Errata ”Principles of Model Checking” (2008)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen,
The Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Her-
manns (Saarland University), Dave Parker (Oxford University, UK), René Thiemann (U.
Innsbruck, Austria), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-
Ari (Weizmann Institute, Israel), Erika Abrdh’am, Alexander Nyfien and Daniel Weber
(RWTH Aachen University) and the students at the RWTH Aachen University attending
the “(Advanced) Model Checking” lecture.

Comments are provided as:

( page number ) ( line number ) ( short quote of the wrong word(s) ) > ( correction )

Chapter 1: System Verification

pp- 1, 1. -5, Pentium II > Pentium
pp. 5, L. 9, lines of code lines > lines of code

pp- 5, L. footnote, much higher > as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp- 6, 1. 4, Pentium II > Pentium

Chapter 2: Modeling Concurrent Systems

pp- 25, 1. 11, heading Example 2.8 > Execution fragments of the Beverage Vending Ma-
chine

pp. 27, L. -15, function Ay > The function A, has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp- 31, L. Fig. 2.3, beer, soda > bget and sget, respectively

pp- 31, L. Fig. 2.3, state with 1 beer, 2 soda I> the grey circle should be a white circle.
pp. 34, 1. 2, (¢,v) > (¢,n)

pp- 42, 1. -10, interlock > interleave

pp. 46, 1. Fig. 2.9, locations in PGy > should be subscripted with 2 (rather than 1)



pp.- 48, 1. -1, H = Acty N Acty > H = (ACtl N ACtg) \ {7‘}
pp. 51, 1. Fig. 2.12, T || T, > TS; || TSz (this occurs twice)

pp- 51, . Fig. 2.12, > All downgoing transitions should be labeled with request, and all
upgoing ones with release

pp- 51, L. -7, all trains > the train
pp. 52, . 3, (above) > (page 54)
pp- 93, L. -1, finite set of channels > set of channels

pp. 54, 1. Fig. 2.16, the transition labeled approach emanating from state (far,3, down) >
should be removed, and all the states that thus become unreachable

pp. 54, L. Fig. 2.16, the transition labeled exit emanating from state (in,1,up) > should
be removed, and all the states that thus become unreachable

pp. 55, 1. -10, (Cond(Var)x > Cond(Var)x

pp. 62, 1. -3, gen_msg(1) > snd-msg(1)

pp- 64, 1. 4, ack > message

pp- 65, 1. Fig. 2.21, second do > od

pp. 66, 1. 8, Staements build > Statements built

pp. 71, 1. 15, label in conclusion of inference rule cle 1> it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, 1. 1, €[c:=wvg...vp] > & =E&[ci=vq...vy]
pp. 74, 1. 1, {[c:=v1 ... 0] > & =E[ci=v1... 0]
pp. 76, 1. Figure 2.23 (top), > '

pp. 79, 1. -6,-8, |[dom(c)|?(©) > |dom(c)|c?P(©)

pp- 82, l. Exercise 2.2, line 2, P;jis > P; is

Chapter 3: Linear-Time Properties

pp- 89, 1. 9, parallel systems > reactive systems
pp- 90, 1. 1, Fault Designed Traffic Lights > Faulty Traffic Lights

pp- 91, 1. 7, a deadlock occurs when all philosophers > a deadlock may occur when all
philosophers

pp- 92, 1. Fig. 3.2, request and release > req and rel



pp. 92, . 6, requesty > reqs 4; similar to the other request actions

pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state available; > available; ;

pp. 93, 1. -4,-5 and Fig. 3.3, Fig. 3.4, state available; 1 > available; ;11
pp- 93, 1. 10, The corresponding is > The corresponding condition is
pp- 94, 1. Fig. 3.4, falls x; > x;

pp- 96, 1. 3, finite paths > finite path fragments

pp- 96, 1. 4, infinite path t> infinite path fragment

pp. 100, 1. 9, (over AP) 1> (over 2AP)

pp- 101, 1. -3, red; greens > redy, greeny

pp- 103, 1. 11, lwait; > wait;

pp- 103, 1. 11, 3k > j. wait; € A > Jk > j. crit; € Ag

pp. 111, 1. Theorem 3.21, M = > ¢ |Post(s)| > M = ZseReach(TS) | Post(s)]

pp. 111, 1. 22, The time needed to check s = ® is linear in the length of ® > Add: This
implicitly assumes that a € L(s) can be checked in O(1) time.

