coarser quotients

— but: what kind of properties are preserved?
— but: can such quotients still be obtained efficiently?
— but: how to treat infinite internal computations?

© JPK 1

Advanced model checking

Stutter bisimulation

Let TS = (S, Act, —, I, AP, L) be a transition systemand R C S x S

R is a stutter-bisimulation for TS if for all (sq, s2) € R:
1. L(Sl) = L(Sg)

2. if s7 € Post(sy) with (s1,s]) ¢ R, then there exists a finite path
fragment souq ... u, sh,withn > 0and (so,u;) € R and (s9,s5) € R

3. if s5, € Post(s2) with (s9,s,) ¢ R, then there exists a finite path
fragment sy vy ... v, s; Withn > 0 and (s1,v;) € R and (sf,s5) € R

s1, So are stutter-bisimulation equivalent, denoted s; ~ts so,
if there exists a stutter bisimulation R for TS with (s1, s2) € R

© JPK 2

Advanced model checking

S1 = S92
l

s1

(with s1 % s7)

Stutter bisimulation

can be completed to

Q

Q

Q

Q

Q

© JPK

Advanced model checking Mm

Semaphore-based mutual exclusion

<<n17 c2, y=0>>

reqq

stutter-bisimilar states for AP = { crity, crity }

© JPK 4

Advanced model checking

Stutter-bisimilar transition systems

Let TS; = (5;, Act;, —;, I;, AP, L;), ¢ = 1,2, be transition systems

TS, and TS, are stutter bisimilar, denoted TS, ~ TS,, If there exists a
stutter bisimulation R on TS; @& TS, such that:

Vs, € 1. (382 e Io. (81, 82) c R) and Vso € Is. (381 e lq. (81, 82) c R)

© JPK 5

Advanced model checking

Divergence sensitivity

e Stutter paths are paths that only consist of stutter steps

— no restrictions are imposed on such paths by a stutter bisimulation
= stutter trace-equivalence (=) and stutter bisimulation (=) are incomparable
= ~ and LTL\~ equivalence are incomparable

e Stutter paths diverge: they never leave an equivalence class

e Remedy: only relate divergent states or non-divergent states

— divergent state = a state that has a stutter path
= relate states only if they either both have stutter paths or none of them

e This yields divergence-sensitive stutter bisimulation (=)

~ is strictly finer than £ (and =)

© JPK 6

Advanced model checking

Outlook

formal relation
complexity
logical fragment

preservation

trace equivalence
PSPACE-complete
LTL

strong

bisimulation
PTIME
CTL™

strong match

simulation
PTIME
VCTL"

weak match

formal relation

complexity
logical fragment

preservation

stutter trace equivalence

PSPACE-complete
LTL\

strong

divergence-sensitive
stutter bisimulation

PTIME
CTL\O

strong match

© JPK

Advanced model checking

Divergence sensitivity

Let TS be a transition system and ‘R an equivalence relation on .S

e sis R-divergent if there exists an infinite path fragment
ss1S2... € Paths(s) such that (s,s;) € Rforall j >0

— s is R-divergent if there is an infinite path starting in s that only visits [s| z
e R is divergence sensitive if for any (si, s2) € R:
s1 1S R-divergent implies s, is R-divergent

— R is divergence-sensitive if in any [s] z either all or none states are R-divergent

© JPK 8

Advanced model checking

Divergent-sensitive stutter bisimulation

s1, So are divergent-sensitive stutter-bisimilar, denoted s; ~%¥ so, if:

1 divergent-sensitive stutter bisimulation R on TS such that (s1,s2) € R

zﬁl.g’ IS an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

© JPK 9

Advanced model checking

Divergence-sensitive stutter bisimilar paths

For infinite path fragments m; = sp;5182....,1=1,2,In TS, let:
1 %-(Ij-g D)
If and only if there exists an infinite sequence of indexes

O=70< 1 <12 < ... and 0=Fko<ki<ky<...

with:

S;.1 %%/ Sk.2 for all jr—l <] < jr and kr—l <k < kr with r» = 1,2, .

