
On-The-Fly Partial Order Reduction
Lecture #9 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 20, 2009

c© JPK

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S
– a reduced version of transition system TS such that cTS! TS

⇒ this preserves all stutter sensitive LT properties, such as LTL\©
– at state s select a (small) subset of enabled actions in s
– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction
– obtain a high-level description of cTS (without generating TS)

⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction
– construct cTS during LTL\© model checking
– if accept cycle is found, there is no need to generate entire cTS

c© JPK 1

Advanced model checking

Ample-set conditions for LTL

(A1) Nonemptiness condition
∅ #= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . . βn−−→ sn

α−→ t be a finite execution fragment in TS such that α
depends on ample(s). Then: βi ∈ ample(s) for some 0 < i " n.

(A3) Stutter condition
If ample(s) #= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition
For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i " n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

c© JPK 2

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then cTS ! TS.

c© JPK 3

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle s0 s1 . . . sn in T̂S,
there exists j ∈ { 1, . . . , n } such that ample(sj) = Act(sj).

• If (A1) through (A3) hold: (A4’) implies the cycle condition (A4)

• (A4’) can be checked easily in DFS when backward edge is found

c© JPK 4

Advanced model checking

Invariant checking with POR

• Invariant checking
– on state space generation, check whether each state satisfies prop. formula Φ
– on finding a refuting state, (reversed) stack content yields counterexample

• Incorporating partial order reduction
– on encountering a new state, compute ample set satisfying (A1) through (A3)
– e.g., ample(s) = Act(Pi), enabled actions of a concurrent process
– enlarge ample(s) on demand using the strong cycle condition (A4’)
– mark actions to keep track of which actions have been taking

c© JPK 5

Advanced model checking

Example

Process 0:

while true {

#0 : skip;
m0 : wait until (¬b) {

n0 : . . . critical section . . .}

b := true;
}

Process 1:

while true {

#1 : skip;
m1 : wait until (b) {

n1 : . . . critical section . . .}

b := false;
}

c© JPK 6

Advanced model checking

Transition system

〈#0, #1,¬b〉〈#0, m1,¬b〉

〈m0, #1,¬b〉〈m0, m1,¬b〉

〈n0, #1,¬b〉

{ a }
〈n0, m1,¬b〉

{ a }
〈#0, #1, b〉 〈m0, #1, b〉

〈#0, m1, b〉 〈m0, m1, b〉

〈#0, n1, b〉

{ a }
〈m0, n1, b〉

{ a }
α1

α1

α1

δ1

δ0 δ0

δ1

β0

δ1

β0

α0

α0

α0

δ0

δ1δ1

δ0

β1

δ0

β1

γ0

γ1

γ1

γ0

c© JPK 7

Advanced model checking

Reduced transition system

〈#0, #1,¬b〉

〈m0, #1,¬b〉〈m0, m1,¬b〉

〈n0, m1,¬b〉

{ a }
〈#0, #1, b〉

〈#0, m1, b〉 〈m0, m1, b〉

〈m0, n1, b〉

{ a }

α1

α1

δ0

δ1

β0

α0

α0

δ1

δ0

β1

γ0

γ1

c© JPK 8

Advanced model checking

Invariant checking under POR (1)

Input: finite transition system TS and propositional formula Φ
Output: ”yes” if TS |= !Φ”, otherwise ”no” plus a counterexample

set of states R := ∅; (* the set of reachable states *)
stack of states U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
while (I \ R #= ∅ ∧ b) do
let s ∈ I \ R; (* choose an arbitrary initial state not in R *)
visit(s); (* perform a DFS for each unvisited initial state *)

od
if b then
return(”yes”) (* TS |= ”always Φ” *)

else
return(”no”, reverse(U)) (* counterexample arises from the stack content *)

fi

c© JPK 9

Advanced model checking

Invariant checking under POR (2)
procedure visit (state s)
push(s, U); R := R ∪ { s }; (* mark s as reachable *)
compute ample(s) satisfying (A1)–(A3);
mark(s) := ∅; (* taken actions in s *)
repeat

s′ := top(U); b := b ∧ (s′ |= Φ);
if ample(s′) = mark(s′) then
pop(U); (* all ample actions have been taken *)

else
let α ∈ ample(s′) \ mark(s′)
mark(s′) := mark(s′) ∪ {α }; (* mark α as taken *)
if α(s′) #∈ R then
push(α(s′), U); R := R ∪ {α(s′) } (* α(s′) is a new reachable state *)
compute ample(α(s′)) satisfying (A1)–(A3);
mark(α(s′)) := ∅;

else
if α(s′) ∈ U then ample(s′) := Act(s′); fi (* enlarge ample(s) for (A4) *)

fi
fi

until ((U = ε) ∨ ¬ b)
endproc

c© JPK 10

Advanced model checking

Experimental results

[Clarke, Grumberg, Minea, Peled, 1999]

