© JPK

On-The-Fly Partial Order Reduction
Lecture #9b of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail;: katoencs.rwth-aachen.de

May 27, 2009

Advanced model checking

Outline of partial-order reduction

e During state space generation obtain TS

— a reduced version of transition system TS such that TS2 TS
= this preserves all stutter sensitive LT properties, such as LTL\ -
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\~» model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK]

Advanced model checking

Ample-set conditions for LTL

(A1) Nonemptiness condition

@ # ample(s) C Act(s)
(A2) Dependency condition

Let s 2L, ... Bn s, — t be a finite execution fragment in TS such that «
depends on ample(s). Then: B; € ample(s) for some 0 < ¢ < n.

(A3) Stutter condition

If ample(s) # Act(s) then any o« € ample(s) is a stutter action.
(A4) Cycle condition

For any cycle sg sy ... s, in TS and « € Acl(s;), forsome 0 < i < n,
thereexists j € {1,...,n } suchthat o« € ample(s,).

© JPK 2

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then TS 2 TS

© JPK

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle sgs1 ... s, In TS,

there exists j € {1,...,n } such that ample(s;) = Act(s;).

e If (A1) through (A3) hold: (A4’) implies the cycle condition (A4)

e (A4’) can be checked easily in DFS when backward edge is found

© JPK 4

Advanced model checking

Invariant checking under POR (2)

procedure visit (state s)
push(s,U); R:= R U {s};
compute ample(s) satisfying (A1)—(A3);
mark(s) := o;
repeat
s :=top(U);b:=b A (s |= ®);
if ample(s’) = mark(s") then
pop(U);
else
let o € ample(s’) \ mark(s’)
mark(s') := mark(s’) U {a};
if a(s’) ¢ R then
push(a(s"),U); R:= R U {a(s')}
compute ample(a(s’)) satisfying (A1)—(A3);
mark(a(s")) := @;
else
if a(s’) € U then ample(s’) := Act(s'); fi
fi
fi
until (U =¢) v —b)
endproc

(* mark s as reachable *)

(* taken actions in s *)

(* all ample actions have been taken *)

(* mark « as taken *)

(* a(s’) is a new reachable state *)

(* enlarge ample(s) for (A4) *)

© JPK

Advanced model checking

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite,
action-deterministic TS equals that of checking TS’ = 3¢ a
for some a € AP where size(TS') € O(size(TS))

© JPK

Advanced model checking

Proof

© JPK 7

Advanced model checking

Overapproximating dependencies

e Actions that refer to the same variable are dependent

— butz :=y+1andx := y + z are not

e Actions that modify the same variable are dependent

— butx := z 4+ y and x := z are not, if they are never enabled when y # 0

e Actions that belong to the same process are dependent

e Send (receive) actions on the same channel are dependent

— but c!v and c¢?x for channel ¢ with capacity one can never be enabled both

e Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D C Act x Act

© JPK 8

Advanced model checking

Local criteria for (A2)
To ensure condition (A2) check the conditions:

(A2.1) Any 3 € Act; is independent of Act;(s) for i # j

e inspect program graphs PG, and check whether («, 3) € D for o € Act; and
B e ACtj
e note: all actions local to PG; are considered to be dependent
(A2.2) Any (g € Act; \ Act(s) may not become enabled
through the activities of some process P, with i # j
e considers = (¢y,...,4;, ..., ¢,,m, &) and B € Act; \ Acl(s)

e e.9.,in ¥, ﬂ ¢’ in PG;, g does not hold or 3 is blocked
e ...e.g., asend action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then ample(s) = Act;(s) satisfies (A2)

© JPK 9

Advanced model checking

Input: state s = (£1,...,4n,m,&)in 7’5; Output. ample(s) satisfying (A1)-(A3)

if (3¢. Act;(s) = Act(s)) then return Act(s) fi;
fori =1 to n do (* check whether ample(s) = Act;(s) is possible *)
if (Act; # @ and Act;(s) only contains stutter actions) then

if (35 # 4. Actj(s) X Actj(s) N D = &) then

b := true; (* (A2.1) holds *)
if 3¢, g0 ¢, in PG; where 3 is a handshaking action then

b .= false; (* (A2.2) violated *)
else

9:8 / - /h:'}/ 7/ - . . . *x)
forall ¢; — ¢ in PG; and Ej — Ej in PG; with j # 7and £; — Ej do
if (n = ¢g and v modifies some variable that occurs in g) or
(8 and ~ are complementary communication actions) then

b .= false; (* (A2.2) violated *)
fi
od
fi
if (b) then return Act;(s) fi (* (A1)-(A3) hold *)
fi
fi
od
return Act(s) (* ample(s) := Act(s) *)

© JPK 10

Advanced model checking

The branching-time ample approach

e Linear-time ample approach:

— during state space generation obtain TS such that TS2 TS
= this preserves all stutter sensitive LT properties, such as LTL\ -
— static partial order reduction: generate TS prior to verification
— on-the-fly partial order reduction: generate TS during the verification
— generation of TS by means of static analysis of program graphs

e Branching-time ample approach

— during state space generation obtain TS such that TS ~@ TS
= this preserves all CTL, 5 and CTL{, formulas
— static partial order reduction only

~odiv

as ~% is strictly finer than £, try (A1) through (A4)

© JPK 11

Advanced model checking

Example
51 ~ S0 g 53
« « (8%
_ @4 ol @L@ _
))

transition system TS

© JPK

12

Advanced model checking

Conditions (A1)-(A4) are insufficient

«

«

G0 ()

TS| vO(a — (¥0bv¥oc)) but TSdoesnot and thus TS#™ TS

© JPK -

Advanced model checking

Branching condition

(A3)
If ample(s) # Act(s) then |ample(s)| = 1

© JPK >

Advanced model checking

A sound reduction for CTLTO

®
(8
B

v/
T T
Q 5 : 5 Q
]] N O T,

@@

TS b VO (a — (VObV v<>c)) and TSdoes not ;infact TS ~® TS

© JPK =

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then TS ~® TS.

recall that this implies that TSand TSare CTLiO -equivalent

© JPK

16

Advanced model checking

Ample-set conditions for CTL"

(A1) Nonemptiness condition
@ # ample(s) C Act(s)
(A2) Dependency condition

Let s 2L, ... On s, — t be a finite execution fragment in TS such that «

depends on ample(s). Then: B; € ample(s) for some 0 < ¢ < n,
(A3) Stutter condition

If ample(s) # Act(s) then any o« € ample(s) is a stutter action.
(A4) Cycle condition

For any cycle sg sy ... s, in TS and « € Acl(s;), forsome 0 < i < n,
thereexists j € {1,...,n } suchthat o« € ample(s,).

(A5) Branching condition
If ample(s) # Act(s) then |ample(s)| = 1

© JPK e

