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Advanced model checking

Motivation

• Bisimulation, simulation and trace equivalence are strong

– each transition s → s′ must be matched by a transition of a related state
– for comparing models at different abstraction levels, this is too fine
– consider e.g., modeling an abstract action by a sequence of concrete actions

• Idea: allow for sequences of “invisible” actions

– each transition s → s′ must be matched by a path fragment of a related state
– matching means: ending in a state related to s′, and all previous states invisible

• Abstraction of such internal computations yields coarser quotients

– but: what kind of properties are preserved?
– but: can such quotients still be obtained efficiently?
– but: how to treat infinite internal computations?
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Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s1, s
′
1) �∈ R, then there exists a finite path

fragment s2 u1 . . . un s′2 with n � 0 and (s2, ui) ∈ R and (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s2, s
′
2) �∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s1, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2,
if there exists a stutter bisimulation R for TS with (s1, s2) ∈ R
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Stutter bisimulation

s1 ≈ s2

↓
s1 ≈ u1

↓
s1 ≈ s2 s1 ≈ u2

↓ can be completed to ↓
s′1

...
(with s1 �≈ s′

1) ↓
s1 ≈ un

↓ ↓
s′1 ≈ s′2
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Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

stutter-bisimilar states for AP = { crit1, crit2 }
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Stutter-bisimilar transition systems

Let TSi = (Si, Acti, →i, Ii, AP, Li), i = 1, 2, be transition systems

TS1 and TS2 are stutter bisimilar, denoted TS1 ≈ TS2, if there exists a
stutter bisimulation R on TS1 ⊕ TS2 such that:

∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R)
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Divergence sensitivity

• Stutter paths are paths that only consist of stutter steps

– no restrictions are imposed on such paths by a stutter bisimulation
⇒ stutter trace-equivalence ( � ) and stutter bisimulation (≈) are incomparable
⇒ ≈ and LTL\© equivalence are incomparable

• Stutter paths diverge: they never leave an equivalence class

• Remedy: only relate divergent states or non-divergent states

– divergent state = a state that has a stutter path
⇒ relate states only if they either both have stutter paths or none of them

• This yields divergence-sensitive stutter bisimulation (≈div)

⇒ ≈div is strictly finer than � (and ≈)
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Outlook

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete PTIME PTIME

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence divergence-sensitive
stutter bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL\© CTL∗
\©

preservation strong strong match
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Divergence sensitivity

Let TS be a transition system and R an equivalence relation on S

• s is R-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈ R for all j > 0

– s is R-divergent if there is an infinite path starting in s that only visits [s]R

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent
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Divergent-sensitive stutter bisimulation

s1, s2 are divergent-sensitive stutter-bisimilar , denoted s1 ≈div
TS s2, if:

∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

≈div
TS is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS
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Divergence-sensitive stutter bisimilar paths

For infinite path fragments πi = s0,i s1,i s2,i . . ., i = 1, 2, in TS, let:

π1 ≈div
TS π2

if and only if there exists an infinite sequence of indexes

0 = j0 < j1 < j2 < . . . and 0 = k0 < k1 < k2 < . . .

with:

sj,1 ≈div
TS sk,2 for all jr−1 � j < jr and kr−1 � k < kr with r = 1, 2, . . ..
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State vs path equivalence

Let TS = (S, Act, →, I, AP, L) be a transition system, s1, s2 ∈ S. Then:

s1 ≈div
TS s2 implies ∀π1 ∈ Paths(s1).

“
∃π2 ∈ Paths(s2). π1 ≈div

TS π2

”
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Proof

c© JPK 12



Advanced model checking

Stutter trace vs stutter bisimulation

Let TS1 and TS2 be transition systems over AP. Then:

TS1 ≈div TS2| {z }
stutter-bisimulation equivalence

with divergence

implies TS1 � TS2| {z }
stutter-trace equivalence

whereas the reverse implication does not hold in general
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Relationship between equivalences

TS1 � TS2

bisimulation
TS1 ∼ TS2

stutter bisimulation
divergence sensitive

TS1 ≈div TS2

stutter bisimulation

TS1 ≈ TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 � TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
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CTL∗
\© and CTL\© equivalence vs ≈div