Algorithm TS cTS

states transition ver. time states transitions ver. time

sieve 10878 35594 1.68 157 157 0.08
data transfer 251049 648467 32.2 16459 17603 1.47
protocol
snoopy 164258 546805 33.6 29796 44145 3.58
(cache coherence)
file transfer 514188 1138750 123.4 125595 191466 18.6
protocol

partial-order reduction works fine for asynchronous systems

c© JPK 11

Advanced model checking

The core of LTL model checking

• For LTL formula ϕ, it holds TS |= ϕ iff TS⊗A¬ϕ |= !"¬F

– whereA¬ϕ is a nondeterministic Büchi automaton for ¬ϕ
– and F holds in any of its accepting states

• Check ! "Φ efficiently by “nesting” two depth-first searches:
– the outer DFS looks for reachable ¬Φ-states
– the inner DFS seeks for backward edges to such states
– important: start inner DFS on full expansion of ¬Φ-state s in outer DFS

⇒ in all invocations of inner DFS together each state is visited at most once

• On finding ¬Φ-state: counterexample = concatenation DFS stacks
– stack U for the outer DFS = path fragment from s0 ∈ I to s (in reversed order)
– stack V for the inner DFS = a cycle from state s to s (in reversed order)

c© JPK 12

Advanced model checking

Nested depth-first search with POR

• Generate T̂S⊗A¬ϕ and check for accepting cycles

• In inner and outer DFS, the same ample sets should be used

• Start inner DFS only if ample(s) does not change anymore cf. (A4’)

• Abort once state is encountered in inner DFS which is on stack of
outer DFS

more details can be found on pages 625 and 626 of book

next: how to compute ample(s) satisfying (A1) – (A3)?

c© JPK 13

Advanced model checking

Intermezzo: channel systems

• Processes communicate via channels (c ∈ Chan)

• Channels are first-in, first-out buffers storing messages

• Channel capacity = maximum # messages that can be stored
– if cap(c) > 0, there is some “delay” between sending and receipt
– if cap(c) = 0, then communication via c amounts to handshaking

c© JPK 14

Advanced model checking

Actions acting on channels

• Process Pi = program graph PGi + communication actions

c!e transmit the value of expression e along channel c
c?x receive a message via channel c and assign it to variable x

• Comm = { c!e, c?x | c ∈ Chan, e ∈ Expr, x ∈ Var. dom(x) ⊇ dom(c) = dom(e) }

• Sending and receiving a message
– c!e puts the value of e at the rear of the buffer c (if c is not full)
– c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
– if cap(c) = 0, channel c has no buffer
– if cap(c) = 0, sending and receiving can takes place simultaneously
– if cap(c) > 0, sending and receiving can never take place simultaneously

c© JPK 15

Advanced model checking

Channel systems
A program graph over (Var,Chan) is a tuple

PG = (Loc,Act,Effect,→,Loc0, g0)

where

→ ⊆ Loc× Cond(Var) × (Act ∪ Comm) × Loc

A channel system CS over (
⋃

0<i"nVari,Chan):

CS = [PG1 | . . . | PGn]

with program graphs PGi over (Vari,Chan)

c© JPK 16

Advanced model checking

Channel evaluations

• A channel evaluation ξ is
– a mapping from channel c ∈ Chan onto a sequence ξ(c) ∈ dom(c)∗ such that
– current length cannot exceed the capacity of c: len(ξ(c)) " cap(c)
– ξ(c) = v1 v2 . . . vk (cap(c) # k) denotes v1 is at front of buffer etc.

• ξ[c := v1 . . . vk] denotes the channel evaluation

ξ[c := v1 . . . vk](c′) =
{

ξ(c′) if c (= c′

v1 . . . vk if c = c′.

