

On-The-Fly Partial Order Reduction

Lecture #9b of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 27, 2009

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \triangleq TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\backslash\circlearrowleft}$
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct \widehat{TS} during $LTL_{\backslash\circlearrowleft}$ model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Ample-set conditions for LTL

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \triangleq TS$.

Strong cycle condition

(A4') Strong cycle condition

On any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} ,

there exists $j \in \{1, \dots, n\}$ such that $\text{ample}(s_j) = \text{Act}(s_j)$.

- If (A1) through (A3) hold: (A4') implies the cycle condition (A4)
- (A4') can be checked easily in DFS when backward edge is found

Invariant checking under POR (2)

```

procedure visit (state  $s$ )
  push( $s, U$ );  $R := R \cup \{ s \}$ ; (* mark  $s$  as reachable *)
  compute ample( $s$ ) satisfying (A1)–(A3);
  mark( $s$ ) :=  $\emptyset$ ; (* taken actions in  $s$  *)
  repeat
     $s' := \text{top}(U)$ ;  $b := b \wedge (s' \models \Phi)$ ;
    if ample( $s'$ ) = mark( $s'$ ) then
      pop( $U$ ); (* all ample actions have been taken *)
    else
      let  $\alpha \in \text{ample}(s') \setminus \text{mark}(s')$ 
      mark( $s'$ ) := mark( $s'$ )  $\cup \{ \alpha \}$ ; (* mark  $\alpha$  as taken *)
      if  $\alpha(s') \notin R$  then
        push( $\alpha(s'), U$ );  $R := R \cup \{ \alpha(s') \}$  (*  $\alpha(s')$  is a new reachable state *)
        compute ample( $\alpha(s')$ ) satisfying (A1)–(A3);
        mark( $\alpha(s')$ ) :=  $\emptyset$ ;
      else
        if  $\alpha(s') \in U$  then ample( $s'$ ) := Act( $s'$ ); fi (* enlarge ample( $s$ ) for (A4) *)
        fi
      fi
    until  $((U = \varepsilon) \vee \neg b)$ 
endproc

```

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite, action-deterministic TS equals that of checking $TS' \models \exists \diamond a$ for some $a \in AP$ where $\text{size}(TS') \in \mathcal{O}(\text{size}(TS))$

Proof

Overapproximating dependencies

- Actions that refer to the same variable are dependent
 - but $x := y + 1$ and $x := y + z$ are not
- Actions that modify the same variable are dependent
 - but $x := z + y$ and $x := z$ are not, if they are never enabled when $y \neq 0$
- Actions that belong to the same process are dependent
- Send (receive) actions on the same channel are dependent
 - but $c!v$ and $c?x$ for channel c with capacity one can never be enabled both
- Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation $D \subseteq \text{Act} \times \text{Act}$

Local criteria for (A2)

To ensure condition (A2) check the conditions:

(A2.1) Any $\beta \in \text{Act}_j$ is independent of $\text{Act}_i(s)$ for $i \neq j$

- inspect program graphs PG_j and check whether $(\alpha, \beta) \notin D$ for $\alpha \in \text{Act}_i$ and $\beta \in \text{Act}_j$
- note: all actions local to PG_i are considered to be dependent

(A2.2) Any $\beta \in \text{Act}_i \setminus \text{Act}(s)$ may not become enabled

through the activities of some process \mathcal{P}_j with $i \neq j$

- consider $s = \langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle$ and $\beta \in \text{Act}_i \setminus \text{Act}(s)$
- e.g., in $\ell_i \xrightarrow{g:\beta} \ell'_i$ in PG_i , g does not hold or β is blocked
- ... e.g., a send action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then $\text{ample}(s) = \text{Act}_i(s)$ satisfies (A2)

Input: state $s = \langle \ell_1, \dots, \ell_n, \eta, \xi \rangle$ in \widehat{TS} ; *Output:* $ample(s)$ satisfying (A1)-(A3)

```

if ( $\exists i. Act_i(s) = Act(s)$ ) then return  $Act(s)$  fi;
for  $i = 1$  to  $n$  do (* check whether  $ample(s) = Act_i(s)$  is possible *)
  if ( $Act_i \neq \emptyset$  and  $Act_i(s)$  only contains stutter actions) then
    if ( $\exists j \neq i. Act_i(s) \times Act_j(s) \cap D = \emptyset$ ) then
       $b := \text{true}$ ; (* (A2.1) holds *)
      if  $\exists \ell_i \xrightarrow{g:\beta} \ell'_i$  in  $PG_i$  where  $\beta$  is a handshaking action then
         $b := \text{false}$ ; (* (A2.2) violated *)
      else
        for all  $\ell_i \xrightarrow{g:\beta} \ell'_i$  in  $PG_i$  and  $\ell'_j \xrightarrow{h:\gamma} \ell''_j$  in  $PG_j$  with  $j \neq i$  and  $\ell_j \hookrightarrow^* \ell'_j$  do
          if ( $\eta \not\models g$  and  $\gamma$  modifies some variable that occurs in  $g$ ) or
            ( $\beta$  and  $\gamma$  are complementary communication actions) then
               $b := \text{false}$ ; (* (A2.2) violated *)
            fi
          od
        fi
        if ( $b$ ) then return  $Act_i(s)$  fi (* (A1)-(A3) hold *)
      fi
    fi
  od
return  $Act(s)$  (*  $ample(s) := Act(s)$  *)

