

Ample Set Conditions

Lecture #8 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 15, 2009

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \triangleq TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\backslash\circlearrowleft}$
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct \widehat{TS} during $LTL_{\backslash\circlearrowleft}$ model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Independence of actions

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be action-deterministic and $\alpha \neq \beta \in Act$

- α and β are *independent* if for any $s \in S$ with $\alpha, \beta \in Act(s)$:

$$\beta \in Act(\alpha(s)) \quad \text{and} \quad \alpha \in Act(\beta(s)) \quad \text{and} \quad \alpha(\beta(s)) = \beta(\alpha(s))$$

- α and β are *dependent* if α and β are not independent
- For $A \subseteq Act$ and $\beta \in Act \setminus A$:
 - β is independent of A if for any $\alpha \in A$, β is independent of α
 - β depends on A in TS if $\beta \in Act \setminus A$ and α are dependent for some $\alpha \in A$

Stutter actions

- $\alpha \in \text{Act}$ is a *stutter action* if for each $s \xrightarrow{\alpha} s'$ in TS : $L(s) = L(s')$
 - α is a stutter action in TS iff $L(s) = L(\alpha(s))$ for all s in TS with $\alpha \in \text{Act}(s)$
 - α is a stutter action whenever **all** transitions $s \xrightarrow{\alpha} s'$ are **stutter steps**

Permuting independent **stutter** actions

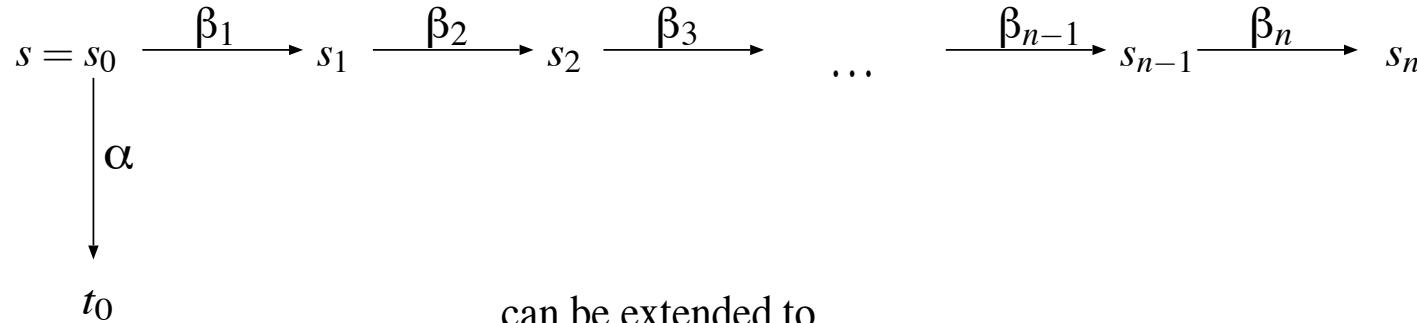
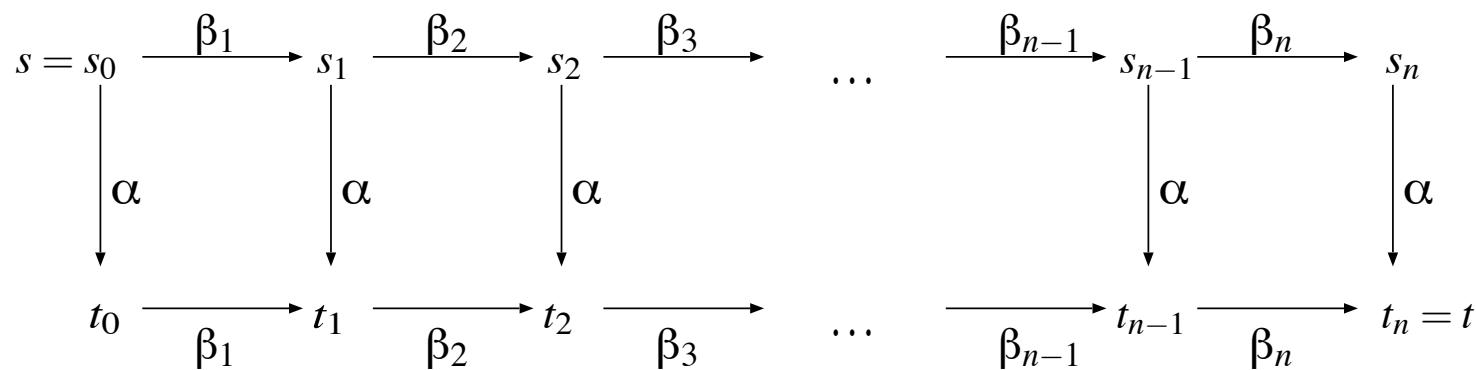
Let TS be action-deterministic, s a state in TS and:

