
1

Errata ”Principles of Model Checking” (2008)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen,
The Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Her-
manns (Saarland University), Dave Parker (Oxford University, UK), René Thiemann (U.
Innsbruck, Austria), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-
Ari (Weizmann Institute, Israel), Erika Abráh’am, Alexander Nyßen and Daniel Weber
(RWTH Aachen University) and the students at the RWTH Aachen University attending
the “(Advanced) Model Checking” lecture.

Comments are provided as:

〈 page number 〉 〈 line number 〉 〈 short quote of the wrong word(s) 〉 ! 〈 correction 〉

Chapter 1: System Verification

pp. 1, l. -5, Pentium II ! Pentium

pp. 5, l. 9, lines of code lines ! lines of code

pp. 5, l. footnote, much higher ! as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, Pentium II ! Pentium

Chapter 2: Modeling Concurrent Systems

pp. 25, l. 11, heading Example 2.8 ! Execution fragments of the Beverage Vending Ma-
chine

pp. 27, l. -15, function λy ! The function λy has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, beer, soda ! bget and sget, respectively

pp. 31, l. Fig. 2.3, state with 1 beer, 2 soda ! the grey circle should be a white circle.

pp. 34, l. 2, 〈", v〉 ! 〈", η〉
pp. 42, l. -10, interlock ! interleave

pp. 46, l. Fig. 2.9, locations in PG2 ! should be subscripted with 2 (rather than 1)

2

pp. 48, l. -1, H = Act1 ∩ Act2 ! H = (Act1 ∩ Act2) \ { τ }
pp. 51, l. Fig. 2.12, T1 ‖ T2 ! TS1 ‖ TS2 (this occurs twice)

pp. 51, l. Fig. 2.12, ! All downgoing transitions should be labeled with request, and all
upgoing ones with release

pp. 51, l. -7, all trains ! the train

pp. 52, l. 3, (above) ! (page 54)

pp. 53, l. -1, finite set of channels ! set of channels

pp. 54, l. Fig. 2.16, the transition labeled approach emanating from state 〈far , 3, down〉 !
should be removed, and all the states that thus become unreachable

pp. 54, l. Fig. 2.16, the transition labeled exit emanating from state 〈in, 1, up〉 ! should
be removed, and all the states that thus become unreachable

pp. 55, l. -10, (Cond(Var)× ! Cond(Var)×
pp. 62, l. -3, gen msg(1) ! snd msg(1)

pp. 64, l. 4, ack ! message

pp. 65, l. Fig. 2.21, second do ! od

pp. 66, l. 8, Staements build ! Statements built

pp. 71, l. 15, label in conclusion of inference rule c!e ! it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, l. 1, ξ[c := v2 . . . vk] ! ξ′ = ξ[c := v2 . . . vk]

pp. 74, l. 1, ξ[c := v1 . . . vkv] ! ξ′ = ξ[c := v1 . . . vkv]

pp. 76, l. Figure 2.23 (top), x ! x′

pp. 79, l. -6,-8, |dom(c)|cp(c) ! |dom(c)|cap(c)

pp. 82, l. Exercise 2.2, line 2, Piis ! Pi is

Chapter 3: Linear-Time Properties

pp. 89, l. 9, parallel systems ! reactive systems

pp. 90, l. 1, Fault Designed Traffic Lights ! Faulty Traffic Lights

pp. 91, l. 7, a deadlock occurs when all philosophers ! a deadlock may occur when all
philosophers

pp. 92, l. Fig. 3.2, request and release ! req and rel

3

pp. 92, l. 6, request4 ! req4,4; similar to the other request actions

pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state availablei ! availablei,i

pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state availablei+1 ! availablei,i+1

pp. 93, l. 10, The corresponding is ! The corresponding condition is

pp. 94, l. Fig. 3.4, falls xi ! xi

pp. 96, l. 3, finite paths ! finite path fragments

pp. 96, l. 4, infinite path ! infinite path fragment

pp. 100, l. 9, (over AP) ! (over 2AP)

pp. 101, l. -3, red1 green2 ! red1, green2

pp. 103, l. 11, lwaiti ! waiti
pp. 103, l. 11, ∃k " j.wait i ∈ Ak ! ∃k > j. crit i ∈ Ak

pp. 111, l. Theorem 3.21, M =
∑

s∈S |Post(s)| ! M =
∑

s∈Reach(TS) |Post(s)|

pp. 111, l. 22, The time needed to check s |= Φ is linear in the length of Φ ! Add: This
implicitly assumes that a ∈ L(s) can be checked in O(1) time.

pp. 112, l. -2, ! A minimal bad prefix is one such that the first occurrence of Φ is the
last symbol in the word.

