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Advanced model checking

Symbolic reachability analysis

e Use a symbolic representation of timed automata configurations

— needed as there are infinitely many configurations
— example: state regions (¢, [n])

) g:a,D
e For set 2z of clock valuations and edge e = ¢ <= > /(' let:
Post.(z) = {n' € RY, | In € z, d € Ryg.n+d = g An =reset Din (n+d) }

Pre.(z) = {n R, |3n' € 2, d € Rxp.n+d = gAn' =reset Din (n+d) }

e INntuition:

_ 1 € Post,(z) ifforsome n € z and delay d, (£, 1) == ... < (¢/, )
— n € Pre.(z) if forsome n’ € z and delay d, (¢, n) < - ', n"
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Advanced model checking

Zones

e Clock constraints are conjunctions of constraints of the form:

—rz<candz—y < cfor< e {<,<,=,>2,>},andc € Z

e A zone is a set of clock valuations satisfying a clock constraint

— aclock zone for g is the maximal set of clock valuations satisfying g
e Clock zoneof g: [g] ={neEval(C) |nkE=g}
e The state zone of s = (¢, n) is (¢, z) withn € z
e For zone z and edge e, Post.(z) and Pre.(z) are zones

state zones will be used as symbolic representations for configurations
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Advanced model checking

Operations on zones
e Future of z:
— Z ={n+d|ne€zndeERy}

e Past of z:
- Z ={n—d|ne€znde Ry}

e Intersection of two zones:
—zNnz ={n|lneznnez}
e Clock reset in a zone:

—resetDinz = {resetDinn|n €z}

e Inverse clock reset of a zone:

—reset ' Dinz = {n|resetDinn € z}
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Advanced model checking

Symbolic successors and predecessors

o, D

Recall that for edge e = ¢ < "7 o ¢ we have:

Post.(z) = {n' €RY,|3In € 2, deR.n+d = gAn =reset Din (n+d) }
Pre.(z) = {neRy |3In €z decRy.n+d=gAn =resetDin (n+d)}

This can also be expressed symbolically using operations on zones:
Post.(z) = resetDin(Z N [g])

and

Pre.(x) = reset ' Din(zn[D=0]) N [g]
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Advanced model checking

Zone successor: example

g, a, C:=0

® @
zones Z C' — ()](7 Ng)
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Advanced model checking

Zone predecessor: example

q, a, C:=0

® @

[C—0-(ZNn(C=0)ng Z
¥ 4
' 4
Y 4
¥ 4
|f / | h’
z C —0-}(Zn (C =0)) C—oZnC=0)ng
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Advanced model checking

Forward reachability analysis (1)

Forward symbolic transition system of TA is inductively defined by:

e = <£ =Tl 6/) z' = Post,(z)

(£,2) = (¢, %)

Iterative forward reachability analysis computation schemata:

Ty, = { (Lo, 20) | Vx € C. zo(x) =0}
Ty ToU{(¢,2") | 3, z) € Tysuchthat (£,2) = (¢, 2')}

Thi1 = TiU{(¢,2) ] 3L 2) € Ty suchthat (¢, z) = (¢, 2) }

until either the computation stabilizes or reaches a symbolic state containing a goal configuration
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Advanced model checking

Forward reachability analysis (2)
Forward symbolic transition system of TA is inductively defined by:

e = (e =D 6’) z' = Post,(z)

£,2) = (¢, %)

Iterative forward reachability analysis computation schemata:

Ty, = { (Lo, 20) | Vx € C. z9(x) =0}
Tn = Tou{(,2) |3 z2) €Ty (lz)= (¢ 2)andl =/¢ impliesz Z 2"}
T = TeU{,2) ]3¢ 2) €T £z)= (¢, 2)and £ = ¢ impliesz £ 2"}

until either the computation stabilizes or reaches a symbolic state containing a goal
configuration
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Advanced model checking

Forward reachability analysis: intuition
R N x:=1

= <2 x =2
O—0O0——=0—+0
3 3 3
2 2 2
1 1 1
071 2 3 071 2 3 071 2 3
leaving initial entering first leaving first
3 3 3
2 2 2 '
00— 5 3 0 5 3 0712 3
entering second leaving second entering third

© JPK



Advanced model checking

Possible non-termination

The forward analysis is correct but may not terminate:

y =0,
r:=0
\}/_\I(" \.1 >1Ay=1,
A ) y:=0

«» an infinite number of steps...
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Advanced model checking