pp- 112, 1. -2, > A minimal bad prefix is one such that the first occurrence of ® is the
last symbol in the word.

pp- 115, 1. Lemma 3.27, Proof > add the following sentence to the beginning of the proof:
First note that for P = (247)¢ the claim trivially holds, since closure(P) = P and the fact

that P is a safety property since P is empty. In the remainder of the proof we consider
P # (2AP)w.

pp. 118, 1. 10,11, 7mox™ g™z of nO7 w2 ... such that> ™0, 7™ 7™ of 70 7wl w2, ...
such that

pp. 124, 1. -3, By definition > By Lemma 3.27
pp- 130, 1. 3, without being taken beyond > without being taken infinitely often beyond
pp- 131, 1. 17, assignment x = —1 > assignment = := —1

pp- 132, 1. 2, an execution fragment ... but not strongly A-fair. > an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp- 134, 1. 10, any finite trace is fair by default > any finite trace is strongly or weakly
fair by default

pp- 136, 1. -5, strong fairness property t> fairness property

pp- 138, 1. 4, It forces synchronization actions to happen infinitely often. > It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.



bp

. 138, 1. -14, This requires that ... is enabled. > This requires that infinitely often a

synchronization takes place when such synchronization is infinitely often enabled.

pp
pp

. 141, 1. b, the set of properties that has > the property that has

. 145, 1. Exercise 3.5(g), between zero and two t> between zero and non-zero

Chapter 4: Regular Properties

bp.
bp.
bp.
bp.
bp.

B, L1, w=A4... 4, €¥XD> w=A4;... A, € ¥*

157, 1. -10, starts in Qo > starts in state Qg

157, 1. -4, Qo > {Qo}

158, 1. -14, NFAs can be much more efficient. > NFAs can be much smaller.

161, 1. -9, (2) ... foralll <i<nr .. forall 0<i<mn. (Note: the invariant false

has minimal bad prefix ¢.)

bp
bp

J161,1.-8,1<i<n> 0<i<n

. 163, 1. Example 4.15, Minimal bad prefixes for this safety property constitute the lan-

guage { pay™drink™ | n > 0} > Bad prefixes for this safety property constitute the
language {o € (2{19“?/7‘1”"’“})“) | w(o, drink) > w(o, pay) } where w(o,a) denotes the num-
ber of occurrences of a in o.

bp
bp
bp

. 164, 1. 5,6, two NFAs intersect. > the languages of two NFAs intersect.
. 164, 1. -8, path fragment w > initial path fragment 7
. 164, 1. -6, TS® A which has an initial state > TS® A such that there exists an initial

state

pp
pp

bp.
bp.
bp.
bp.
bp.
bp.
bp.

2167, 1.7, 11, -4, Py & Piw(a)

167, 1.-2, q1,...,q, € F > Note: this condition is not necessary.

168,1. 1,0<i<np> 0<i<n

171, 1. 8, single word 1> a set contaning a single word

177, 1. -7, Example 4.13 on page 161 > Example 4.14 on page 162
183,1.-3,-1, Ly = ... > Lgq3 = C*AB(B+ BC*AB)*

196, 1. Example 4.57, page 193 > page 194

200, 1. -7, /\qu > /\qu

202, 1. Fig. 4.22, > The two states should be labeled sy and s;, respectively



pp. 203, 1. 4, P = ”eventually forever — green > P = infinitely often green
pp. 206, 1. Proof:, T'S = (S, Act,—,I,AP) > TS = (S, Act,—,I,AP, L)

pp- 207, 1. -4, We now DFS-based cycle checks . .. checking > We now present a DFS-based
algorithm for persistence checking that searches backwards edges to check for cycles.

pp- 212, 1. 6, ignores T > does not revisit the states in T
pp- 218, 1. 10, Regula r > Regular

Chapter 5: Linear Temporal Logic

pp- 230, 1. 5, eventually in the future > now or eventually in the future
pp- 236, 1. Figure 5.2, > It is assumed that o = AgA1A4,...
pp. 240, L. -10, 0y, = 71 > Op, = T2

pp- 241, 1. Fig. 5.6, > Note that the inputs of the r registers are on the right, and their
outputs on the left.

pp- 267, 1. 7, as soon as > before
pp- 270, 1. Fig. 5.15, > The bottom cell should be white and not gray.
pp- 276, 1. -11, ¢ € Bif and only if ... > 1 € B if and only if ...