- ϱ is a finite execution in s with action sequence $\beta_1 \dots \beta_n \alpha$
- ϱ' is a finite execution in s with action sequence $\alpha \beta_1 \dots \beta_n$

Then:

if α is a stutter action independent of $\{\beta_1, \dots, \beta_n\}$ then $\varrho \triangleq \varrho'$

Permuting independent stutter actions



Adding an independent **stutter** action

Let TS be action-deterministic, s a state in TS and:

- ρ is an **infinite** execution in s with action sequence $\beta_1 \beta_2 \dots$
- ρ' is an **infinite** execution in s with action sequence $\alpha \beta_1 \beta_2 \dots$

Then:

if α is a stutter action independent of $\{\beta_1, \beta_2, \dots\}$ then $\rho \triangleq \rho'$

The ample-set approach

- Partial-order reduction for LT properties using *ample sets*
 - on state-space generation select $\text{ample}(s) \subseteq \text{Act}(s)$
 - such that $|\text{ample}(s)| \ll |\text{Act}(s)|$
- *Reduced* system $\widehat{TS} = (\widehat{S}, \text{Act}, \Rightarrow, I, AP, L')$ where:
 - \widehat{S} contains the states that are reachable (under \Rightarrow) from some $s_0 \in I$
 - $$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$
 - $L'(s) = L(s)$ for any $s \in \widehat{S}$
- *Constraints*: correctness (\triangleq), effectivity and efficiency

Which actions to select in $ample(s)$?

(A1) Nonemptiness condition

Select in any state in \widehat{TS} at least one action.

(A2) Dependency condition

For any finite execution in TS : an action depending on $ample(s)$ can only occur after some action in $ample(s)$ has occurred.

(A3) Stutter condition

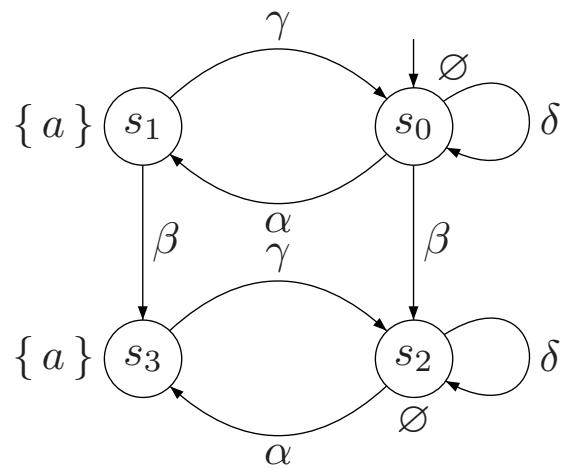
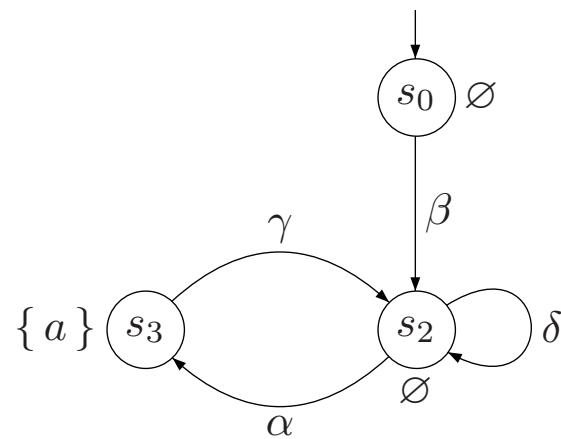
If not all actions in s are selected, then only select stutter actions in s .

(A4) Cycle condition

Any action in $Act(s_i)$ with s_i on a cycle in \widehat{TS} must be selected in some s_j on that cycle.