Solution: abstract forward reachability
Let ~ associate sets of valuations to sets of valuations

Abstract forward symbolic transition system of TA is defined by:

(67 Z) = (6/7 Z/) = 7(2)
(6, 2) = (£,7(2))

Iterative forward reachability analysis computation schemata:

T, = { (b0, 7(20)) | Vz € C. 20(x) =0}
T, = ToU{ (¢, 2)|3,z2) € Tysuchthat (¢, z) = (¢,2')}
Thi1 = TyU{(,2) |3, 2) € T suchthat (¢, 2) = (¢,2)}

with inclusion check and termination criteria as before
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Advanced model checking

Soundness and correctness

e Soundness:

(€o,7(z0)) = (¢, z) implies 3 (€o,no) —" (£,n) withn € 2
abstract symbolic reachability reachability in TS(TA)

e Completeness:

(Lo, mo) — " (£, m) implies 3 (Lo, v({mo})) =" (£, z) for some z withn € 2

\

reachability in TS(TA) abstract symbolic reachability

for any choice of ~, soundness and completeness are desirable
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Advanced model checking

Criteria on the abstraction operator

e Finiteness: { y(z) | + defined on z } is finite

e Correctness:
e Completeness:

e Effectiveness:

IS sound wrt. reachability

IS complete wrt. reachability

Is defined on zones, and

(z) Is a zone
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Advanced model checking
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Normalization: intuition

symbolic semantics has infinitely many zones:
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Advanced model checking

k-Normalization [paws & Yovine, 1998]

Let £ € N.

e A k-bounded zone is described by a k-bounded clock constraint

—eg.,zonez = (x =2 3)AN(y <5)A(x—y <4)isnot 2-bounded
— butzone 2z’ = (x > 2) A (y — = < 2) is 2-bounded
— note that: z C 2’

e Let normg(z) be the smallest k-bounded zone containing zone 2
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Advanced model checking

Example of k-normalization

T2 ,
5 DUUSU SO
2} DO A
[Extraz(M)]
2 3 1
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Advanced model checking

Facts about k-normalization [souyer, 2003]

e Finiteness: normy(-) is a finite abstraction operator

e Correctness: normy(-) is sound wrt. reachability

provided k is the maximal constant appearing in the constraints of TA

e Completeness: normy(-) is complete wrt. reachability

since z C normg(z), SO normg(-) is an over-approximation

e Effectiveness: normg(z) is a zone

this will be made clear in the sequel when considering zone representations
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Advanced model checking

Representing zones

e Let 0 be a clock with constant value O; let Co = C U {0}

e Any zone z over C can be written as:

— conjunction of constraints x —y < norx —y < nformn e Z,xz,y € Cy
— whenz —y <nandz —y <X mtakeonly x — y < min(n, m)
= this yields at most |Cy|-|Cy| constraints

e Example:

r—0<20 N y—0<200 N y—2z <10 N z—y< —10 AN 0—2 <5

e Store each such constraint in a matrix

— this yields a difference bound matrix [Berthomieu & Menasche, 1983]
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Advanced model checking

Difference bound matrices

e Zone z over C'is represented by DBM Z of cardinality |[C+1|-|C'+1|

—forC ={z,...,z, },1et Cy = { xo } U C with zog = 0, and:

Z(i,j) = (c,<) ifandonlyif z;—z; <c

— S0, rows are used for lower, and columns for upper bounds on clock differences

e Definition of DBM Z for zone z:

— Z(t,7) := (¢, <) foreachbound x; — x; < cin z

— Z(7,7) := oo (= no bound) if clock difference x; — x; is unbounded in z
— Z(0,7) := (0,<), i.e.,, 0 — z; < 0 all clocks are positive

— Z(i,17) := (0, <), i.e., each clock equals itself
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Advanced model checking

Example
Lo I L2
Lo +o0 —3 +4ox
(1 = 3) A (rg < 5) N (1 — a9 < -1) I +0o0  +0o¢ 4
o 5 +o00 +oc
all clock constraints in the above DBM are of the form (¢, <)
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Advanced model checking RWIH=

The need for canonicity

Lo I L2
o +o0 —3 +4ox
(1 2 3) A (2 <5) A (7 — a2 <4) T +o00 +oo 4
) 5 +o0 +o0
® Existence of a normal form
] 9 0 4
5% 2 0
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Advanced model checking