pp. 281, 1. 1-5, For ByB1Bsy... a sequence ... we have for all ¢ € cl(p): p € By <
ApA1Ay... = > For all ¥ € cl(p) and ByB1B;... a sequence ... we have: 1) € By <
AgA1Ay ... E Y

pp-283, 1. 10, Qv e Bifand...> -y € Bifand ...

pp- 283, 1. 17, and ¢ = Oa € B1,By > and ¢ =a € By, By

pp. 284, 1. -14, B3 B3 B1Bf > B3 B3 B1BY

pp. 287, L -5, |=(fair — )| = |fair| + |o| &> |=~(fair — ¢)| = [=(~fair V ¢)| =
|fair| + o] +3

pp- 289, 1. 11, a new vertex b to G > a new vertex b to TS

pp. 292, 1. Figure 5.23, > the self-loop at state P(n) should be omitted
pp. 292, 1. -1, Q% 1(q, A,i) — > begin A O % (g, A,i) —

pp. 294, 1. -6, Gyarphi > G,

pp- 297, 1. 7, Membership to > Membership in

pp. 303, 1. Exercise 5.7(b), W > Y (to avoid confusion with unless)



Chapter 6: Computation Tree Logic

pp

bp.
pbp.
pbp.
bp.
bp.
bp.
bp.
bp.
bp.

. 320, 1.
327, L.
333, 1.
338, 1.
342, 1.
343, 1.
345, 1.
345, 1.
349, 1.

351, 1.

-4, state formula > State formula

-12, since (U VvV Op) > since V(e Uy v Op)

10, =30 ~® = —3(trueU @) > —-3O P = —3(trueU ~P)

-5 and -6, > transitions to 5%_1 are non-existing for n=0

Algorithm 13, and -8 and -4, mazimal genuine > maximal proper

4, subformula of ¥ > subformula of ¥’

-2, Sat(3(®UT) > Sat(3(@U D))

proof of (g)(ii), Let m = s9s1S2 ... be a path starting in s=sg. > Delete.
9, (a=c)AN(a#b) > (a—c)A(asDb)

Algorithm 15, > comments in the first two lines of algorithm need to be

swapped while replacing £ by T and T by E

pp.
pp.
pbp.
bp.
pbp.
bp.
pbp.
bp.
bp.
pbp.
bp.
bp.
bp.
pbp.
bp.
pbp.

354, 1.
354, 1.
358, 1.
371, L.
372, L
378, 1.
383, 1.
386, 1.
386, 1.
386, 1.
386, 1.
387, 1.
388, 1.
388, 1.
388, 1.
388, 1.

Example 6.28, see the gray states > Delete.

Example 6.28, Figure 6.13(b), Figure 6.13(c) > Figure 6.13(c), Figure 6.13(d)
11, > Note that the length of ®, € O(n!)

-6, ifstatement > if statement

Algorithm 19, line 4, C' N Sat(b;) # @ > C N Sat(b;) # @
-6, Faxmple > Example

9and 10, ...z, > ..., Z;m

6,91 Vy2> y2 Vo

6, ;1 Ay2 > Y2 At

13 and 15 (twice), s{7 « z} > s{Z < 7}

1517, fz — 7} > f{7— 7}

18, t{z/7'} > t{z’ — z}

7,2 > )

T Nycranl@s = @) > (o1 = a4) A Aveyen(as = 25)
14-17, > z and 2’ should be swapped

Example 6.58 (four times), {z «— 2’} > {2’ — z}



pp. 390, 1. 8, 3s’ € Ss.t.s’ € Post(s) > s’ € S.s' € Post(s)
pp. 390, 1. Algorithm 20, line 4, f;11(Z) == fj+1(Z) V... > fip(Z) = f;(Z) V...
pp. 391, . Algorithm 21, line 4, f;11(Z) == fj+1(Z) A ... > fipq(T) = fi;(Z) A ...