pp. 115, l. Lemma 3.27, Proof ! add the following sentence to the beginning of the proof:
First note that for P = (2AP)ω the claim trivially holds, since closure(P) = P and the fact
that P is a safety property since P is empty. In the remainder of the proof we consider
P (= (2AP)ω.

pp. 118, l. 10,11, πm0πm1πm2 . . . of π0π1π2 . . . such that ! πm0 , πm1 , πm2 , . . . of π0, π1, π2, . . .
such that

pp. 124, l. -3, By definition ! By Lemma 3.27

pp. 130, l. 3, without being taken beyond ! without being taken infinitely often beyond

pp. 131, l. 17, assignment x = −1 ! assignment x := −1

pp. 132, l. 2, an execution fragment . . . but not strongly A-fair. ! an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp. 134, l. 10, any finite trace is fair by default ! any finite trace is strongly or weakly
fair by default

pp. 136, l. -5, strong fairness property ! fairness property

pp. 138, l. 4, It forces synchronization actions to happen infinitely often. ! It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.

4

pp. 138, l. -14, This requires that . . . is enabled. ! This requires that infinitely often a
synchronization takes place when such synchronization is infinitely often enabled.

pp. 141, l. 5, the set of properties that has ! the property that has

pp. 145, l. Exercise 3.5(g), between zero and two ! between zero and non-zero

Chapter 4: Regular Properties

pp. 157, l. -11, w = A1 . . . An ∈ Σ ! w = A1 . . . An ∈ Σ∗

pp. 157, l. -10, starts in Q0 ! starts in state Q0

pp. 157, l. -4, Q0 ! {Q0 }
pp. 158, l. -14, NFAs can be much more efficient. ! NFAs can be much smaller.

pp. 161, l. -9, (2) ... for all 1 # i < n ! ... for all 0 # i < n. (Note: the invariant false
has minimal bad prefix ε.)

pp. 161, l. -8, 1 # i < n ! 0 # i < n

pp. 163, l. Example 4.15, Minimal bad prefixes for this safety property constitute the lan-
guage { payndrinkn+1 | n " 0 } ! Bad prefixes for this safety property constitute the
language {σ ∈

(
2{pay,drink})ω | w(σ, drink) > w(σ, pay) } where w(σ, a) denotes the num-

ber of occurrences of a in σ.

pp. 164, l. 5,6, two NFAs intersect. ! the languages of two NFAs intersect.

pp. 164, l. -8, path fragment π ! initial path fragment π

pp. 164, l. -6, TS⊗A which has an initial state ! TS⊗A such that there exists an initial
state

pp. 167, l. 7, 11, -4, Pinv(A) ! Pinv(A)

pp. 167, l. -2, q1, . . . , qn (∈ F ! Note: this condition is not necessary.

pp. 168, l. 1, 0 # i # n ! 0 < i # n

pp. 171, l. 8, single word ! a set contaning a single word

pp. 177, l. -7, Example 4.13 on page 161 ! Example 4.14 on page 162

pp. 183, l. -3, -1, Lq1q3 = . . . ! Lq1q3 = C∗AB(B + BC∗AB)∗

pp. 196, l. Example 4.57, page 193 ! page 194

pp. 200, l. -7,
∧

q∈Q ! ∧
q∈F

pp. 202, l. Fig. 4.22, ! The two states should be labeled s0 and s1, respectively

5

pp. 203, l. 4, P = ”eventually forever ¬ green ! P = infinitely often green

pp. 206, l. Proof:, TS = (S,Act, →, I,AP) ! TS = (S,Act, →, I,AP, L)

pp. 207, l. -4, We now DFS-based cycle checks . . . checking ! We now present a DFS-based
algorithm for persistence checking that searches backwards edges to check for cycles.

pp. 212, l. 6, ignores T ! does not revisit the states in T

pp. 218, l. 10, Regula r ! Regular

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, eventually in the future ! now or eventually in the future

pp. 236, l. Figure 5.2, ! It is assumed that σ = A0A1A2 . . .

pp. 240, l. -10, δr2 = ¬r1 ! δr2 = ¬r2

pp. 241, l. Fig. 5.6, ! Note that the inputs of the r registers are on the right, and their
outputs on the left.

pp. 267, l. 7, as soon as ! before

pp. 270, l. Fig. 5.15, ! The bottom cell should be white and not gray.

pp. 276, l. -11, ψ ∈ Bif and only if . . . ! ψ ∈ B if and only if . . .

pp. 281, l. 1-5, For B0B1B2 . . . a sequence . . . we have for all ψ ∈ cl(ϕ): ψ ∈ B0 ⇔
A0A1A2 . . . |= ψ ! For all ψ ∈ cl(ϕ) and B0B1B2 . . . a sequence . . . we have: ψ ∈ B0 ⇔
A0A1A2 . . . |= ψ

pp. 283, l. 10, (= ©ψ ∈ B if and . . . ! ¬ © ψ ∈ B if and . . .