(A1) through (A3) apply to states in \widehat{S} ; (A4) to cycles in \widehat{TS}

Example



Nonemptiness condition

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

- If a state has at least one direct successor in TS , then it has least at one direct successor in \widehat{TS}

⇒ As TS has no terminal states, \widehat{TS} has no terminal states

Dependency condition

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution in TS such that α depends on $ample(s)$.

Then: $\beta_i \in ample(s)$ for some $0 < i \leq n$.

- In every (!) finite execution fragment of TS , an action depending on $ample(s)$ cannot occur before some action from $ample(s)$ occurs first
- (A2) ensures that for any state s with $ample(s) \subset Act(s)$, any $\alpha \in ample(s)$ is **independent** of $Act(s) \setminus ample(s)$

Properties

- (A2) guarantees that any finite execution in TS is of the form:

$$\varrho = s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t \quad \text{with} \quad \alpha \in \text{ample}(s)$$

and β_i independent of $\text{ample}(s)$ for $0 < i \leq n$.

- if α is a stutter action: shifting α to the beginning yields an equivalent execution
 \Rightarrow if ϱ is pruned in TS , then an execution is obtained by first taking α in s

- (A2) guarantees that any **infinite** execution in TS is of the form:

$$s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} s_2 \dots \quad \text{with } \beta_i \text{ independent of } \text{ample}(s) \text{ for } 0 < i \leq n.$$

- performing stutter action $\alpha \in \text{ample}(s)$ in s yields an equivalent execution

Properties

For any $\alpha \in \text{ample}(s)$ and $s \in \text{Reach}(\widehat{TS})$:

if $\text{ample}(s)$ satisfies (A2) then α is independent of $\text{Act}(s) \setminus \text{ample}(s)$

For finite execution $s = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n$ in TS and $s \in \text{Reach}(\widehat{TS})$:

if $\text{ample}(s)$ satisfies (A2) and $\{\beta_1, \dots, \beta_n\} \cap \text{ample}(s) = \emptyset$, then:

α is independent of $\{\beta_1, \dots, \beta_n\}$ and $\alpha \in \text{Act}(s_i)$ for $0 \leq i \leq n$

A too simplistic dependency condition (1)

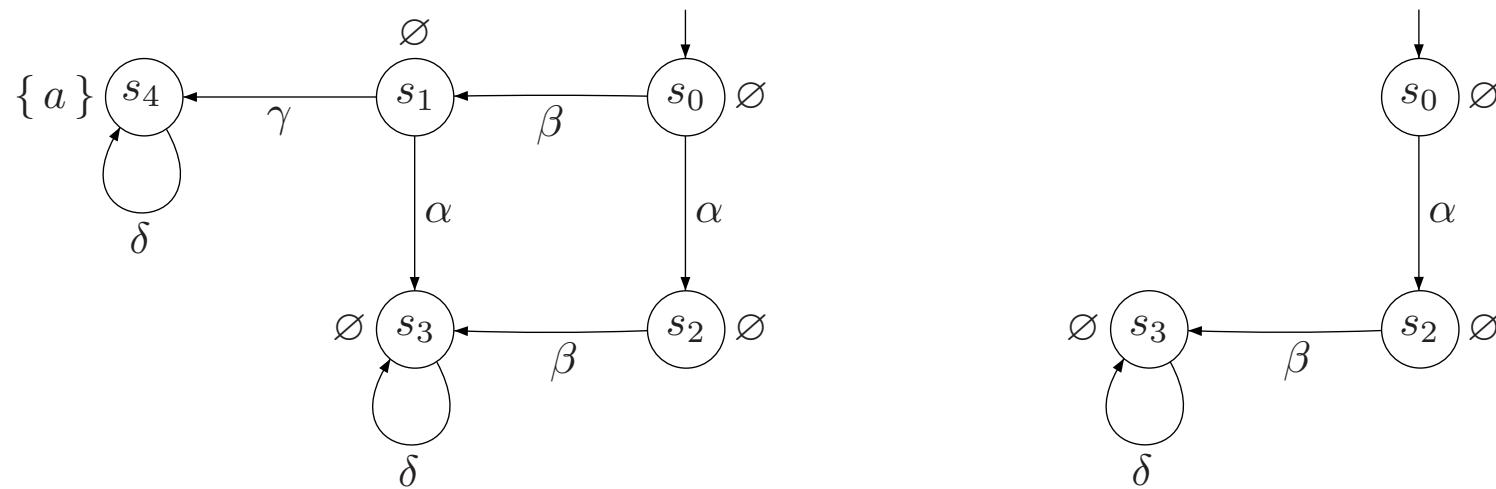
(A2')