For finite transition system TS without terminal states, and s1, s2 in TS:

s1 ≈div
TS s2 iff s1 ≡CTL∗\©

s2 iff s1 ≡CTL\© s2

divergent-sensitive stutter bisimulation coincides with CTL\© and CTL∗\© equivalence
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Proof of ≡CTL\© ⊆ ≈div
TS
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A producer-consumer example

Producer
in := 0;

while true {
produce d1, . . . , dn;

for i = 1 to n {
wait until (buffer[in] = ⊥) {

buffer[in] := di;

in := (in + 1) mod m; }
}

}

Consumer
out := 0;

while true {
for j = 1 to n {
wait until (buffer[out] �= ⊥) {

ej := buffer[out];

buffer[out] := ⊥;

out := (out + 1) mod m; }
}
consume e1, . . . , en

}
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An abstraction

Producer
while true {

produce;

for i = 1 to n {
wait until (free > 0) {

free := free − 1;

}
}

Consumer
while true {

for j = 1 to n {
wait until (free < m) {

free := free + 1;

}
consume

}
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Abstract transition system
00200

00000

21211

01101

11101

21011

10200

02200

12200

22110

02000

12000

20110

10000

�0 : produce
�1 : 〈if (free > 0) then i := 1; free−− fi〉
�2 : 〈if (free > 0) then i := 0; free−− fi〉 ; goto �0
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Equivalences and logical equivalence

LTL\© equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 � TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1 � TS2

CTL∗\© equivalence

CTL∗\© equivalence LTL equivalence
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Quotienting: Motivation

• Quotienting wrt. ≈div allows to abstract from stutter steps

– in particular TS ≈div TS/≈div

– typically we have |TS|>> |TS/≈div |

• TS1 ≈div TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

– for any CTL∗
\© (or CTL\© ) formula Φ

⇒ To check TS |= Φ, if suffices to check whether TS/≈div|= Φ

– quotienting with respect to ≈div is a useful preprocessing step of model checking
– quotienting can be used to determine whether TS1 ≈div TS2
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Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

2. A quotienting algorithm to determine TS/≈div:

• transform TS into a (divergence-sensitive) transition system TS
• TS is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈
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Partition-refinement

from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) } as before

• Repeat until no change: Πi+1 := Refine≈(Πi)

– loop invariant: Πi is coarser than S/≈ and finer than {S }

• Return Πi

– termination: RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ≈TS

– time complexity: maximally |S | iterations needed
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Theorem

S/≈ is the coarsest partition Π of S such that:

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre(C) = ∅ or B ⊆ Pre∗
Π(C) for all B, C ∈ Π

for partition Π of S and blocks B, C in Π we have:

s ∈ Pre∗
Π(C) whenever s = s1 s2 . . . sn−1| {z }

∈B

sn|{z}
∈C

∈ Paths(s)

state s can reach C via a path that is completely in B (= [s]Π)
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The refinement operator

• Let: Refine≈(Π, C) =
⋃

B∈Π Refine≈(B,C) for C a block in Π

– where Refine≈(B, C) =
n

B ∩ Pre(C), B \ Pre∗
Π(C)

o
\ {∅ }

• Basic properties:

– for Π finer than ΠAP and coarser than S/≈:

Refine≈(Π, C) is finer than Π and Refine≈(Π, C) is coarser than S/≈

– Π is strictly coarser than S/≈ if and only if there exists a splitter for Π

what is an appropriate splitter for ≈?
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Splitter for ≈

Let Π be a partition of S and let C, B ∈ Π.

1. C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre(C) �= ∅ and B \ Pre∗
Π(C) �= ∅

2. Π is C-stable if there is no B ∈ Π such that C is a Π-splitter for B

3. Π is stable if Π is C-stable for all blocks C ∈ Π
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Partition-refinement

Input: finite transition system TS with state space S

Output: stutter-bisimulation quotient space S/≈

Π := ΠAP; (* as before *)
while (∃B, C ∈ Π. C is a Π-splitter for B) do

choose such B, C ∈ Π;
Π := (Π \ {B }) ∪ {B ∩ Pre∗

Π(C)| {z }
B1

, B \ Pre∗
Π(C)| {z }

B2

} \ {∅ }; (* refine Π *)

od
return Π
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Stutter cycles

• s0 s1 . . . sn︸︷︷︸
= s0

is a stutter cycle if si si+1 is a stutter step

• For stutter cycle s0 s1 s2 . . . sn in transition system TS:

s0 ≈div
TS s1 ≈div

TS . . . ≈div
TS sn

• Corollary: for finite TS and state s in TS:

s is ≈div −divergent if and only if

a stutter cycle is reachable from s via a path in [s]div

⇒ simplify refinement by removing stutter cycles
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Removal of stutter cycles: How?

