© JPK

Timed CTL
Lecture #15 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

June 26, 2009

Advanced model checking

Timelock, time-divergence and Zenoness

e A path is time-divergent if its execution time is infinite

. d d
EzxecTime(sg —> s1 —> ...) = E d; = o0
i=0

e TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

e TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions

© JPK 1

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:
O = true ‘ o ‘ p | <I>A<I>‘ - ‘ 390“790
where a € AP, g € ACC(C') and ¢ is a path-formula defined by:
=< D

where J C IR- is an interval whose bounds are naturals
&/ asserts that a ®-state is reached at time instant t € J
Forms of J: [n,m]|, (n,m], [n,m) or (n,m) forn,m € Nandn < m

for right-open intervals, m = oo is also allowed

© JPK 2

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:

107 = vo/-d and VvO/® = 307 @

J0O07 ® asserts that for some path during the interval J, ® holds
VO’ & requires this to hold for all paths

Standard O and <-operator are obtained as follows:

OP =00 and Ob =00 ¢

© JPK

Advanced model checking

Timed properties in TCTL

© JPK

Advanced model checking

Semantics of TCTL

For state s = (¢,n) in TS(TA) the satisfaction relation |~ is defined by:

s = true

s Ea Iff
SE=g Iff
sE P iff
sEPAY Iff
s = dp Iff
s = Vo Iff

ae€ L({)
nEy
nots = &

(s =®)and (s = V)
7 = ¢ for some 7 € Pathsg,(s)

7 = @ for all 7 € Pathsg,(s)

path quantification over time-divergent paths only

© JPK

Advanced model checking

The = relation
For infinite path fragments in TS(TA) performing co many actions let:

Sog—> 81— S9g——— ... Withdo,dl,dg...>o

denote the equivalence class containing all infinite path fragments
Induced by execution fragments of the form:

1 ko 1 k1 1 ko
dg dy aq dy dy g d3 dy a3
S0 & ... — Sot+dy — S1 ... — S1+d1 — S2 ... — Sotdy —
VO Vo Vo
time passage of time passage of time passage of
dg time-units dq time-units do time-units

where k; € IN, d; € IRy and «; € Act such that Zf;l d{ = d;.

dg dy :
Form € sp==s1== ... we have EzecTime(r) =} .. d;

© JPK 6

Advanced model checking

Semantics of TCTL

d d
For time-divergent path = € s :0:> S1 :1:> ..., we have

r=®U’ T iff 3i>0.s+d = T for some d € [0, d;] with
1—1
deereJ and
k=0

Vi <i.sj+d = ®VvWforany d € |0,d;] with
7—1 1—1
Y dp+d <D dptd
k=0 k=0

where for s; = (¢;,m;) and d > 0 we have s;+d = (¢;, n;+d)

© JPK

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(¢) = {selLocxEval(lC)|sE=®}

e TA satisfies TCTL-formula @ iff & holds in all initial states of TA:
TAE® ifandonlyif V¢, € Locy. (£g,n9) FE P

where ng(xz) =0forallz € C

© JPK 8

Advanced model checking

Example

© JPK

Advanced model checking

Timed CTL versus CTL

e Due to ignoring time-convergent paths in TCTL semantics possibly:

:I-S(TA) ’:TCTL \V/Qe but IS(TA) I#CTL VQQ

TCTL semantics CTL semantics

— CTL semantics considers all paths, timed CTL only time-divergent paths

e For® = VO(on — V<off) and the light switch

TS(Switch) =rer, @ whereas TS(TA) e, ©

— there are time-convergent paths on which location on is never left

© JPK 10

Advanced model checking

Characterizing timelock

e TCTL semantics is also well-defined for TA with timelock

e A state contains a timelock whenever no time-divergent paths

emanate from it

e A state is timelock-free if and only if it satisfies d0true

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent
— note: for fair CTL, the states in which a fair path starts also satisfy 40true

e TA is timelock-free iff Vs € Reach(TS(TA)): s = d0true

e Timelocks can thus be checked by a timed CTL formula

path

© JPK

11

Advanced model checking

TCTL model checking
e TCTL model-checking problem: TA = & for non-zeno TA

TAE® iff TS(TA) = @
Lol N U

timed automaton infinite transition system

— timelocks in TA are irrelevant as their presence can be checked

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on & is ignored for the moment . . .