pp. 283, l. 17, and ϕ = © a ∈ B1, B2 ! and ϕ = a ∈ B1, B2

pp. 284, l. -14, B3 B3 B1Bω
4 ! B3 B3 B1Bω

5

pp. 287, l. -5, |¬(fair → ϕ)| = |fair | + |ϕ| ! |¬(fair → ϕ)| = |¬(¬fair ∨ ϕ)| =
|fair | + |ϕ| + 3

pp. 289, l. 11, a new vertex b to G ! a new vertex b to TS

pp. 292, l. Figure 5.23, ! the self-loop at state P (n) should be omitted

pp. 292, l. -1, ©2i−1(q,A, i) → ! begin ∧ © 2i−1(q,A, i) →
pp. 294, l. -6, Gvarphi ! Gϕ

pp. 297, l. 7, Membership to ! Membership in

pp. 303, l. Exercise 5.7(b), W ! Y (to avoid confusion with unless)

6

Chapter 6: Computation Tree Logic

pp. 320, l. -4, state formula ! State formula

pp. 327, l. -12, since ∃(ϕUψ ∨ $ϕ) ! since ∀(ϕUψ ∨ $ϕ)

pp. 333, l. 10, ¬∃♦¬Φ = ¬∃(trueUΦ) ! ¬∃♦¬Φ ≡ ¬∃(trueU¬Φ)

pp. 338, l. -5 and -6, ! transitions to s′n−1 are non-existing for n=0

pp. 342, l. Algorithm 13, and -8 and -4, maximal genuine ! maximal proper

pp. 343, l. 4, subformula of Ψ ! subformula of Ψ′

pp. 345, l. -2, Sat(∃(ΦUΨ) ! Sat(∃(ΦUΨ))

pp. 345, l. proof of (g)(ii), Let π = s0s1s2 . . . be a path starting in s=s0. ! Delete.

pp. 349, l. -9, (a = c) ∧ (a (= b) ! (a ↔ c) ∧ (a (↔ b)

pp. 351, l. Algorithm 15, ! comments in the first two lines of algorithm need to be
swapped while replacing E by T and T by E

pp. 354, l. Example 6.28, see the gray states ! Delete.

pp. 354, l. Example 6.28, Figure 6.13(b), Figure 6.13(c) ! Figure 6.13(c), Figure 6.13(d)

pp. 358, l. 11, ! Note that the length of Φn ∈ O(n!)

pp. 371, l. -6, ifstatement ! if statement

pp. 372, l. Algorithm 19, line 4, C ∩ Sat(bj) (= ∅ ! C ∩ Sat(bi) (= ∅
pp. 378, l. -6, Eaxmple ! Example

pp. 383, l. 9 and 10, . . . zm ! . . . , zm

pp. 386, l. 6, y1 ∨ y2 ! y2 ∨ y1

pp. 386, l. 6, y1 ∧ y2 ! y2 ∧ y1

pp. 386, l. 13 and 15 (twice), s{y ← z} ! s{z ← y}
pp. 386, l. 15–17, f{z ← y} ! f{y ← z}
pp. 387, l. 18, t{x̄/x̄′} ! t{x̄′ ← x̄}
pp. 388, l. 7, x′ ! x′

1

pp. 388, l. 7,
∧

j<i!n(xj ↔ x′
j) ! (¬x1 → x′

1) ∧
∧

i<j!n(xj ↔ x′
j)

pp. 388, l. 14–17, ! x and x′ should be swapped

pp. 388, l. Example 6.58 (four times), {x ← x′} ! {x′ ← x}

7

pp. 390, l. 8, ∃s′ ∈ Ss.t.s′ ∈ Post(s) ! ∃s′ ∈ S. s′ ∈ Post(s)

pp. 390, l. Algorithm 20, line 4, fj+1(x̄) := fj+1(x̄) ∨ . . . ! fj+1(x̄) := fj(x̄) ∨ . . .

pp. 391, l. Algorithm 21, line 4, fj+1(x̄) := fj+1(x̄) ∧ . . . ! fj+1(x̄) := fj(x̄) ∧ . . .

pp. 393, l. Figure 6.21 (right), solid line between z3 and 0 ! dashed line between z3 and
0

pp. 396, l. -15, The semantics ! The semantics of

pp. 398, l. 9, left subtree ! right subtree

pp. 393, l. Figure 6.21, right, solid line z3 between 0 ! dashed line z3 between 0

pp. 405, l. 2, zm = am, zm = bm, . . . , zi = ai, zi = bi ! zm = am, ym = bm, . . . , zi =
ai, yi = bi

pp. 405, l. 3, zm = am, zm = bm, . . . , zi+1 = ai+1, zi+1 = bi+1, zi = ai ! zm = am, ym =
bm, . . . , zi+1 = ai+1, yi+1 = ai+1, zi = ai