1. Determine the SCCs in G(TS) that only contain stutter steps

• use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state

• C →′ C′ with C �= C ′ whenever s → s′ in TS with s ∈ C and s′ ∈ C′

⇒ Resulting TS′ has no stutter cycles

• s1 ≈TS s2 if and only if C1|{z}
s1∈C1

≈TS′ C2|{z}
s2∈C2

from now on, assume transition systems have no stutter cycles
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A “local” splitter characterization

• C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre(C) �= ∅ and B \ Pre∗
Π(C) �= ∅

• How to avoid the computation of Pre∗
Π(C) for C ∈ Π?

• No stutter cycles ⇒ block B ∈ Π has at least one exit state

– exit state = a state with only direct successors outside B:

Bottom(B) =
n

s ∈ B | Post(s) ∩ B = ∅

o
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• For finite TS without stutter cycles, C is a Π-splitter for B iff:

B �= C and B ∩ Pre(C) �= ∅ and Bottom(B) \ Pre(C) �= ∅
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Proof
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Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The partition-refinement algorithm to compute TS/≈
has a worst-case time complexity in O

“
|S| · (|AP| + M)

”
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Approach

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

⇒ A quotienting algorithm to determine TS/≈div:

• transform TS into a (divergence-sensitive) transition system TS
• TS is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈
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Divergence-sensitive stutter bisimulation

Let TS be a transition system and R an equivalence relation on S

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent

• s1, s2 in TS are divergent stutter-bisimilar , denoted s1 ≈div
TS s2, if:

– ∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

• TS is divergence sensitive if ≈TS is so
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Quotient transition system under ≈div

TS/≈div = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈div

where

• S′, I ′ and L′ are defined as usual (for eq. classes [s]div under ≈div)

• →′ is defined by:

s α−−→ s′ ∧ s �≈div s′

[s]div
τ−→ ′

div [s′]div

and
s is ≈div-divergent

[s]div
τ−→ ′

div [s]div

note that TS ≈div TS/≈div
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Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div
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Divergence expansion

Divergence-sensitive expansion of finite TS = (S, Act,→ , I, AP, L) is:

TS =
(
S ∪ { sdiv }, Act ∪ { τ },→, I, AP ∪ { div }, L)

where

• sdiv �∈ S

• → extends the transition relation of TS by:

– sdiv
τ→ sdiv and

– s
τ→ sdiv for every state s ∈ S on a stutter cycle in TS

• L(s) = L(s) if s ∈ S and L(sdiv) = { div }

sdiv �≈ s for any s ∈ S and sdiv can only be reached from a ≈div-divergent state
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Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

sdiv { div }
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Correctness

For finite transition system TS:

1. TS is divergence-sensitive, and

2. for all s1, s2 ∈ S: s1 ≈div
TS s2 if and only if s1 ≈TS s2
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Proof
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Recipe for computing TS/≈div

1. Construct the divergence-sensitive expansion TS

• determine the SCCs in Gstutter(TS), and insert transitions sdiv → sdiv and
• s → sdiv for any state s in a non-trivial SCC of Gstutter

2. Apply partition-refinement to TS to obtain S/≈div
TS = S/ ≈TS

3. Generate TS/≈
• any C ∈ S/≈div that contains an initial state of TS is an initial state
• the labeling of C ∈ S/≈div equals the labeling of any s ∈ C

• any transition s → s′ with s �≈div
TS s′ yields a transition between Cs and Cs′

4. “Distill” TS≈div from TS/≈:

• replace transition s → sdiv in TS by the self-loop [s]div → [s]div

• delete state sdiv
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Example

c© JPK 43



Advanced model checking

Time complexity

For TS = (S, Act,→, I, AP, L) with M � |S|, the # edges in TS:

The quotient transition system TS/≈div can be determined

with a worst-case time complexity in O
“
|S|+M + |S| · (|AP|+M)

”
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Summary

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete O(M · log |S|) O(M ·|S|)
logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence divergence-sensitive
stutter bisimulation

complexity PSPACE-complete O(M ·|S|)
logical fragment LTL\© CTL∗

\©
preservation strong strong match
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