© JPK

10

Advanced model checking

State vs path equivalence

Let TS = (S, Act, —, I, AP, L) be a transition system, s, so € S. Then:

~odiv ~odiv

S1 Rtg S2 |mpI|eS YV, € PathS(81>. (371'2 & PathS(Sz).ﬂ'l NTg 71'2)

© JPK

11

Advanced model checking

Proof

© JPK

12

Advanced model checking

Stutter trace vs stutter bisimulation

Let TS; and TS, be transition systems over AP. Then:

TS, ~™ TS, implies TS; £ TS,

NV -
stutter-bisimul ation equivalence stutter-trace equivalence
with divergence

whereas the reverse implication does not hold in general

© JPK

13

Advanced model checking

Relationship between equivalences

bisimulation trace equivalence trace inclusion

TSy ~ TSy — Traces(7T7) = Traces(TSg) ——— Traces(T7) C Traces(TSo)
divergence sensitive ___ _ stutter trace-equivalence stutter trace inclusion
stutter bisimulation TS1 =TSy TS1 4TSy

TSy =9V TS,

stutter bisimulation
TSl ~ TS2

© JPK 14

Advanced model checking

CTL, and CTL,, equivalence vs ~*"

For finite transition system TS without terminal states, and s, s2 In TS:

~odiv : — i —
81 Rtg S2 Iff S1 :CT[{O S9 Iff S1 :CTL\O S9

divergent-sensitive stutter bisimulation coincides with CTL\O and CTLiO equivalence

© JPK

15

Advanced model checking

Proof of =CTL

C

~odiv
~Ts

© JPK

16

Advanced model checking

A producer-consumer example

Consumer
Producer

_ out := 0;
In := 0;

_ while true {
while true {

forj =1ton{
wait until (bufferjout] # L) {

produce dq, ..., dn;

fori = 1ton{

wait until (buffer[in] = L) {
buffer[in] := d;;
in:= (in+ 1) mod m; }

e; := buffer[out];
buffer[out] := _L;
out := (out 4+ 1) mod m; }

}

consume €1, ..., €en

© JPK

17

Advanced model checking

Producer
while true {
produce;
fori =1ton{
wait until (free > 0) {

free := free — 1;

An abstraction

Consumer
while true {
forj =1ton{
wait until (free < m) {
free := free + 1;

}

consume

© JPK

18

Advanced model checking

Abstract transition system

£o
£y
o

produce
(if (free > 0) then ¢ := 1;free—— fi)
(if (free > 0) then ¢ := 0; free—— fi) ; goto £

© JPK

19

Advanced model checking

Equivalences and logical equivalence

CTLiO equivalence ___ _ LTL equivalence

bisimulation equivalence trace equivalence trace inclusion
TS1 ~ TSy — Traces(7T) = Traces(TSg) —— Traces(T7) C Traces(TSo)
divergence sensitive ___ _ stutter trace-equivalence stutter trace inclusion
stutter bisimulation equivalence TS £TSo ' TS1 4TSy
~div
TSy =" TSo

CTLiO equivalence ——— LTL\O equivalence

© JPK 20

Advanced model checking

Quotienting: Motivation

e Quotienting wrt. ~% allows to abstract from stutter steps
— in particular TS ~% TS/~%"
— typically we have |TS| >> [TS/~%|

e TS, =™ TSy ifand only if (TS, = @ iff TS, &=)

— for any CTLiO (or CTL\») formula &

= To check TS @, if suffices to check whether TS/ ~%"= &

— quotienting with respect to &~ is a useful preprocessing step of model checking

— quotienting can be used to determine whether TS; ~%' TS,

© JPK 21

Advanced model checking

Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/ ~:

remove stutter cycles from TS
a refine operator to efficiently split (blocks of) partitions
exploit partition-refinement (as for bisimulation ~)

2. A quotienting algorithm to determine TS/ ~":

transform TS into a (divergence-sensitive) transition system TS
TS is divergent-sensitive, i.e., ~+5 and ~ZY coincide

determine ﬁ/ ~ using the quotlentlng algorlthm for =~
“distill’ TS/ =~ from TS/ ~

