© JPK

Partial Order Reduction
Lecture #7 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

May 8, 2009



Advanced model checking

State space explosion

¢ Interleaving semantics

— independent concurrent actions are interleaved
— an execution is defined by a totally ordered sequence of states

e Modeling concurrency by interleaving

— may enforce an order of actions that has no real “meaning”
— state space size = product of number of states of components (= explosion)

e Partial-order (or true concurrency) semantics

— an execution is defined by a partially ordered sequence of states
— models: posets, pomsets, event structures, Petri net unfoldings

e Partial-order reduction

— group executions for which the order of “independent” actions is irrelevant
— consider only one representative execution for equivalent executions
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Advanced model checking

An example concurrent program
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Advanced model checking

Dependencies

e AsSsume

— x and y are local variables
— g Is a shared variable

e Dependent

— g:=gx*2+10and g := g + 2 as they both operate on a shared variable

X .
_y:

1 and g := g + 2 as they are both executed by the same process

1 and g := g * 2410 as they are both executed by the same process

e Independent

T .
X .
Yy :

landy :=1
land g := g x 2410
land g := g + 2
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Dependencies
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Advanced model checking

Idea of partial-order reduction

e Partition executions into equivalence classes

e Group executions for which the order of “independent” actions is
Irrelevant

e Consider only one representative execution for each equivalence
class

in fact: model checking using representative executions
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Pruning the state space
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Preserving properties
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Outline of partial-order reduction

e During state space generation obtain TS

— areduced version of transition system TS such that TS2TS
= this preserves all stutter sensitive LT properties, such as LTL\
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\ ~ model checking
— if accept cycle is found, there is no need to generate entire TS
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Advanced model checking

Some preliminaries

e Assume from now on: TS is action-deterministic

— for any s and action « it holds s = u and s — t implies u = ¢
— ... this should not be confused with AP-determinism
— action-determinism is not a severe restriction: actions can always be renamed

e Act(s) is the set of enabled actions in state s

— Act(s) ={a €Act|3ds'e€ S.s s}

e «o(s) denotes the unique a-successor of s, i.e., s — a(s)
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Independence of actions

e the execution of o cannot disable 3, and vice versa, and

o if a, 3 € Act(s) then a3 and § a executed in s yield the same state
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Advanced model checking

Independence of actions

Let TS = (S, Act, —, I, AP, L) be action-deterministic and « # § € Act

e « and ( are independent if for any s € S with o, 3 € Act(s):

B e Act(a(s)) and « € Act(f(s)) and «a(B(s)) = Blal(s))

e o and 3 are dependent if « and 5 are not independent

e For A C Actand 3 € Act \ A:

— @isindependent of A if forany o € A, 3 is independent of «
— B dependson AinTSif 8 € Act \ A and « are dependent for some o« € A
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Example

ni,ng, y:]-

.

(w1, w2, y:l

<’I’L1, C2, y:())
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Permuting independent actions

Let TS be an action-deterministic transition system, s a state in TS and:

B1 B2 Bn-1 Bn

S = Sp > S1 > .. ———> 8p_1 —— Sy,

be an execution fragment in TS from s with action sequence 5 ... 3,

Then, for o € Act(s) independent of { 51,...,06, }: a € Act(s;) and

s = 80 - alsg) 2 afsy) 22 .. S a(sn_1) 22 alsy)

IS an execution fragment in TS from s with action sequence a3, ... 3,
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Permuting independent actions

s—sp P P2 g Po o Pea P
o
to can be extended to
s—g —P1 g B2 o B3 | Poa, g B o
A A (0 A A
to - tq -ty - ———ty  —— t, =t
B1 B2 B3 Bno1 Bn "
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Proof
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Adding an independent action

Let TS be an action-deterministic transition system, s a state in TS and:

31 B2 B3

S = 89— 8] —— 89— ...

an infinite execution fragment in TS with action sequence 51 32 35 .. ..

Then, for a € Act(s) independent of { 51, 52,...}: a € Act(s;) for all 4
and:

S = S50 i> Oé(SO) L 05(51) ﬁ) OZ(SQ) &

IS an Infinite execution fragment in TS with action sequence

aB1PB20s ...
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Stutter actions

e If no further assumptions are made, the traces of:

p:SOL s L2 P <5 ¢t and
,O/ZSOL to L...Mtn_lit

will be distinct!

e If o does not affect the state-labelling (= “invisible”), then p = p’

e « € Actis a stutter action if for each s = s"in TS: L(s) = L(s')

— «is a stutter action in TS iff L(s) = L(a(s)) for all s in TS with o € Act(s)
— « is a stutter action whenever all transitions s -2 s’ are stutter steps
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Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:
e o is a finite execution in s with action sequence 3 ... 3, «

e (' is a finite execution in s with action sequence a j3; ... 3,

Then:

if o is a stutter action independent of { 31, ..., 3, } then o= o’
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Proof
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Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:
e p IS an infinite execution in s with action sequence (3, 3. ..

e o' is an infinite execution in s with action sequence o 31 3> . ..

Then:

if o is a stutter action independent of { 51, 32,...} then p= pf
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The ample-set approach

e Partial-order reduction for LT properties using ample sets

— on state-space generation select ample(s) C Act(s)
— such that |ample(s)| << |Act(s)]

e Reduced system TS = (§, Act, =, I, AP, L") where:
— S contains the states that are reachable (under =) from some sy € I

s 25" A a € ample(s)

=
— L'(s) = L(s)forany s € S

e Constraints: correctness (£), effectivity and efficiency
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Which actions to select in ample(s)?

(A1) Nonemptiness condition

Select in any state in TS at least one action.
(A2) Dependency condition

For any finite execution in TS: an action depending on ample(s) can only occur
after some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.
(A4) Cycle condition

Any action in ample(s;) with s; on a cycle in TS must be selected in some s; on
that cycle.

(Al) through (A3) apply to states in S; (A4) to cycles in TS
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Example
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