pp. 405, l. -4, As f b, c ∈ {0, 1}m ! As b, c ∈ {0, 1}m

pp. 409, l. -12, info(v) = 〈var(v), succ0(v), succ0(v)〉 ! info(v) = 〈var(v), succ1(v), succ0(v)〉
pp. 412, l. 7, u ! v

pp. 413, l. 13, f2z1 = b1, . . . , zi = bi ! f2|z1=b1,...,zi=bi

pp. 417, l. heading Algorithm 24, (v, {x ← x ′}) ! (v, {x ′ ← x})
pp. 417, l. Algorithm 24, line 4, ist ! is a

pp. 417, l. Algorithm 24, ! replace z by x

pp. 418, l. -6, f |x=b ! f |x=b

pp. 469, l. Remark 7.19, line 10, s2 |= ϕ, but s1 (|= ϕ ! s2 (|= ¬ϕ, but s1 |= ¬ϕ

Chapter 7: Equivalences and Abstraction

pp. 454, l. 3, Sssume ! Assume

pp. 466, l. 8, H = Act1 ∩ Act2 ! H = (Act1 ∩ Act2) \ { τ }
pp. 498, l. Algorithm 32, line 6+7, ! these lines need to be swapped

pp. 513, l. 9, { a }∅ (∈ Traces(TS1) ! { a }∅ (∈ Traces(TS2)

pp. 518, l. 8, ∀Φ ∈ ∀CTL∗ ! ∀Φ ∈ ∀CTL

pp. 519, l. -10, fragment of CTL∗ ! fragment of CTL

pp. 528, l. -9, s1 ∈ Pre(s′2) ! s1 ∈ Pre(s′1)

8

pp. 537, l. -5, 〈c2, n1〉 ! 〈n1, c2〉
pp. 539, l. 2, R on (S1 × S2) ∪ (S1 × S2) ! R on TS1 ⊕ TS2

pp. 542, l. 5, 〈c2, n1〉 ! 〈n1, c2〉
pp. 546, l. 13, s2 is ≈div

TS -divergent whereas s0 and s1 are not. ! s2 is not ≈div
TS -divergent

whereas s0 and s1 are.

pp. 562, l. 1, and s1∃ϕ ! and s1 |= ∃ϕ
pp. 563, l. 4, ΦB UΦC is a CTL\© formula ! ∃(ΦB UΦC) is a CTL\© formula

pp. 566, l. 16, "2 : 〈if (free > 0) then i := 0; free−− fi〉 ! "2 : 〈if (free > 0) then i :=
0; free−− fi〉 ; goto "0

pp. 566, l. -3, 〈"0, "′2, 2, 0, 0〉 −→ 〈"0, "′0, 2, 0, 0〉 ! 〈"1, "′2, 2, 0, 0〉 −→ 〈"1, "′0, 2, 0, 0〉
pp. 569, l. 7, there are some states in B that cannot reach C by only visiting states in B.
For such states, the only possibility is to reach C via some other block D (= B,C. ! C
can only be reached via paths that entirely go through B.

pp. 569, l. -5, B ∩ Pre∗Π(C) ! B ∩ Pre(C)

pp. 572, l. 11, t ∈ Exit(B) ! t ∈ Bottom(B)

pp. 578, l. item 3., self-loops [s]div → [s]div ! self-loops [s] → [s]

Chapter 9: Timed Automata

pp. 699, l. -3, ∀♦>2¬on ! ∀♦!2¬on

Chapter 10: Probabilistic Systems

pp. 778, l. 4, P′(s, t) = . . . !

P′(s, t) =






1 if s = t and s ∈ B ∪ S \ (C ∪ B)

0 if s (= t and s ∈ B ∪ S \ (C ∪ B)

P(s, t) otherwise.

pp. 857, l. 2,
∑

s∈S?\{s}

P(s, α, t) · xt ! −
∑

s∈S?\{s}

P(s, α, t) · xt

9

pp. 870, l. Lemma 10.119, any s ∈ S ! any s ∈ T

pp. 876, l. 11, U"♦P ! U"♦B

pp. 903, l. Exercise 10.14, ϕ = $ ♦ a ! ϕ = ♦ $ a

pp. 903/904, l. Exercise 10.17, Markov chain M ! Markov chain M where all states are
equally labeled

pp. 905, l. Exercise 10.22, ! Compute also the values ys = Prmax(s |= C UB) with
C = S \ { s3 } and B = { s6 }
pp. 905, l. Exercise 10.23, (a), 1. and (b) ! (a), (b), (c)

Appendix

pp. 912, l. footnote, σ = A1A2A3 . . . ! σ = A0A1A2 . . .

pp. 918, l. 8, not to 1 ! not to n

pp. 925, l. 1, they are composed of simple paths ! they are composed of paths, at least
one of which is simple.

