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Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

@:::true‘a‘g|<1>/\<1>‘ —1(13‘390‘\790

where a € AP, g € ACC(C') and ¢ is a path-formula defined by:

p=o o
where J C IR-( is an interval whose bounds are naturals

abbreviate [c, c0) by x > ¢, (¢1,¢c2] by ¢1 < = < ¢4 etc.
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Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(¢) = {selLocxEval(lC)|sE=®}

e TA satisfies TCTL-formula @ iff & holds in all initial states of TA:
TAE® ifandonlyif V¢, € Locy. (£g,n9) FE P

where ng(xz) =0forallz € C
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Advanced model checking

TCTL model checking

e TCTL model-checking problem: TA = & for non-Zeno TA

TAE® iff TS(TA) = ®
nod W B ES

timed automaton infinite transition system

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on & is ignored for the moment . . .

e Transform TCTL formula ¢ into an “equivalent” CTL-formula )

o Then TA ‘:TCTL P |ff BTS(TAZ ):CTL EI\)

finite transition system
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Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # [0, o) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA

e Formally: for any state s of TS(TA) it holds:

stE=3I07e iff s{z:=0} E3IO((z€J)AD)

. Vv
state in TS(TA @ z)

— where TA @ z is TA (over C) extended with z ¢ C

atomic clock constraints are atomic propositions, i.e., a CTL formula results
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Advanced model checking

Correctness

Let TA = (Loc, Act, C, —, Locy, Inv, AP, L). For clock z £ C, let
TA® z = (Loc,Act,CU{z},—,Locg, Inv,AP, L).
For any state s of TS(TA) it holds that:

L sE3(@UIT) iff  s{z:=0} 3((@ VU ((z € J) A q;))

state in TS(TA @ z)

2. s EV(@U7W) iff  s{z:=0} ]:V((CID\/\IJ)U((zGJ)/\\II)>

~~
state in TS(TA @ z)
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Advanced model checking

Clock equivalence =

(A) Equivalent clock valuations satisfy the same clock constraints g:
n=n = kg iff 7 Eg)

(B) Time-divergent paths of equivalent states are “equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite
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Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

= The number of equivalence classes is then finite (C)
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Advanced model checking

Clock equivalence

Clock valuations 7, " € Eval(C') are equivalent, denoted n = 7/, if:
(1) forany z € C: n(z) > c, Iff n'(x) > c,

(2) forany x € C: if n(x),n'(z) < ¢, then:
[n(z)] = [n'(z)] and frac(n(z)) = 0iff frac(n'(z)) = 0

(3) forany z,y € C: if n(x),n' (z) < ¢, and n(y),n'(y) < ¢y, then:
frac(n(z)) < frac(n(y)) it frac(n'(x)) < frac(n'(y))

c; IS the largest constant with which x is compared
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Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted |7], is defined by:

m = {n eEval(C) |n=7n"}

e The state region of s = (¢,n7) € TS(TA) is defined by:

[s] = (&) = {{s;n) [0 €n]}
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Advanced model checking

Example c,=2, c,=1
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Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

|O’!*HC$ < | Bval(0)/= | < C]! % 21C1=1 H(ch—i—Z)

~~

reC number of regions zeC

where for the upper bound it is assumed that c, > 1 forany x € C

the number of state regions is |Loc| times larger
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Advanced model checking

Proof
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Advanced model checking

Preservation of atomic properties

1. Forn,n" € Eval(C) such that n = 7"

nkEg ifandonlyif ' | gforany g e ACC(TAU @)

2. For s,s" € TS(TA) such that s = s’

st=a ifandonlyif s = aforanyac AP’

where AP’ includes all propositions in TA and atomic clock constraints in TA and &
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Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’
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Advanced model checking

Proof
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Advanced model checking

Region automaton: intuition

e Region automaton = quotient of TS(TA) under =
e State regions are states in quotient transition system under =

e Transitions in region automaton “mimic” those in TS(TA)

e Delays are abstract

— the exact delay is not recorded, only that some delay took place
— if any clock x exceeds c,, delays are self-loops

e Discrete transitions correspond to actions
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Advanced model checking

a0

A simple example

r>2:«
reset(x)
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Advanced model checking

Unbounded and successor regions

e Clock region ro, = {1 € Eval(C) | Vx € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted »’ = succ(r), if either:

1. r=randr =17/, or
2. T £ roe, r £ 1 @nd Vn € r:
3d € Rsg. (p+d €’ and V0<d <d.np+d €rur’)
e The successor region: succ({{,r)) = (¢, succ(r))

e Note: the location invariants are ignored so far!