• Initial channel evaluation ξ0 equals ξ0(c) = ε for any c

c© JPK 17

Advanced model checking

Transition system semantics of a channel system

Let CS = [PG1 | . . . | PGn] be a channel system over (Chan,Var) with

PGi = (Loci,Acti,Effecti, #i,Loc0,i, g0,i) , for 0 < i " n

TS(CS) is the transition system (S,Act,→, I,AP, L) where:

• S = (Loc1 × . . . × Locn) × Eval(Var) × Eval(Chan)
• Act =

`U
0<i"n Acti

´
1 { τ }

• → is defined by the inference rules on the next slides

• I =


〈#1, . . . , #n, η, ξ0〉 | ∀i. (#i ∈ Loc0,i ∧ η |= g0,i) ∧∀c. ξ0(c) = ε

ff

• AP =
U

0<i"n Loci 1 Cond(Var)
• L(〈#1, . . . , #n, η, ξ〉) = { #1, . . . , #n } ∪{ g ∈ Cond(Var) | η |= g }

c© JPK 18

Advanced model checking

Inference rules (1)

• Interleaving for α ∈ Acti:

(i
g:α−−−→ (′i ∧ η |= g

〈(1, . . . , (i, . . . , (n, η, ξ〉 α−−→〈(1, . . . , (′i, . . . , (n, η′, ξ〉

where η′ = Effect(α, η)

• Synchronous message passing over c ∈ Chan, cap(c) = 0:

(i
g:c?x−−−−→ (′i ∧ (j

g′:c!e−−−−→ (′j ∧ η |= g ∧ g′ ∧ i (= j

〈(1, . . . , (i, . . . , (j, . . . , (n, η, ξ〉 τ−→〈(1, . . . , (′i, . . . , (′j, . . . , (n, η′, ξ〉

where η′ = η[x := η(e)].

c© JPK 19

Advanced model checking

Inference rules (2)
• Asynchronous message passing for c ∈ Chan, cap(c) > 0:
– receive a value along channel c and assign it to variable x:

(i
g:c?x−−−−→ (′i ∧ η |= g ∧ len(ξ(c)) = k > 0 ∧ ξ(c) = v1 . . . vk

〈(1, . . . , (i, . . . , (n, η, ξ〉 τ−→〈(1, . . . , (′i, . . . , (n, η′, ξ′〉

where η′ = η[x := v1] and ξ′ = ξ[c := v2 . . . vk].

– transmit value η(e) ∈ dom(c) over channel c:

(i
g:c!e−−−−→ (′i ∧ η |= g ∧ len(ξ(c)) = k < cap(c) ∧ ξ(c) = v1 . . . vk

〈(1, . . . , (i, . . . , (n, η, ξ〉 τ−→〈(1, . . . , (′i, . . . , (n, η, ξ′〉

where ξ′ = ξ[c := v1 v2 . . . vk η(e)].

c© JPK 20

Advanced model checking

Computing ample sets

• Aim: determine ample sets by a static analysis of channel system CS

TS = TS(CS) where CS = [PG1 | . . . | PGn]

– state s in TS has the form 〈#1, . . . , #n, η, ξ〉 where
– #i denotes the current location (control point) of PGi

– η is the variable valuation, and ξ the channel valuation

• Basic idea:
– partition the set of processes P1 through Pn into two blocks
– one block Pi1, . . .Pik

such that Pij does not communicate with Pi outside
block

– intuition: ample(s) = Acti1(s) ∪ . . . ∪ Actik(s), for state s in TS(CS)
– for simplicity: mostly k=1 is considered: ample(s) = Acti(s), for some i

c© JPK 21

Advanced model checking

Checking ample set conditions
Let Acti(s) ⊂ Act(s):

• Nonemptiness condition (A1):
– check whether process Pi can perform an action in state s, i.e., Acti(s) #= ∅

• Stutter condition (A3):
– α is a stutter action if the atomic propositions do neither refer to:

∗ a variable that is modified by α, nor
∗ the source or target location of edges of the form #

g:α
↪→ #′, nor

∗ the content of channel c in case α is a receive or send action on c

• Cycle condition (A4):
– fully expand s if during its (nested) DFS a backward edge is found

• Dependency condition (A2): Hard!

c© JPK 22

Advanced model checking

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite,
action-deterministic TS equals that of checking TS′ |= ∃" a

for some a ∈ AP where size(TS′) ∈ O(size(TS))

c© JPK 23

