
On-The-Fly Partial Order Reduction
Lecture #9b of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 27, 2009

c© JPK

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S
– a reduced version of transition system TS such that cTS! TS

⇒ this preserves all stutter sensitive LT properties, such as LTL\©
– at state s select a (small) subset of enabled actions in s
– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction
– obtain a high-level description of cTS (without generating TS)

⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction
– construct cTS during LTL\© model checking
– if accept cycle is found, there is no need to generate entire cTS

c© JPK 1

Advanced model checking

Ample-set conditions for LTL

(A1) Nonemptiness condition
∅ #= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . . βn−−→ sn

α−→ t be a finite execution fragment in TS such that α
depends on ample(s). Then: βi ∈ ample(s) for some 0 < i " n.

(A3) Stutter condition
If ample(s) #= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition
For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i " n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

c© JPK 2

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then cTS ! TS.

c© JPK 3

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle s0 s1 . . . sn in T̂S,
there exists j ∈ { 1, . . . , n } such that ample(sj) = Act(sj).

• If (A1) through (A3) hold: (A4’) implies the cycle condition (A4)

• (A4’) can be checked easily in DFS when backward edge is found

c© JPK 4

Advanced model checking

Invariant checking under POR (2)
procedure visit (state s)
push(s, U); R := R ∪ { s }; (* mark s as reachable *)
compute ample(s) satisfying (A1)–(A3);
mark(s) := ∅; (* taken actions in s *)
repeat

s′ := top(U); b := b ∧ (s′ |= Φ);
if ample(s′) = mark(s′) then
pop(U); (* all ample actions have been taken *)

else
let α ∈ ample(s′) \ mark(s′)
mark(s′) := mark(s′) ∪ {α }; (* mark α as taken *)
if α(s′) #∈ R then
push(α(s′), U); R := R ∪ {α(s′) } (* α(s′) is a new reachable state *)
compute ample(α(s′)) satisfying (A1)–(A3);
mark(α(s′)) := ∅;

else
if α(s′) ∈ U then ample(s′) := Act(s′); fi (* enlarge ample(s) for (A4) *)

fi
fi

until ((U = ε) ∨ ¬ b)
endproc

c© JPK 5

Advanced model checking

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite,
action-deterministic TS equals that of checking TS′ |= ∃! a

for some a ∈ AP where size(TS′) ∈ O(size(TS))

c© JPK 6

Advanced model checking

Proof

c© JPK 7

Advanced model checking

Overapproximating dependencies

• Actions that refer to the same variable are dependent
– but x := y + 1 and x := y + z are not

• Actions that modify the same variable are dependent
– but x := z + y and x := z are not, if they are never enabled when y #= 0

• Actions that belong to the same process are dependent

• Send (receive) actions on the same channel are dependent
– but c!v and c?x for channel c with capacity one can never be enabled both

• Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D ⊆ Act× Act

c© JPK 8

Advanced model checking

Local criteria for (A2)
To ensure condition (A2) check the conditions:

(A2.1) Any β ∈ Actj is independent of Acti(s) for i #= j

• inspect program graphs PGj and check whether (α, β) #∈ D for α ∈ Acti and
β ∈ Actj

• note: all actions local to PGi are considered to be dependent

(A2.2) Any β ∈ Acti \ Act(s) may not become enabled
through the activities of some process Pj with i #= j

• consider s = 〈$1, . . . , $i, . . . , $n, η, ξ〉 and β ∈ Acti \ Act(s)
• e.g., in $i

g:β
↪→ $′i in PGi, g does not hold or β is blocked

• . . . e.g., a send action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then ample(s) = Acti(s) satisfies (A2)

c© JPK 9

Advanced model checking

Input: state s = 〈$1, . . . , $n, η, ξ〉 in cTS; Output: ample(s) satisfying (A1)-(A3)

if (∃i.Acti(s) = Act(s)) then return Act(s) fi;
for i = 1 to n do (* check whether ample(s) = Acti(s) is possible *)
if (Acti #= ∅ and Acti(s) only contains stutter actions) then
if (∃j #= i.Acti(s) × Actj(s) ∩ D = ∅) then

b := true; (* (A2.1) holds *)
if ∃$i

g:β
↪→ $′i in PGi where β is a handshaking action then

b := false; (* (A2.2) violated *)
else
for all $i

g:β
↪→ $′i in PGi and $′j

h:γ
↪→ $′′j in PGj with j #= i and $j ↪→∗

$′j do
if (η #|= g and γ modifies some variable that occurs in g) or

(β and γ are complementary communication actions) then
b := false; (* (A2.2) violated *)

fi
od

fi
if (b) then return Acti(s) fi (* (A1)-(A3) hold *)

fi
fi
od
return Act(s) (* ample(s) := Act(s) *)

c© JPK 10

Advanced model checking

The branching-time ample approach

• Linear-time ample approach:
– during state space generation obtain cTS such that cTS! TS

⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– static partial order reduction: generate cTS prior to verification
– on-the-fly partial order reduction: generate cTS during the verification
– generation of cTS by means of static analysis of program graphs

• Branching-time ample approach

– during state space generation obtain cTS such that cTS ≈div TS
⇒ this preserves all CTL\© and CTL∗\© formulas
– static partial order reduction only

as ≈div is strictly finer than ! , try (A1) through (A4)

c© JPK 11

Advanced model checking

Example

s0s1

s2

s3

s4

u

s5

γ

α

β

α α

δ

γ
β

δ δ

γ
β

τ
τ

τ τ

transition system TS

c© JPK 12

Advanced model checking

Conditions (A1)-(A4) are insufficient

s0s1 s3

s4 s5

γ
β

α α

δ δ

τ
τ

τ τ

T̂S |= ∀!
(

a →
(
∀"b∨∀"c

))
but TS does not and thus T̂S #≈div TS

c© JPK 13

Advanced model checking

Branching condition

(A5)
If ample(s) #= Act(s) then |ample(s)| = 1

c© JPK 14

Advanced model checking

A sound reduction for CTL∗\©

s0

u

α

δ

γ
β

δ δ

γ
β

τ
τ

τ τ

T̂S #|= ∀!
(

a →
(
∀"b ∨ ∀"c

))
and TS does not ;in fact T̂S ≈div TS

c© JPK 15

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then cTS ≈div TS.

recall that this implies that cTS and TS are CTL∗\© -equivalent

c© JPK 16

Advanced model checking

Ample-set conditions for CTL∗

(A1) Nonemptiness condition
∅ #= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . . βn−−→ sn

α−→ t be a finite execution fragment in TS such that α
depends on ample(s). Then: βi ∈ ample(s) for some 0 < i " n.

(A3) Stutter condition
If ample(s) #= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition
For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i " n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

(A5) Branching condition
If ample(s) #= Act(s) then |ample(s)| = 1

c© JPK 17

