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Advanced model checking

Timelock, time-divergence and Zenoness

• A path is time-divergent if its execution time is infinite

ExecTime(s0
d0−−→ s1

d1−−→ . . .) =
∑
i=0

di = ∞

• TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

• TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions
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Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ::= true
∣∣∣ a

∣∣∣ g
∣∣∣ Φ∧Φ

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP, g ∈ ACC(C) and ϕ is a path-formula defined by:

ϕ ::= �JΦ

where J ⊆ IR�0 is an interval whose bounds are naturals

�JΦ asserts that a Φ-state is reached at time instant t ∈ J

Forms of J : [n, m], (n, m], [n, m) or (n, m) for n, m ∈ N and n � m

for right-open intervals, m = ∞ is also allowed
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Some abbreviations

“Always” is obtained in the following way:

∃�J Φ = ¬∀�J ¬Φ and ∀�J Φ = ¬∃�J ¬Φ

∃�J Φ asserts that for some path during the interval J , Φ holds

∀�J Φ requires this to hold for all paths

Standard � and �-operator are obtained as follows:

� Φ = �[0,∞) Φ and � Φ = �[0,∞) Φ
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Timed properties in TCTL
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Semantics of TCTL

For state s = 〈�, η〉 in TS(TA) the satisfaction relation |= is defined by:

s |= true

s |= a iff a ∈ L(�)

s |= g iff η |= g

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Pathsdiv(s)

s |= ∀ϕ iff π |= ϕ for all π ∈ Pathsdiv(s)

path quantification over time-divergent paths only
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The ⇒ relation
For infinite path fragments in TS(TA) performing ∞ many actions let:

s0

d0⇒ s1

d1⇒ s2

d2⇒ . . . with d0, d1, d2 . . . � 0

denote the equivalence class containing all infinite path fragments
induced by execution fragments of the form:

s0
d1
0→ . . .

d
k0
0→︸ ︷︷ ︸

time passage of
d0 time-units

s0+d0
α1−→ s1

d1
1→ . . .

d
k1
1→︸ ︷︷ ︸

time passage of
d1 time-units

s1+d1
α2−→ s2

d1
2→ . . .

d
k2
2→︸ ︷︷ ︸

time passage of
d2 time-units

s2+d2
α3−→ . . .

where ki ∈ IN, di ∈ IR�0 and αi ∈ Act such that
∑ki

j=1 dj
i = di.

For π ∈ s0

d0⇒ s1

d1⇒ . . . we have ExecTime(π) =
∑

i�0 di
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Semantics of TCTL

For time-divergent path π ∈ s0

d0⇒ s1

d1⇒ . . ., we have

π |= Φ U J Ψ iff ∃ i � 0. si+d |= Ψ for some d ∈ [0, di] with
i−1∑
k=0

dk + d ∈ J and

∀j � i. sj+d′ |= Φ ∨ Ψ for any d′ ∈ [0, dj] with

j−1∑
k=0

dk + d′ �
i−1∑
k=0

dk + d

where for si = 〈�i, ηi〉 and d � 0 we have si+d = 〈�i, ηi+d〉
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TCTL-semantics for timed automata

• Let TA be a timed automaton with clocks C and locations Loc

• For TCTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ Loc × Eval(C) | s |= Φ }

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

TA |= Φ if and only if ∀�0 ∈ Loc0. 〈�0, η0〉 |= Φ

where η0(x) = 0 for all x ∈ C
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Example
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Timed CTL versus CTL

• Due to ignoring time-convergent paths in TCTL semantics possibly:

TS(TA) |=TCTL ∀ϕ︸ ︷︷ ︸
TCTL semantics

but TS(TA) 
|=CTL ∀ϕ︸ ︷︷ ︸
CTL semantics

– CTL semantics considers all paths, timed CTL only time-divergent paths

• For Φ = ∀�
(
on −→ ∀�off

)
and the light switch

TS(Switch) |=TCTL Φ whereas TS(TA) 
|=CTL Φ

– there are time-convergent paths on which location on is never left
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Characterizing timelock

• TCTL semantics is also well-defined for TA with timelock

• A state contains a timelock whenever no time-divergent paths
emanate from it

• A state is timelock-free if and only if it satisfies ∃�true

– some time-divergent path satisfies �true, i.e., there is � 1 time-divergent path
– note: for fair CTL, the states in which a fair path starts also satisfy ∃�true

• TA is timelock-free iff ∀s ∈ Reach(TS(TA)): s |= ∃�true

• Timelocks can thus be checked by a timed CTL formula
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TCTL model checking
• TCTL model-checking problem: TA |= Φ for non-zeno TA

TA |= Φ︸ ︷︷ ︸
timed automaton

iff TS(TA) |= Φ︸ ︷︷ ︸
infinite transition system

– timelocks in TA are irrelevant as their presence can be checked

• Idea: consider a finite quotient of TS(TA) wrt. a bisimulation

– TS(TA)/∼= is a region transition system and denoted RTS(TA)

– dependence on Φ is ignored for the moment . . .