© JPK

22

Advanced model checking

Partition-refinement

from now on, we assume that TS is finite

e Iteratively compute a partition of .S

e Initially: ITp equals Ilap = { (s,t) € S x S | L(s) = L(?) }

e Repeat until no change:

— loop invariant: I1; is coarser than S/ ~ and finer than { S }

e Return II;

— termination: R, 2 R, 2 R, 2 ... 2 R, = g
0 =+ 1 -+ 2 - - 2

H'L'+1 :— Refiney (Hz)

— time complexity: maximally | S | iterations needed

as before

© JPK

23

Advanced model checking

Theorem

S/ ~ is the coarsest partition II of S such that:
(i) IIis finer than the initial partition Il 5p, and
(i) B N Pre(C) =@ orB C Pre;(C) forall B,C €11l

for partition IT of S and blocks B, C'in 11 we have:

k
s € Pre(C) whenever s = s, 52 5n1 Sn, € Paths(s)
eB eC

state s can reach C' via a path that is completely in B (= [s]m)

© JPK

24

Advanced model checking

The refinement operator

o Let: Refinex(1l,C) = Uge Refinex(B,C) for C ablockin II
— where Refiner (B, C) = {B N Pre(C), B\ Prei'i[(C)} \{9}

e Basic properties:
— for IT finer than I15p and coarser than S/ ~:

Refiner(II, C) is finerthan II and Refiner (I, C) is coarser than S/ ~

— I is strictly coarser than S/ = if and only if there exists a splitter for IT

what is an appropriate splitter for ~?

© JPK 25

Advanced model checking

Splitter for ~

Let II be a partition of S and let C', B € II.

1. Cis a ll-splitter for B if and only if:

B#C and BnNPre(C)#@ and B\Prej(C)+# o

2. I1'is C-stable if there is no B € II such that C'is a II-splitter for B

3. 11 is stable if IT is C-stable for all blocks C & 11

© JPK

26

Advanced model checking

Partition-refinement

Input: finite transition system TS with state space S
Output: stutter-bisimulation quotient space S/ ~

II := HAP;
while (3B, C € II. C'is a II-splitter for B) do
choose such B, C € II;
IM:= T\ {B})u{BnPreg(C), B\ Pre;(C) }\ {2}
By Bo

od
return II

(* as before *)

(* refine I1 *)

© JPK

27

Advanced model checking

Stutter cycles

® s0s1 ... S, IS astutter cycle if s; s; 1 IS a stutter step

:SO

e For stutter cycle sy sy s2 ... s, INn transition system TS:

~odiv ~odiv ~odiv
S0 ~15 51 ~15 -+ 15 Sn

e Corollary: for finite TS and state s In TS:

sis ~% _divergent if and only if

a stutter cycle is reachable from s via a path in [s] gy

= simplify refinement by removing stutter cycles

© JPK

28

Advanced model checking

Removal of stutter cycles: How?

1. Determine the SCCs in G(TS) that only contain stutter steps

e use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state

o C —' C'with C # C'"whenevers — s'inTSwiths € Cand s’ € C’

= Resulting TS’ has no stutter cycles

® s| ~R1g s Ifandonly if \9/’1/ SN
s1€Cy s9€Cy

from now on, assume transition systems have no stutter cycles

© JPK 29

Advanced model checking

A “local” splitter characterization

e ('is all-splitter for B if and only if:

B#C and BnNPre(C)#@ and B\Prej(C)+# o

e How to avoid the computation of Pref;(C) for C' € 11?

e No stutter cycles = block B € II has at least one exit state

— exit state = a state with only direct successors outside B:

Bottom(B) = {s € B | Post(s) " B = @}

© JPK 30

Advanced model checking

e For finite TS without stutter cycles, C'is a II-splitter for B iff:

B#C and BnNPre(C)# o and Bottom(B)\Pre(C)# @

© JPK

31

Advanced model checking

Proof

© JPK

32

Advanced model checking

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

Time complexity

The partition-refinement algorithm to compute TS/ ~

has a worst-case time complexity in O (\S\ - (|AP| + M))