If $ample(s) \neq Act(s)$

then $\alpha \in ample(s)$ is independent of $Act(s) \setminus ample(s)$.

this is a consequence of (A2), but in itself too weak: cf. next example

A too simplistic dependency condition (2)



Stutter condition

(A3) Stutter condition

If $ample(s) \neq Act(s)$ then any $\alpha \in ample(s)$ is a stutter action.

- All ample actions of a non-fully expanded state are stutter actions
- (A3) ensures that:
 - changing $\beta_1, \dots, \beta_n \alpha$ into $\alpha \beta_1 \dots \beta_n$, and
 - changing $\beta_1 \beta_2 \beta_3 \dots$ into $\alpha \beta_1 \beta_2 \beta_3 \dots$yields stutter-equivalent executions

Correctness of transformation (1)

Let ϱ be a finite execution fragment in $\text{Reach}(TS)$ of the form

$$s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$$

where $\beta_i \notin \text{ample}(s)$, for $0 < i \leq n$, and $\alpha \in \text{ample}(s)$.

If $\text{ample}(s)$ satisfies (A1) through (A3), then there exists an execution fragment ϱ' :

$$s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} t_{n-1} \xrightarrow{\beta_n} t$$

such that $\boxed{\varrho \triangleq \varrho'}$

Proof

Correctness of transformation (2)

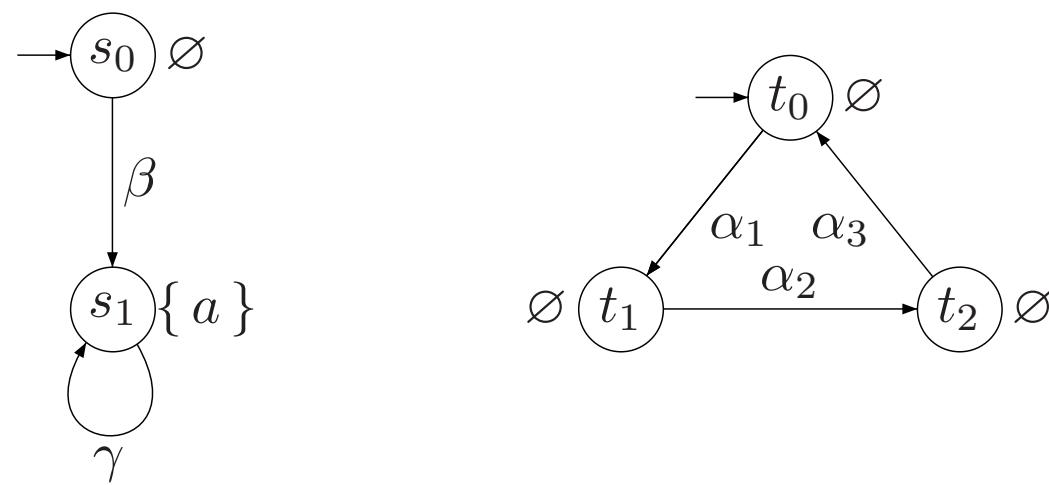
Let $\rho = s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} s_2 \xrightarrow{\beta_3} \dots$ be an infinite execution fragment in $\text{Reach}(TS)$ where $\beta_i \notin \text{ample}(s)$, for $i > 0$.

