
Partial Order Reduction
Lecture #7 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 8, 2009

c© JPK

Advanced model checking

State space explosion

• Interleaving semantics

– independent concurrent actions are interleaved
– an execution is defined by a totally ordered sequence of states

• Modeling concurrency by interleaving

– may enforce an order of actions that has no real “meaning”
– state space size = product of number of states of components (= explosion)

• Partial-order (or true concurrency) semantics

– an execution is defined by a partially ordered sequence of states
– models: posets, pomsets, event structures, Petri net unfoldings

• Partial-order reduction

– group executions for which the order of “independent” actions is irrelevant
– consider only one representative execution for equivalent executions

c© JPK 1

Advanced model checking

An example concurrent program

c© JPK 2

Advanced model checking

Dependencies

• Assume

– x and y are local variables
– g is a shared variable

• Dependent

– g := g ∗ 2+10 and g := g + 2 as they both operate on a shared variable
– x := 1 and g := g + 2 as they are both executed by the same process
– y := 1 and g := g ∗ 2+10 as they are both executed by the same process

• Independent

– x := 1 and y := 1

– x := 1 and g := g ∗ 2+10

– y := 1 and g := g + 2

c© JPK 3

Advanced model checking

Dependencies

c© JPK 4

Advanced model checking

Idea of partial-order reduction

• Partition executions into equivalence classes

• Group executions for which the order of “independent” actions is
irrelevant

• Consider only one representative execution for each equivalence
class

in fact: model checking using representative executions

c© JPK 5

Advanced model checking

Pruning the state space

c© JPK 6

Advanced model checking

Preserving properties

c© JPK 7

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S

– a reduced version of transition system TS such that cTS � TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– at state s select a (small) subset of enabled actions in s

– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction

– obtain a high-level description of cTS (without generating TS)
⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction

– construct TS during LTL\© model checking

– if accept cycle is found, there is no need to generate entire cTS

c© JPK 8

Advanced model checking

Some preliminaries

• Assume from now on: TS is action-deterministic

– for any s and action α it holds s α−→u and s α−→ t implies u = t

– . . . this should not be confused with AP-determinism
– action-determinism is not a severe restriction: actions can always be renamed

• Act(s) is the set of enabled actions in state s

– Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−→ s′ }

• α(s) denotes the unique α-successor of s, i.e., s α−−→α(s)

c© JPK 9

Advanced model checking

Independence of actions

αβ

s

t u

v

α β

• the execution of α cannot disable β, and vice versa, and

• if α, β ∈ Act(s) then α β and β α executed in s yield the same state

c© JPK 10

Advanced model checking

Independence of actions

Let TS = (S, Act,→, I, AP, L) be action-deterministic and α �= β ∈ Act

• α and β are independent if for any s ∈ S with α, β ∈ Act(s):

β ∈ Act(α(s)) and α ∈ Act(β(s)) and α(β(s)) = β(α(s))

• α and β are dependent if α and β are not independent

• For A ⊆ Act and β ∈ Act \ A:

– β is independent of A if for any α ∈ A, β is independent of α

– β depends on A in TS if β ∈ Act \ A and α are dependent for some α ∈ A

c© JPK 11

Advanced model checking

Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

c© JPK 12

Advanced model checking

Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ . . .
βn−1−−−−→ sn−1

βn−−→ sn

be an execution fragment in TS from s with action sequence β1 . . . βn

Then, for α ∈ Act(s) independent of {β1, . . . , βn }: α ∈ Act(si) and

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→ . . .

βn−1−−−−→α(sn−1)
βn−−→α(sn)

is an execution fragment in TS from s with action sequence α β1 . . . βn

c© JPK 13

Advanced model checking

Permuting independent actions

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

can be extended to

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

tn = t

α

t0 β1
t1 β2

t2 β3
. . . βn−1

tn−1 βn

αααα

t0

α

c© JPK 14

Advanced model checking

Proof

c© JPK 15

Advanced model checking

Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ s2
β3−−→ . . .

an infinite execution fragment in TS with action sequence β1 β2 β3 . . .

Then, for α ∈ Act(s) independent of {β1, β2, . . . }: α ∈ Act(si) for all i
and:

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→α(s2)

β3−−→ . . .

is an infinite execution fragment in TS with action sequence
α β1 β2 β3 . . .

c© JPK 16

Advanced model checking

Stutter actions

• If no further assumptions are made, the traces of:

ρ = s0
β1−−→ s1

β2−−→ . . .
βn−−−→ sn

α−−→ t and

ρ′ = s0
α−−→ t0

β1−−→ . . .
βn−1−−−−→ tn−1

βn−−→ t

will be distinct!

• If α does not affect the state-labelling (= “invisible”), then ρ � ρ′

• α ∈ Act is a stutter action if for each s α−−→ s′ in TS: L(s) = L(s′)

– α is a stutter action in TS iff L(s) = L(α(s)) for all s in TS with α ∈ Act(s)
– α is a stutter action whenever all transitions s α−→ s′ are stutter steps

c© JPK 17

Advanced model checking

Example

s0 { a }

s1{ a } s2 ∅

s3

∅

α

α
β

β

γ

c© JPK 18

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:

• � is a finite execution in s with action sequence β1 . . . βn α

• �′ is a finite execution in s with action sequence α β1 . . . βn

Then:

if α is a stutter action independent of {β1, . . . , βn } then � � �′

c© JPK 19

Advanced model checking

Proof

c© JPK 20

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:

• ρ is an infinite execution in s with action sequence β1 β2 . . .

• ρ′ is an infinite execution in s with action sequence α β1 β2 . . .

Then:

if α is a stutter action independent of {β1, β2, . . . } then ρ � ρ′

c© JPK 21

Advanced model checking

The ample-set approach

• Partial-order reduction for LT properties using ample sets

– on state-space generation select ample(s) ⊆ Act(s)
– such that |ample(s)| <<|Act(s)|

• Reduced system T̂S = (Ŝ, Act, ⇒ , I, AP, L′) where:

– bS contains the states that are reachable (under ⇒) from some s0 ∈ I

–
s α−→ s

′ ∧ α ∈ ample(s)

s
α⇒ s

′

– L′(s) = L(s) for any s ∈ bS

• Constraints: correctness (�), effectivity and efficiency

c© JPK 22

Advanced model checking

Which actions to select in ample(s)?

(A1) Nonemptiness condition

Select in any state in cTS at least one action.

(A2) Dependency condition

For any finite execution in TS: an action depending on ample(s) can only occur
after some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.

(A4) Cycle condition

Any action in ample(si) with si on a cycle in cTS must be selected in some sj on
that cycle.

(A1) through (A3) apply to states in bS; (A4) to cycles in cTS

c© JPK 23

Advanced model checking

Example

s1{ a } s0

∅

s3{ a } s2

∅

β βα

γ

α

γ

δ

δ

s0 ∅

s3{ a } s2

∅

β

α

γ

δ

c© JPK 24