Canonical DBMs

e A zone z is in canonical form if and only if:

— no constraint in z can be strengthened without reducing [z] = {n | n € z }

e For each zone z:

— there exists a zone 2’ suchthat [z ] = [ 2'], and 2’ is in canonical form
— moreover, z’ is unique

how to obtain the canonical form of a zone?
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Advanced model checking

Turning a DBM into canonical form

e Represent zone z by a weighted digraph G, = (V, E, w) where

— V = () is the set of vertices
— (z;,x;) € E whenever x; — x; < cis aconstraintin z
— w(z;, xj) = (¢, X) whenever x; — x; < cis aconstraintin z

e DBMs are thus (transposed) adjacency matrices of the weighted
digraph

e Observe: deriving bounds = adding weights along paths

e Zone z iIs in canonical form if and only if DBM Z satisfies:

— Z(t,5) < Z(i, k) +Z(k,j) forany x;, z;, z, € Cy
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Advanced model checking

Operations on DBM entries

Let < ¢ {<,<}.

e Comparison of DBM entries:

B (Caj) < o0
— (e, X)) < (,XNife<

e Addition of DBM entries:

—c+ 00 =0
— (Ca <) =+ (Clv <)
_ (Ca <) + (Clv <)

(c+c', <)
(c+c', <)

© JPK
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Advanced model checking

Example
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Advanced model checking

Computing canonical DBMs

Deriving the tightest constraint on a pair of clocks in a zone

IS equivalent to finding the shortest path between their vertices

e apply Floyd-Warshall’'s all-pairs shortest-path algorithm

e its worst-case time complexity lies in (’)(\CO|3)

e efficiency improvement:

— let all frequently used operations preserve canonicity
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Advanced model checking

Minimal constraint systems

e A (canonical) zone may contain many redundant constraints

—eg.,inhz—y <2,y—z < 5,and x—z < 7, constraint x—z < 7 Is redundant

e Reduce memory usage = consider minimal constraint systems

—eg,r—y<0,y—z2<0,z—2x<0,z—0<3,and 00—z < —2
IS @ minimal representation of a zone in canonical form with 12 constraints

e For each zone: 4 a unique and equivalent minimal constraint system

e Determining minimal representations of canonical zones:

- x; ), x; is redundant if a path from z; to z; has weight at most (n, <)

— fact: it suffices to consider alternative paths of length two only

complexity in O(|Cy|?); zero cycles require a special treatment
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Advanced model checking

Example
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Advanced model checking

DBM operations: checking properties

e Nonemptiness: is [Z] # 97?

- Z=9gifzx;—z; Jcandz; — z; =’ ' and (¢, X) < (¢, X)
— search for negative cycles in the graph representation of Z, or
— mark Z when upper bound is set to value < its corresponding lower bound

e Inclusiontest:is [Z] C [Z']?

— for DBMs in canonical form, test whether Z(z, j) < Z'(4, 7), forall , 5 € Cy

e Satisfaction: does Z |= ¢g?

— check whether [ZAg] = 2
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Advanced model checking

DBM operations: delays

. —
e Future: determine Z

— remove the upper bounds on any clock, i.e.,
Z(i,0) = oo and Z(i,j) = Z(,j)forj # 0

— Z is canonical implies Z is canonical

. <—
e Past: determine Z

— set the lower bounds on all individual clocks to (0, <)
7 (i,0) = oo and Z(i,j) = Z(s,j) forj # 0

— 7 is canonical does not imply Z is canonical
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Advanced model checking

Final DBM operations

e Conjunction: [Z] A (z; —x; < n)
— if (n, X) < Z(i,7) then Z(i, 5) := (n, X) else do nothing
— put Z into canonical form (in time O(|Cy|*) using that only Z (i, j) changed)

e Clockreset: z; :=dInZ

— Z(i,7) = (d,<) + Z(0, j) and Z(j, i) := Z(j,0) + (—d, <)

e k-Normalization: normg(Z)

— remove all bounds z—y < m for which (m, <) > (k, <), and
— setall bounds z—y < m with (m, <) < (—k, <) to (—k, <)
— put the DBM back into canonical form (Floyd-Warshall)
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Advanced model checking RWIH=

k-Normalization of DBMs

Fix an integer k (« represents an integer between —k and +k)

G

remove all upper bounds higher than k and lower all lower bounds exceeding —k to —k
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