© JPK

33

Advanced model checking

Approach

1. A quotienting algorithm to determine TS/ ~:

remove stutter cycles from TS
a refine operator to efficiently split (blocks of) partitions
exploit partition-refinement (as for bisimulation ~)

= A quotienting algorithm to determine TS/ ~":

transform TS into a (divergence-sensitive) transition system TS

~div ¥ coincide

determine ﬁ/ /2 using the quotienting algorlthm for =~
“distill’ TS/ =~ from TS/ ~

TS is divergent-sensitive, i.e., ~rg and ~Jv

© JPK

34

Advanced model checking

Divergence-sensitive stutter bisimulation
Let TS be a transition system and ‘R an equivalence relation on S
e R is divergence sensitive if for any (s, s2) € R:
s1 IS R-divergent implies ss is R-divergent
— R is divergence-sensitive if in any [s] either all or none states are R-divergent

e 51,89 in TS are divergent stutter-bisimilar, denoted s; ~%% s, if:

— 3 divergent-sensitive stutter bisimulation R on TS such that (s1, s2) € R

e TS is divergence sensitive if ~¢g IS SO

© JPK 35

Advanced model checking

Quotient transition system under ~*

TS/~" = (S'.{r},—/,I',AP, L"), the quotient of TS under ~
where
e S', I'"and L' are defined as usual (for eq. classes [s]q4, under ~)
e —'is defined by:

s—255" A s WS q
an
[S]div L>(,jiv [Sl]div [S]div L>(/1Iiv [S]div

s is ~%-divergent

note that TS ~% TS/~

© JPK =

Advanced model checking

Example

9 {a}
[83]% [So]z
9 {a}

transition system TS/~

@ transition system TS
{a} la}

transition system TS/~

© JPK

37

Advanced model checking

Divergence expansion
Divergence-sensitive expansion of finite TS = (S, Act, — , I,AP, L) is:
TS = (SU{saw},Actu{7},—,I,APU{av},L) where
® Syy &5

e — extends the transition relation of TS by:

— Sdiv — Sdiv and
— s - sgjy for every state s € S on a stutter cycle in TS

e I(s)=L(s)ifs € Sand L(sg,) = {dv}

sqv % s forany s € S and sgi, can only be reached from a ~%"-divergent state

© JPK 38

Advanced model checking

Example

© JPK

39

Advanced model checking

Correctness

For finite transition system TS:

1. TS is divergence-sensitive, and

2. forall s,s5 € S: 51 =% so if and only if

S1 %ﬁ S9

© JPK

40

Advanced model checking

Proof

© JPK

41

Advanced model checking

Recipe for computing TS/~
1. Construct the divergence-sensitive expansion TS

e determine the SCCs in G- (TS), and insert transitions sq, — sqiv and
e s — sgjy for any state s in a non-trivial SCC of G gyser

2. Apply partition-refinement to TS to obtain S/x=W = S/ ~=

3. Generate TS/~

e any C € S/~" that contains an initial state of TS is an initial state
e the labeling of C € S/ ~4 equals the labeling of any s € C
e any transition s — s’ with s %%y s’ yields a transition between C, and C./

4. “Distill” TS~ from TS/ ~:

e replace transition s — sqy in TS by the self-loop [s]agv — [$]div
e delete state sgjy,

© JPK 42

Advanced model checking

Example

© JPK

43

Advanced model checking

Time complexity

For TS = (S,Act, —, I, AP, L) with M > |S|, the # edges in TS:

The quotient transition system TS/ ~% can be determined

with a worst-case time complexity in O (\SHM + |S]| - (\APH—M))

© JPK

44

Advanced model checking

Summary
formal relation trace equivalence bisimulation simulation
complexity PSPACE-complete | O(M-log|S]|) | O(M-|S|)
logical fragment || LTL CTL" VCTL"
preservation strong strong match weak match

formal relation stutter trace equivalence | divergence-sensitive
stutter bisimulation

complexity PSPACE-complete O(M-|S))
logical fragment || LTL\ CTLi5
preservation strong strong match

© JPK 45