If $\text{ample}(s)$ satisfies (A1) through (A3), then there exists an execution fragment ρ' :

$$s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} t_2 \xrightarrow{\beta_3} \dots$$

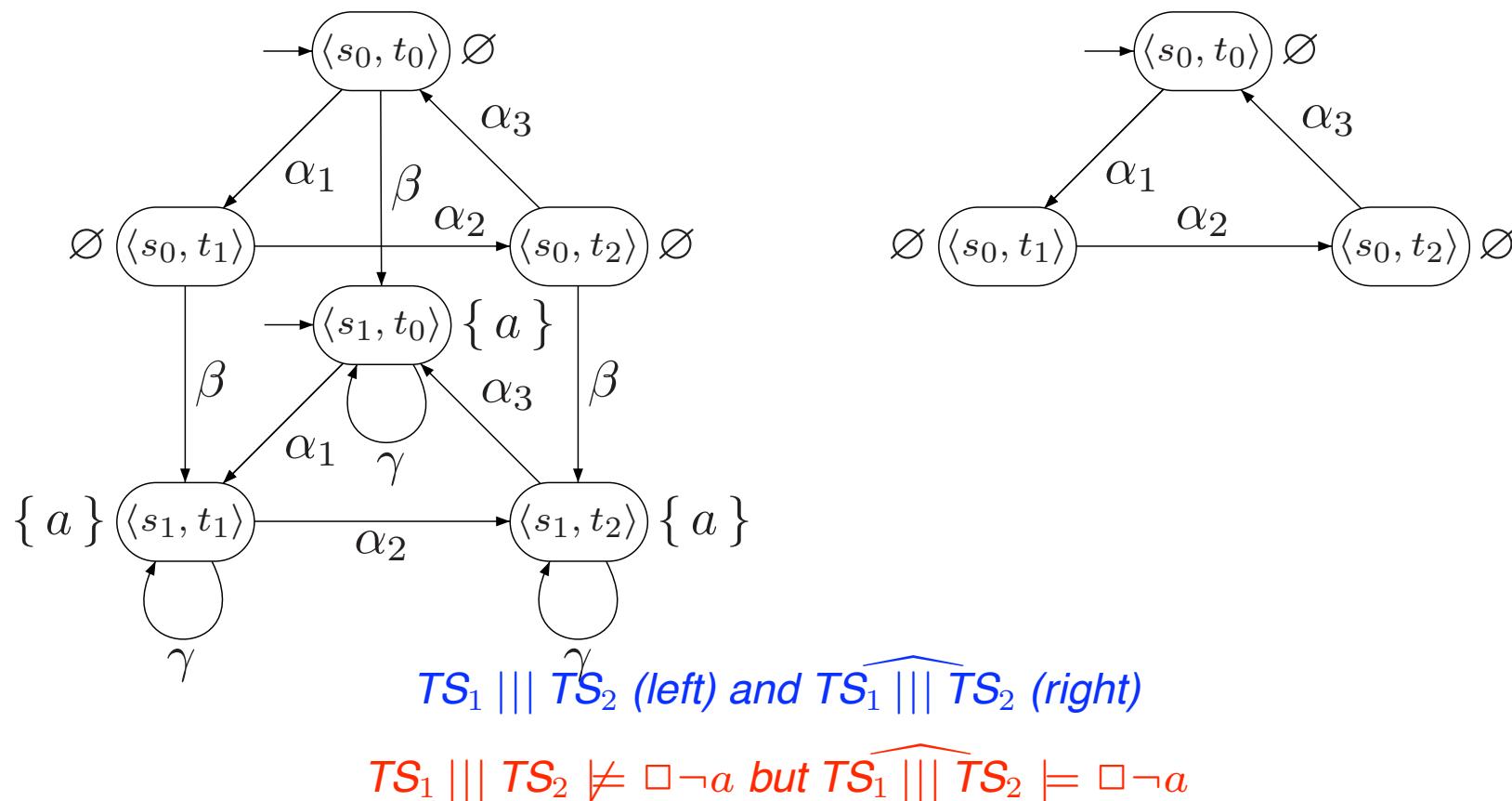
where $\alpha \in \text{ample}(s)$ and $\boxed{\rho \triangleq \rho'}$

Necessity of cycle condition: example (1)



transition systems TS_1 and TS_2

Necessity of cycle condition: example (2)



Cycle condition

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in Act(s_i)$, for some $0 < i \leq n$,
there exists $j \in \{1, \dots, n\}$ such that $\alpha \in ample(s_j)$.

any enabled action in some state on a cycle must be selected in some state on that cycle

Overview of ample-set conditions

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \triangleq TS$.

as $Traces(\widehat{TS}) \subseteq Traces(TS)$, it follows $\widehat{TS} \trianglelefteq TS$

Proof