pp. 393, 1. Figure 6.21 (right), solid line between z3 and 0 > dashed line between z3 and
0

pp- 396, 1. -15, The semantics > The semantics of
pp- 398, 1. 9, left subtree > right subtree
pp- 393, 1. Figure 6.21, right, solid line z3 between 0 1> dashed line z3 between 0

pp- 405, 1. 2, zp, = Gy 2m = by -y 2i = 3,2 = b; > Zp = Gy Ym = by ..o, 20 =
a;,yi = b;

pp. 405, 1. 3, 21 = @, Zm = by e o5 Zik1 = Qit1, Zit1l = Dig1,2i = Q; D> Zyy = Uy Y =
by - Zigl = Qi 1, Yig1 = Qig1, 2 = G

pp. 405, 1. -4, As fb,c€{0,1}™" > Asb,ce {0,1}™

pp.- 409, 1. -12, info(v) = (var(v), succy(v), succo(v)) > info(v) = (var(v),succ(v), succo(v))
pp- 412, 1. 7, u > v

pp. 413, 1. 13, fozr = b1,.. .,z = b > folo—by,.=bs

pp. 417, 1. heading Algorithm 24, (v,{Z <« 7'}) > (v,{Z' «— T})

pp- 417, 1. Algorithm 24, line 4, ist > is a

pp- 417, 1. Algorithm 24, > replace z by x

pp. 418, 1. -6, f|,_5 > fla=b

pp. 469, 1. Remark 7.19, line 10, so = ¢, but s1 = ¢ > s2 = —, but s1 = —p

Chapter 7: Equivalences and Abstraction

pp. 454, 1. 3, Sssume > Assume

pp. 466, 1. 8, H = Act; N Acty > H = (Acty N Acta) \ {7}

pp. 498, 1. Algorithm 32, line 6+7, > these lines need to be swapped
pp. 513, 1. 9, {a }@ & Traces(TS;) > {a}@ & Traces(TSz)

pp. 518, 1. 8, V& € VCTL* > VP € VCTL

pp. 519, L. -10, fragment of CTL* > fragment of CTL

pp. 528, 1. -9, s1 € Pre(sh) > s1 € Pre(s))



pp. 537, 1. -5, <CQ,7”L1> > (n1,02>
pp. 539, 1. 2, R on (Sl X Sg) U (Sl X SQ) > Ron TS; ® TSy
pp. 542, 1. 5, (c2,m1) > (n1,c2)

pp. 546, 1. 13, sq is ~%_divergent whereas so and s1 are not. > sy is not ~%-divergent
whereas sy and sy are.

pp. 562, 1. 1, and s13p > and s1 = Jp
pp. 563, 1. 4, U Q¢ is a CTL\ formula > 3I(PpUPc) is a CTL,, formula

pp. 566, 1. 16, f5 : (if (free > 0) then i := 0; free—— fi) > ¥y : (if (free > 0) then i :=
0; free—— fi) ; goto £y

pp. 566, 1. -3, (Lo, £5,2,0,0) — (€o,€5,2,0,0) > (£1,€5,2,0,0) — (£1,0),2,0,0)

pp- 569, 1. 7, there are some states in B that cannot reach C' by only visiting states in B.
For such states, the only possibility is to reach C via some other block D # B,C. > C
can only be reached via paths that entirely go through B.

pp. 569, 1. -5, BN Pref;(C) > BN Pre(C)
pp. 572, 1. 11, ¢t € Exit(B) > t € Bottom(B)
pp. 578, 1. item 3., self-loops [s] g;,, — [s] gjy > self-loops [s] — [s]

Chapter 9: Timed Automata

pp. 699, 1. -3, VO>2—on > YOS2—on

Chapter 10: Probabilistic Systems

pp. 778, 1. 4, P'(s,t) = ... >

1 ifs=tand s€ BUS\ (CUB)
P'(s,t)=1¢ 0 ifs#tand s€ BUS\ (CUB)
P(s,t) otherwise.

pp. 857, 1. 2, Z P(s,a,t) -z > — Z P(s,a,t) -z
s€572\{s} s€57\{s}



pp. 870, 1. Lemma 10.119, any s € S > any s €T
pp. 876, 1. 11, UEI()P > UI:I()B
pp- 903, 1. Exercise 10.14, p =00a > ¢ =00a

pp. 903/904, 1. Exercise 10.17, Markov chain M > Markov chain M where all states are
equally labeled

pp. 905, 1. Exercise 10.22, > Compute also the values y; = Pr™®(s = C'UB) with
C=S5\{s3}and B={s¢}

pp. 905, 1. Exercise 10.23, (a), 1. and (b) > (a), (b), (c)

Appendix

pp- 912, 1. footnote, o = A1AsAs... > o= AgA1As...
pp- 918, 1. 8, not to 1 > not ton

pp- 925, 1. 1, they are composed of simple paths > they are composed of paths, at least
one of which is simple.