e Transform TCTL formula ¢ into an “equivalent” CTL-formula o

® Then TA ‘:TCTL d |ff BTS(TAl):CTL EI\)

finite transition system

© JPK 12

Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # |0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA
— sl=30'diffresetzins =z € JAD
— deal with 30 /®, v /&, and YO /@ in a similar way

e Formally: for any state s of TS(TA) it holds:

sk=3070 iff s{z:=0} E3IO((zeJ)AP)

state in TS(TA @ z)

— where TA @ z is TA (over C) extended with z € C
e E.g., 305? @ yields 30 ((z < 2) — D)

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK 13

Advanced model checking

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints ¢ in TA
and o:

n=n = (nEg it v E=g)

— no diagonal clock constraints are considered
— all the constraints in TA and & are thus either of the formz < corxz < ¢

(B) Time-divergent paths emanating from equivalent states are
“equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK 14

Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared their
precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK 15

Advanced model checking

Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula $ (both over AP and C)
Output: TA |= @

® := eliminate the timing parameters from &;

determine the equivalence classes under =;

construct the region transition system TS = RTS(TA);
apply the CTL model-checking algorithm to check TS |= D;
TA |= @ if and only if TS |= @

how does clock equivalence look like?

© JPK 16

Advanced model checking

First observation

e 1 = x < cwhenever n(z) < ¢, or equivalently, [n(x)] < ¢
— |d|] = max{c € IN | c<d}and frac(d) = d— |d]

e 1 =x < cwhenever |n(x)| <cor|n(z)| =cand frac(x) =0
= 1 = g only depends on [7(x)], and whether frac(n(z)) = 0

e Initial suggestion: clock valuations n and n’ are equivalent if:
(n(z)] = [n'(z)] and frac(n(x)) = 0iff frac(n’(x)) = 0

e Note: itis crucial thatin x < cand z < ¢, cis a natural

© JPK

17

Advanced model checking

Example

© JPK

18

Advanced model checking

Second observation

e Consider location ¢ with Inv(¢) = true and only outgoing transitions:

— one guarded with = > 2 (action «) and y > 1 (action 3)

e Letstate s = ({,n) with1l <n(z) <2and0 < n(y) < 1

— « and 3 are disabled, only time may elapse

e Transition that is enabled next dependsonx < yorxz >y

— e.0,, if frac(n(x)) > frac(n(y)), action « is enabled first

e Suggestion for strengthening of initial proposal for all z,y € C' by:

frac(n(z)) < frac(n(y)) ifandonlyif frac(n'(z)) < frac(n'(y))

© JPK 19

Advanced model checking

Example

© JPK

20

Advanced model checking

Final observation

e SO far, clock equivalence yield a denumerable though not finite
guotient

e For TA = @ only the clock constraints in TA and ¢ are relevant

— let ¢, € IN the largest constant with which x is compared in TA or $

= If n(z) > ¢, then the actual value of z is irrelevant

— constraints on = so far are only relevant for clock values of = (y) up to ¢, (cy)

© JPK 21

Advanced model checking

Clock equivalence

Clock valuations 7, " € Eval(C') are equivalent, denoted n = 7/, if:
(1) forany z € C: (n(z) > cz) A (n'(x) > cz) or (n(x) <) A (7 (x) < ¢p)

(2) forany x € C: if n(x),n'(z) < ¢, then:

[n(z)] = [7'(x)] and frac(n(x)) = 0iff frac(n'(z)) =0

(3) forany z,y € C: if n(x),n' (z) < ¢, and n(y),n'(y) < ¢y, then:
frac(n(x)) < frac(n(y)) iff - frac(n'(z)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK 22

Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted |7], is defined by:

m = {n eEval(C) |n=7n"}

e The state region of s = (¢,n7) € TS(TA) is defined by:

[s] = (&) = {{s;n) [0 €n]}

© JPK

23

Advanced model checking

Example

© JPK

24