```

The branching-time ample approach

- **Linear-time ample approach:**

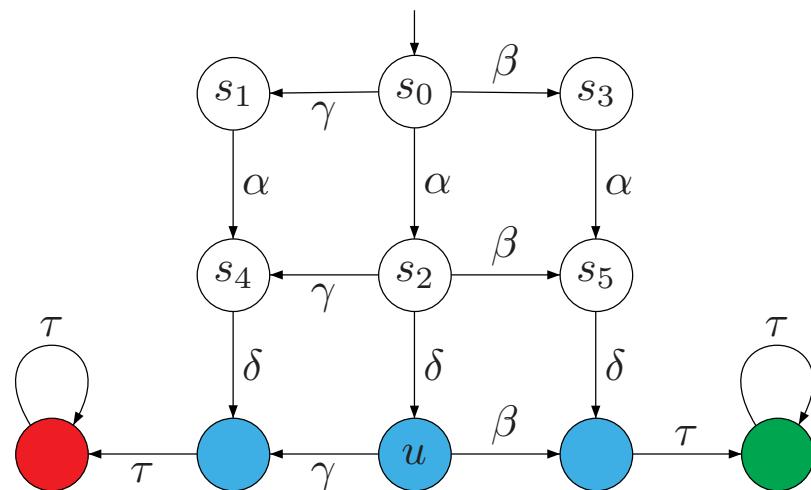
- during state space generation obtain \widehat{TS} such that $\widehat{TS} \triangleq TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\setminus \bigcirc}$
 - **static** partial order reduction: generate \widehat{TS} **prior** to verification
 - **on-the-fly** partial order reduction: generate \widehat{TS} **during** the verification
 - generation of \widehat{TS} by means of static analysis of program graphs

- **Branching-time ample approach**

- during state space generation obtain \widehat{TS} such that $\widehat{TS} \approx^{div} TS$
⇒ this preserves all $CTL_{\setminus \bigcirc}$ and $CTL_{\setminus \bigcirc}^*$ formulas
 - static partial order reduction only

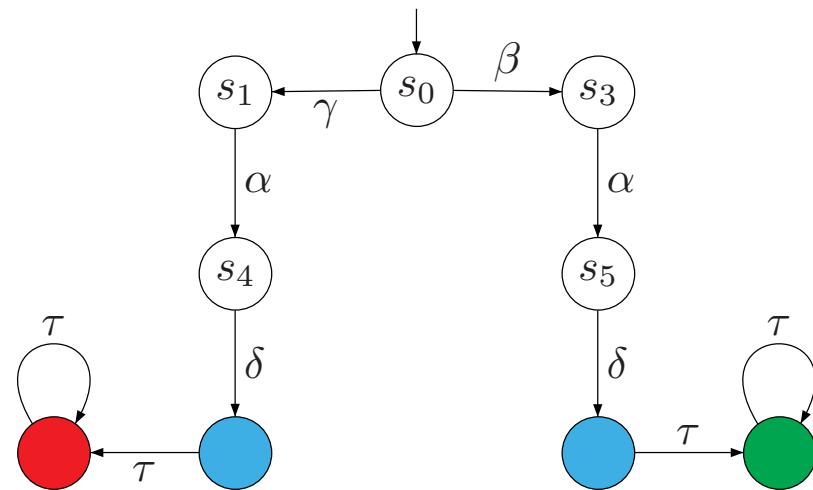
as \approx^{div} is strictly finer than \triangleq , try (A1) through (A4)

Example



transition system TS

Conditions (A1)-(A4) are insufficient



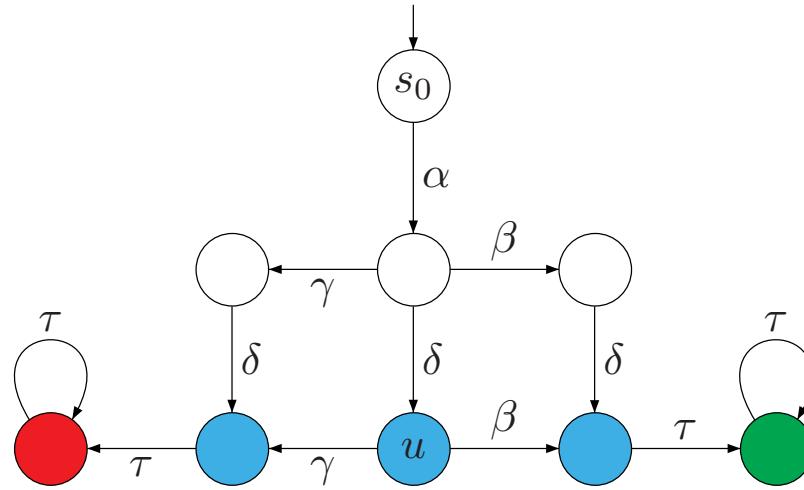
$\widehat{TS} \models \forall \square (a \rightarrow (\forall \diamond b \vee \forall \diamond c))$ but TS does not and thus $\widehat{TS} \not\approx^{div} TS$

Branching condition

(A5)

If $ample(s) \neq Act(s)$ then $|ample(s)| = 1$

A sound reduction for $\text{CTL}_{\setminus \Diamond}^*$



$\widehat{TS} \not\models \forall \Box (a \rightarrow (\forall \Diamond b \vee \forall \Diamond c))$ and TS does not ;in fact $\widehat{TS} \approx^{\text{div}} TS$

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A5) are satisfied, then $\widehat{TS} \approx^{\text{div}} TS$.

recall that this implies that \widehat{TS} and TS are $\text{CTL}_{\setminus \bigcirc}^*$ -equivalent

Ample-set conditions for CTL^{*}

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

(A5) Branching condition

If $\text{ample}(s) \neq \text{Act}(s)$ then $|\text{ample}(s)| = 1$