• Transform TCTL formula Φ into an “equivalent” CTL-formula Φ̂

• Then: TA |=TCTL Φ iff RTS(TA)︸ ︷︷ ︸
finite transition system

|=CTL Φ̂
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Eliminating timing parameters

• Eliminate all intervals J 
= [0,∞) from TCTL formulas

– introduce a fresh clock, z say, that does not occur in TA
– s |= ∃�JΦ iff reset z in s |= z ∈ J ∧Φ

– deal with ∃� JΦ, ∀� JΦ, and ∀� JΦ in a similar way

• Formally: for any state s of TS(TA) it holds:

s |= ∃�JΦ iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∃�
(
(z ∈ J) ∧ Φ

)

– where TA ⊕ z is TA (over C) extended with z �∈ C

• E.g., ∃��2 Φ yields ∃� ((z � 2) → Φ)

atomic clock constraints are atomic propositions, i.e., a CTL formula results
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Clock equivalence

Impose an equivalence, denoted ∼=, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA
and Φ:

η ∼= η′ ⇒ (η |= g iff η′ |= g)

– no diagonal clock constraints are considered
– all the constraints in TA and Φ are thus either of the form x � c or x < c

(B) Time-divergent paths emanating from equivalent states are
“equivalent”

– this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under ∼= is finite
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Clock equivalence

• Correctness criteria (A) and (B) are ensured if equivalent states:

– agree on the integer parts of all clock values, and
– agree on the ordering of the fractional parts of all clocks

⇒ This yields a denumerable infinite set of equivalence classes

• Observe that:

– if clocks exceed the maximal constant with which they are compared their
precise value is not of interest

⇒ The number of equivalence classes is then finite (C)
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Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula Φ (both over AP and C)
Output: TA |= Φ

bΦ := eliminate the timing parameters from Φ;

determine the equivalence classes under ∼=;

construct the region transition system TS = RTS(TA);

apply the CTL model-checking algorithm to check TS |= bΦ;

TA |= Φ if and only if TS |= bΦ

how does clock equivalence look like?
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First observation

• η |= x < c whenever η(x) < c, or equivalently, �η(x)� < c

– 
d� = max{ c ∈ IN | c � d } and frac(d) = d − 
d�

• η |= x � c whenever �η(x)� < c or �η(x)� = c and frac(x) = 0

⇒ η |= g only depends on �η(x)�, and whether frac(η(x)) = 0

• Initial suggestion: clock valuations η and η′ are equivalent if:

�η(x)� = �η′(x)� and frac(η(x)) = 0 iff frac(η′(x)) = 0

• Note: it is crucial that in x < c and x � c, c is a natural
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Example
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Second observation

• Consider location � with Inv(�) = true and only outgoing transitions:

– one guarded with x � 2 (action α) and y > 1 (action β)

• Let state s = 〈�, η〉 with 1 < η(x) < 2 and 0 < η(y) < 1

– α and β are disabled, only time may elapse

• Transition that is enabled next depends on x < y or x � y

– e.g., if frac(η(x)) � frac(η(y)), action α is enabled first

• Suggestion for strengthening of initial proposal for all x, y ∈ C by:

frac(η(x)) � frac(η(y)) if and only if frac(η′(x)) � frac(η′(y))

c© JPK 19



Advanced model checking

Example
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Final observation

• So far, clock equivalence yield a denumerable though not finite
quotient

• For TA |= Φ only the clock constraints in TA and Φ are relevant

– let cx ∈ IN the largest constant with which x is compared in TA or Φ

⇒ If η(x) > cx then the actual value of x is irrelevant

– constraints on ∼= so far are only relevant for clock values of x (y) up to cx (cy)
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Clock equivalence

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ∼= η′, if:

(1) for any x ∈ C: (η(x) > cx)∧ (η′(x) > cx) or (η(x) � cx)∧ (η′(x) � cx)

(2) for any x ∈ C: if η(x), η′(x) � cx then:

�η(x)� = �η′(x)� and frac(η(x)) = 0 iff frac(η′(x)) = 0

(3) for any x, y ∈ C: if η(x), η′(x) � cx and η(y), η′(y) � cy, then:

frac(η(x)) � frac(η(y)) iff frac(η′(x)) � frac(η′(y)).

s ∼= s′ iff � = �′ and η ∼= η′
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Regions

• The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) | η ∼= η′ }

• The state region of s = 〈�, η〉 ∈ TS(TA) is defined by:

[s] = 〈�, [η]〉 = { 〈s, η′〉 | η′ ∈ [η] }
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Example
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