© JPK

Partial Order Reduction
Lecture #7 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

May 8, 2009

Advanced model checking

State space explosion

¢ Interleaving semantics

— independent concurrent actions are interleaved
— an execution is defined by a totally ordered sequence of states

e Modeling concurrency by interleaving

— may enforce an order of actions that has no real “meaning”
— state space size = product of number of states of components (= explosion)

e Partial-order (or true concurrency) semantics

— an execution is defined by a partially ordered sequence of states
— models: posets, pomsets, event structures, Petri net unfoldings

e Partial-order reduction

— group executions for which the order of “independent” actions is irrelevant
— consider only one representative execution for equivalent executions

© JPK 1

Advanced model checking

An example concurrent program

© JPK

Advanced model checking

Dependencies

e AsSsume

— x and y are local variables
— g Is a shared variable

e Dependent

— g:=gx*2+10and g := g + 2 as they both operate on a shared variable

X .
_y:

1 and g := g + 2 as they are both executed by the same process

1 and g := g * 2410 as they are both executed by the same process

e Independent

T .
X .
Yy :

landy :=1
land g := g x 2410
land g := g + 2

© JPK

Advanced model checking

Dependencies

© JPK

Advanced model checking

Idea of partial-order reduction

e Partition executions into equivalence classes

e Group executions for which the order of “independent” actions is
Irrelevant

e Consider only one representative execution for each equivalence
class

in fact: model checking using representative executions

© JPK 5

Advanced model checking

Pruning the state space

© JPK

Advanced model checking

Preserving properties

© JPK

Advanced model checking

Outline of partial-order reduction

e During state space generation obtain TS

— areduced version of transition system TS such that TS2TS
= this preserves all stutter sensitive LT properties, such as LTL\
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\ ~ model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK

Advanced model checking

Some preliminaries

e Assume from now on: TS is action-deterministic

— for any s and action « it holds s = u and s — t implies u = ¢
— ... this should not be confused with AP-determinism
— action-determinism is not a severe restriction: actions can always be renamed

e Act(s) is the set of enabled actions in state s

— Act(s) ={a €Act|3ds'e€ S.s s}

e «o(s) denotes the unique a-successor of s, i.e., s — a(s)

© JPK 9

Advanced model checking

Independence of actions

e the execution of o cannot disable 3, and vice versa, and

o if a, 3 € Act(s) then a3 and § a executed in s yield the same state

© JPK

10

Advanced model checking

Independence of actions

Let TS = (S, Act, —, I, AP, L) be action-deterministic and « # § € Act

e « and (are independent if for any s € S with o, 3 € Act(s):

B e Act(a(s)) and « € Act(f(s)) and «a(B(s)) = Blal(s))

e o and 3 are dependent if « and 5 are not independent

e For A C Actand 3 € Act \ A:

— @isindependent of A if forany o € A, 3 is independent of «
— B dependson AinTSif 8 € Act \ A and « are dependent for some o« € A

© JPK 11

Advanced model checking

Example

ni,ng, y:]-

.

(w1, w2, y:l

<’I’L1, C2, y:())

© JPK

12

Advanced model checking

Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

B1 B2 Bn-1 Bn

S = Sp > S1 > .. ———> 8p_1 —— Sy,

be an execution fragment in TS from s with action sequence 5 ... 3,

Then, for o € Act(s) independent of { 51,...,06, }: a € Act(s;) and

s = 80 - alsg) 2 afsy) 22 .. S a(sn_1) 22 alsy)

IS an execution fragment in TS from s with action sequence a3, ... 3,

© JPK 13

Advanced model checking

Permuting independent actions

s—sp P P2 g Po o Pea P
o
to can be extended to
s—g —P1 g B2 o B3 | Poa, g B o
A A (0 A A
to - tq -ty - ———ty —— t, =t
B1 B2 B3 Bno1 Bn "

© JPK 14

Advanced model checking

Proof

© JPK

15

Advanced model checking

Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

31 B2 B3

S = 89— 8] —— 89— ...

an infinite execution fragment in TS with action sequence 51 32 35

Then, for a € Act(s) independent of { 51, 52,...}: a € Act(s;) for all 4
and:

S = S50 i> Oé(SO) L 05(51) ﬁ) OZ(SQ) &

IS an Infinite execution fragment in TS with action sequence

aB1PB20s ...

© JPK 16

Advanced model checking

Stutter actions

e If no further assumptions are made, the traces of:

p:SOL s L2 P <5 ¢t and
,O/ZSOL to L...Mtn_lit

will be distinct!

e If o does not affect the state-labelling (= “invisible”), then p = p’

e « € Actis a stutter action if for each s = s"in TS: L(s) = L(s')

— «is a stutter action in TS iff L(s) = L(a(s)) for all s in TS with o € Act(s)
— « is a stutter action whenever all transitions s -2 s’ are stutter steps

© JPK 17

Advanced model checking

© JPK

18

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:
e o is a finite execution in s with action sequence 3 ... 3, «

e (' is a finite execution in s with action sequence a j3; ... 3,

Then:

if o is a stutter action independent of { 31, ..., 3, } then o= o’

© JPK

19

Advanced model checking

Proof

© JPK

20

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:
e p IS an infinite execution in s with action sequence (3, 3. ..

e o' is an infinite execution in s with action sequence o 31 3> . ..

Then:

if o is a stutter action independent of { 51, 32,...} then p= pf

© JPK

21

Advanced model checking

The ample-set approach

e Partial-order reduction for LT properties using ample sets

— on state-space generation select ample(s) C Act(s)
— such that |ample(s)| << |Act(s)]

e Reduced system TS = (§, Act, =, I, AP, L") where:
— S contains the states that are reachable (under =) from some sy € I

s 25" A a € ample(s)

=
— L'(s) = L(s)forany s € S

e Constraints: correctness (£), effectivity and efficiency

© JPK

22

Advanced model checking

Which actions to select in ample(s)?

(A1) Nonemptiness condition

Select in any state in TS at least one action.
(A2) Dependency condition

For any finite execution in TS: an action depending on ample(s) can only occur
after some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.
(A4) Cycle condition

Any action in ample(s;) with s; on a cycle in TS must be selected in some s; on
that cycle.

(Al) through (A3) apply to states in S; (A4) to cycles in TS

© JPK 23

Advanced model checking

Example

© JPK

24