© JPK 18



Advanced model checking

Example
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Advanced model checking

Time convergence (without proof)

For non-zeno TA and m = sg s1 S2... a path in TS(TA):

(a) wistime-convergent = d state region (¢, r) such that for some j:

s; € (L,ry foralli>j

(b) If 4 state region (¢, r) with » # r., and an index j such that:
s; € (,ry foralli>j
then = Is time-convergent

time-convergent paths are paths that only perform delays from some time instant on
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Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S, Act, —, I, AP, L) let:

RTS(TA,®) = (S, Actu {7 },—',I,AP',L’) with
e '=5/=={[s]|seS}tand I'={]s] | s € I}, the state regions

e L'({t,r))=L({) U{gcAP'\AP |r =g}

¢ <I2P =g resetDinr = Inv({)

(L, ry =" (¢, reset D inr)

e —'is defined by:

r = Inv(¢) succ(r) = Inv(4)

and (0.1) = (£, succ(r))
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Advanced model checking

Example: simple light switch

x = 2 : switch_off

x0<n2

reset (x)
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Advanced model checking

Correctness theorem [aiur and pill, 1989]

For non-Zeno timed automaton TA and TCTL formula ®:

TAE=® iff RTS(TA, ®) = @
TCTL semantics CTL semantics
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Advanced model checking

Proof
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Advanced model checking

Timelock freedom

Non-zeno TA is timelock-free iff no reachable state in RTS(TA) is terminal

timelocks can thus be checked by a reachability analysis of RTS(TA)
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Advanced model checking

off

xZO'

off

O<x<1

SW_0JJ SW-0
= sw-on ﬁ

on
r=1

Example

1<z <2

on
1<x<?2

on
x>2
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Advanced model checking

TCTL model-checking algorithm

Main ideas:

e Equip TA with a single clock

— as opposed to a single clock for each (timed) subformula ® U7 ¥

e Introduce atomic proposition for each timed subformula

AN

e Converttimed CTL formula ® into ®

e And check ® on RTS(TA)

— using standard CTL model checking
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Advanced model checking

Extra atomic propositions

TCTL formula @ = vO<3 (3020 A 302503 (hA (2 = 9)) )

_ '
. _J/
—
N - 3 _J/
TV
=Wy,
. _J/
'
:\115

The set of propositions of R contains:

e the propositions a and b, and the clock constraint xt=9
e the propositions ay, through ay,, and as
e the clock constraints z < 3, z € [2,6], z € ]2,5[and z > 3
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Advanced model checking

Input: non-zeno, timelock-free timed automaton TA and TCTL formula &
Output: “yes” if TA = &, “no” otherwise.

R :=RTS(TA® z, P); (* with state space S,s and labeling L *)
forall i < |® | do
forall ¥ € Sub(®) with | ¥ | =i do

switch(W):

true : Satp(W¥) := Sy

a . SatR(\I/) = {S € Shris | a € Lrts(s) };

Uy A Wy : Satp(V) :={s € Sy | {a\yl, CL\I/2} C Lys(s)

_|\Ij/ SatR(\Ij) = {S E S’I"tS | a/\I// € LT'tS(S) },

(W, U/ Wy) ¢ Satp(P) = SatCTL(a( (aw, Vap,)U((z € J) Aag,)) );

\V/(\Ill UJ‘IfQ) . SatR(\I/) = SatCTL(V( (a\I,l V CL\I/2) U ( (Z € J) A\ CL\I/2) ) ),
end switch

(* add a to the labeling of all state regions where W holds *)
forall s € Sy with s{z := 0} € Satp(¥) do L (s) := Lys(s) U {ayg } 0d;
od
od

if 1,45 C Satr(®P) then return “yes” else return “no” fi
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Advanced model checking

Time complexity

For timed automaton TA and TCTL formula &, the model-checking problem
TA |= @ can be determined intime O (N+K) - | ® |),

where N and K are the number of states and transitions in RTS(TA, &)
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Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. Model checking safety, reachability, or w-regular properties in TA is
PSPACE-complete

3. Model checking LTL and CTL against TA is PSPACE-complete
4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for TCTL is undecidable

all facts without proof

© JPK 31



