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Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ::= true
∣∣∣ a

∣∣∣ g
∣∣∣ Φ∧Φ

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP, g ∈ ACC(C) and ϕ is a path-formula defined by:

ϕ ::= Φ UJ Φ

where J ⊆ IR�0 is an interval whose bounds are naturals

abbreviate [c,∞) by x > c, (c1, c2] by c1 < x � c2 etc.
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Advanced model checking

TCTL-semantics for timed automata

• Let TA be a timed automaton with clocks C and locations Loc

• For TCTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ Loc × Eval(C) | s |= Φ }

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

TA |= Φ if and only if ∀�0 ∈ Loc0. 〈�0, η0〉 |= Φ

where η0(x) = 0 for all x ∈ C
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Advanced model checking

TCTL model checking

• TCTL model-checking problem: TA |= Φ for non-Zeno TA

TA |= Φ︸ ︷︷ ︸
timed automaton

iff TS(TA) |= Φ︸ ︷︷ ︸
infinite transition system

• Idea: consider a finite quotient of TS(TA) wrt. a bisimulation

– TS(TA)/∼= is a region transition system and denoted RTS(TA)

– dependence on Φ is ignored for the moment . . .

• Transform TCTL formula Φ into an “equivalent” CTL-formula Φ̂

• Then: TA |=TCTL Φ iff RTS(TA)︸ ︷︷ ︸
finite transition system

|=CTL Φ̂
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Advanced model checking

Eliminating timing parameters

• Eliminate all intervals J 	= [0,∞) from TCTL formulas

– introduce a fresh clock, z say, that does not occur in TA

• Formally: for any state s of TS(TA) it holds:

s |= ∃�JΦ iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∃�
(
(z ∈ J) ∧ Φ

)

– where TA ⊕ z is TA (over C) extended with z �∈ C

atomic clock constraints are atomic propositions, i.e., a CTL formula results
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Advanced model checking

Correctness

Let TA = (Loc, Act, C, ↪→, Loc0, Inv, AP, L). For clock z 	∈ C, let

TA ⊕ z = (Loc, Act, C ∪ { z }, ↪→, Loc0, Inv, AP, L).

For any state s of TS(TA) it holds that:

1. s |= ∃(Φ UJΨ) iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∃
(
(Φ ∨ Ψ)U

(
(z ∈ J) ∧ Ψ

))

2. s |= ∀(Φ UJΨ) iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∀
(
(Φ ∨ Ψ)U

(
(z ∈ J) ∧ Ψ

))
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Advanced model checking

Clock equivalence ∼=

(A) Equivalent clock valuations satisfy the same clock constraints g:

η ∼= η′ ⇒ (η |= g iff η′ |= g)

(B) Time-divergent paths of equivalent states are “equivalent”

– this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under ∼= is finite
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Advanced model checking

Clock equivalence

• Correctness criteria (A) and (B) are ensured if equivalent states:

– agree on the integer parts of all clock values, and
– agree on the ordering of the fractional parts of all clocks

⇒ This yields a denumerable infinite set of equivalence classes

• Observe that:

– if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

⇒ The number of equivalence classes is then finite (C)
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Advanced model checking

Clock equivalence

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ∼= η′, if:

(1) for any x ∈ C: η(x) > cx iff η′(x) > cx

(2) for any x ∈ C: if η(x), η′(x) � cx then:

�η(x)� = �η′(x)� and frac(η(x)) = 0 iff frac(η′(x)) = 0

(3) for any x, y ∈ C: if η(x), η′(x) � cx and η(y), η′(y) � cy, then:

frac(η(x)) � frac(η(y)) iff frac(η′(x)) � frac(η′(y))

cx is the largest constant with which x is compared
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Advanced model checking

Regions

• The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) | η ∼= η′ }

• The state region of s = 〈�, η〉 ∈ TS(TA) is defined by:

[s] = 〈�, [η]〉 = { 〈s, η′〉 | η′ ∈ [η] }
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Advanced model checking

Example cx=2, cy=1
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Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

|C|! ∗
∏
x∈C

cx �
∣∣ Eval(C)/∼=︸ ︷︷ ︸

number of regions

∣∣ � |C|! ∗ 2|C|−1 ∗
∏
x∈C

(2cx + 2)

where for the upper bound it is assumed that cx � 1 for any x ∈ C

the number of state regions is |Loc| times larger
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Advanced model checking

Proof
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Advanced model checking

Preservation of atomic properties

1. For η, η′ ∈ Eval(C) such that η ∼= η′:

η |= g if and only if η′ |= g for any g ∈ ACC(TA ∪ Φ)

2. For s, s′ ∈ TS(TA) such that s ∼= s′:

s |= a if and only if s′ |= a for any a ∈ AP′

where AP′ includes all propositions in TA and atomic clock constraints in TA and Φ
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Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP′
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Advanced model checking

Proof
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Advanced model checking

Region automaton: intuition

• Region automaton = quotient of TS(TA) under ∼=

• State regions are states in quotient transition system under ∼=

• Transitions in region automaton “mimic” those in TS(TA)

• Delays are abstract

– the exact delay is not recorded, only that some delay took place
– if any clock x exceeds cx, delays are self-loops

• Discrete transitions correspond to actions
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Advanced model checking

A simple example

� x � 2 : α
reset(x)

� � �

� � �τ

τ τ

τ

ττ

αα

x=0 0<x<1 x=1

x>2 x=2 1<x<2
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Advanced model checking

Unbounded and successor regions

• Clock region r∞ =
{

η ∈ Eval(C) | ∀x ∈ C. η(x) > cx

}
is unbounded

• r′ is the successor (clock) region of r, denoted r′ = succ(r), if either:

