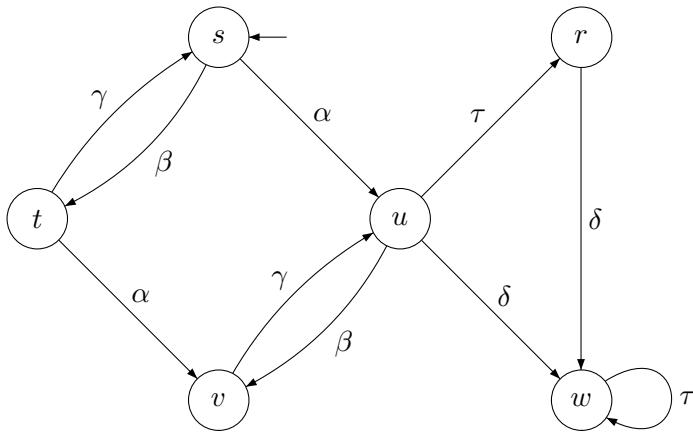


Advanced Model Checking
Summer term 2009**– Series 4 –**

Hand in on May 18'th before the exercise class.

Exercise 1**(4 points)**

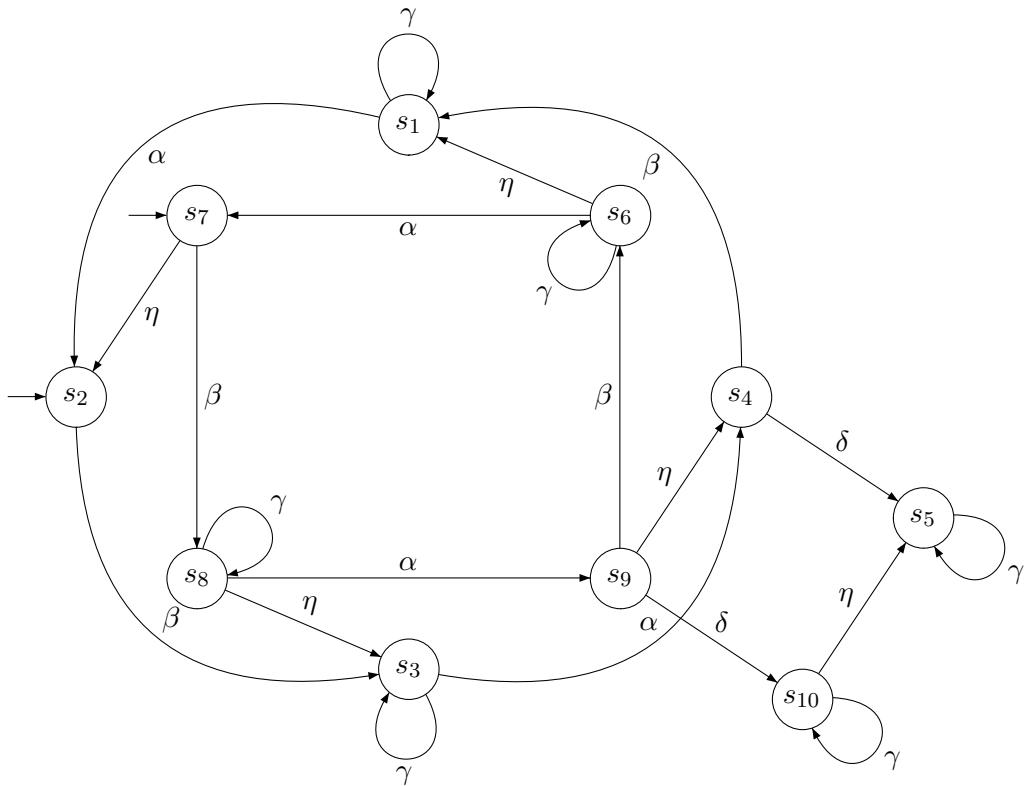
Given a transition system TS in the following figure with action set $Act = \{\alpha, \beta, \gamma, \delta, \tau\}$. Determine the pairs of independent actions.



Exercise 2

(6 points)

Consider the transition system below:



The states labeling is as follows:

- $L(s_{10}) = \emptyset$
- $L(s_6) = L(s_7) = \{a\}$
- $L(s_3) = L(s_4) = L(s_5) = L(s_8) = L(s_9) = \{b\}$
- $L(s_1) = L(s_2) = \{a, b\}$

Prove or disprove that each of the following *ample sets* satisfy requirements *A1* through *A3* on the *ample sets*, also check whether the requirement *A4* holds:

- $ample(s_6) = \{\gamma, \alpha\}$
- $ample(s_7) = \{\beta\}$
- $ample(s_8) = \{\alpha\}$
- $ample(s_9) = \{\alpha, \beta, \delta\}$
- $ample(s_{10}) = \{\gamma, \eta\}$

In case some of the conditions *A1* through *A4* do not hold, modify the *ample sets* in an appropriate way to fix it. Clarify your changes.

Exercise 3**(4 points)**

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i + 1, \dots, n$ be action-deterministic transition systems such that $Act_i \cap Act_j \cap Act_k = \emptyset$ if $1 \leq i < j < k \leq n$. We consider the parallel composition with synchronization over common actions, i.e. the transition system

$$TS = TS_1 \parallel TS_2 \parallel \dots \parallel TS_n.$$

For each states $s = \langle s_1, \dots, s_n \rangle$ of TS , let $Act_i(s) = Act_i \cap Act(s)$ be the set of actions of TS_i that are enabled in s .

Question:

Show that the dependency condition (A2) holds if for each state s of TS the following conditions (i) and (ii) holds:

- (i) If $ample(s) \neq Act(s)$, then $ample(s) = Act_i(s)$ for some $i \in \{1, \dots, n\}$.
- (ii) If $ample(s) = Act_i(s) \neq Act(s)$, then $ample(s) \cap (\bigcup_{1 \leq j \leq n, j \neq i} Act_j) = \emptyset$.