1. r = r∞ and r = r′, or

2. r 	= r∞, r 	= r′ and ∀η ∈ r:

∃d ∈ IR>0. (η+d ∈ r′ and ∀0 � d′ � d. η+d′ ∈ r ∪ r′)

• The successor region: succ(〈�, r〉) = 〈�, succ(r)〉

• Note: the location invariants are ignored so far!
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Advanced model checking

Example
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Advanced model checking

Time convergence (without proof)

For non-zeno TA and π = s0 s1 s2 . . . a path in TS(TA):

(a) π is time-convergent ⇒ ∃ state region 〈�, r〉 such that for some j:

si ∈ 〈�, r〉 for all i � j

(b) If ∃ state region 〈�, r〉 with r 	= r∞ and an index j such that:

si ∈ 〈�, r〉 for all i � j

then π is time-convergent

time-convergent paths are paths that only perform delays from some time instant on
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Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S, Act,→, I, AP, L) let:

RTS(TA, Φ) = (S′, Act ∪ { τ },→ ′, I, AP′, L′) with

• S′ = S/ ∼= = { [s] | s ∈ S } and I ′ = { [s] | s ∈ I }, the state regions

• L′(〈�, r〉) = L(�) ∪ { g ∈ AP′ \ AP | r |= g }

• →′ is defined by:
�

g:α,D
↪→ �′ r |= g reset D in r |= Inv(�′)

〈�, r〉 α−−→′ 〈�′, reset D in r〉

and
r |= Inv(�) succ(r) |= Inv(�)

〈�, r〉 τ−→′ 〈�, succ(r)〉
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Advanced model checking

Example: simple light switch

off on

switch on
x � 2

reset(x)

x = 2 : switch off

x� 0 x� 1 x� 2

x� 1 x� 2

0� x� 1 1� x� 2 x� 2

x� 21� x� 20� x� 1

off off off off off off

on on on on on

x� 0
on

switch on

sw
itch

off
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Advanced model checking

Correctness theorem [Alur and Dill, 1989]

For non-Zeno timed automaton TA and TCTL� formula Φ:

TA |= Φ| {z }
TCTL semantics

iff RTS(TA, Φ) |= Φ| {z }
CTL semantics
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Advanced model checking

Proof
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Advanced model checking

Timelock freedom

Non-zeno TA is timelock-free iff no reachable state in RTS(TA) is terminal

timelocks can thus be checked by a reachability analysis of RTS(TA)
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Advanced model checking

Example

off on

switch on

switch off
x � 2

reset(x)

1 � x < 2

off
x=0

off
x=1

off
x=2

off
x>2

on
x=0

on
x=1

on
x=2

on
x>2

off
0<x<1

off
1<x<2

on
0<x<1

on
1<x<2

sw offsw offsw on
sw on sw on sw on sw on sw on
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Advanced model checking

TCTL model-checking algorithm

Main ideas:

• Equip TA with a single clock

– as opposed to a single clock for each (timed) subformula Φ UJ Ψ

• Introduce atomic proposition for each timed subformula

• Convert timed CTL formula Φ into Φ̂

• And check Φ̂ on RTS(TA)

– using standard CTL model checking
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Advanced model checking

Extra atomic propositions

TCTL formula Φ = ∀��3
( ∃�[2,6]a︸ ︷︷ ︸

=Ψ1

∧ ∃�]2,5[ ∀��3 (b∧ (x = 9))︸ ︷︷ ︸
=Ψ2︸ ︷︷ ︸

=Ψ3︸ ︷︷ ︸
=Ψ4︸ ︷︷ ︸

=Ψ5

)

The set of propositions of R contains:

• the propositions a and b, and the clock constraint x=9

• the propositions aΨ1
through aΨ5

, and aΦ

• the clock constraints z � 3, z ∈ [2, 6], z ∈ ]2, 5[ and z � 3
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Advanced model checking

Input: non-zeno, timelock-free timed automaton TA and TCTL formula Φ
Output: “yes” if TA |= Φ, “no” otherwise.

R := RTS(TA ⊕ z, Φ); (* with state space Srts and labeling Lrts *)
for all i � |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do

switch(Ψ):
true : SatR(Ψ) := Srts ;
a : SatR(Ψ) := { s ∈ Srts | a ∈ Lrts(s) };
Ψ1 ∧ Ψ2 : SatR(Ψ) := { s ∈ Srts | {aΨ1

, aΨ2
} ⊆ Lrts(s) };

¬Ψ′ : SatR(Ψ) := { s ∈ Srts | aΨ′ �∈ Lrts(s) };

∃(Ψ1 UJΨ2) : SatR(Ψ) := SatCTL

“
∃( (aΨ1

∨ aΨ2
) U ((z ∈ J) ∧ aΨ2

) )
”

;

∀(Ψ1 UJΨ2) : SatR(Ψ) := SatCTL

“
∀( (aΨ1

∨ aΨ2
) U ( (z ∈ J) ∧ aΨ2

) )
”

;

end switch

(* add aΨ to the labeling of all state regions where Ψ holds *)
forall s ∈ Srts with s{z := 0} ∈ SatR(Ψ) do Lrts(s) := Lrts(s) ∪ { aΨ } od;

od
od
if Irts ⊆ SatR(Φ) then return “yes” else return “no” fi
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Advanced model checking

Time complexity

For timed automaton TA and TCTL formula Φ, the model-checking problem

TA |= Φ can be determined in time O ((N+K) · |Φ |),

where N and K are the number of states and transitions in RTS(TA, Φ)
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Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. Model checking safety, reachability, or ω-regular properties in TA is
PSPACE-complete

3. Model checking LTL and CTL against TA is PSPACE-complete

4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for TCTL is undecidable

all facts without proof
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