

On-The-Fly Partial Order Reduction

Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December, 2010

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \triangleq TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\backslash\circlearrowleft}$
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct \widehat{TS} during $LTL_{\backslash\circlearrowleft}$ model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Ample-set conditions for LTL

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

Correctness theorem

For action-deterministic, finite TS without terminal states:

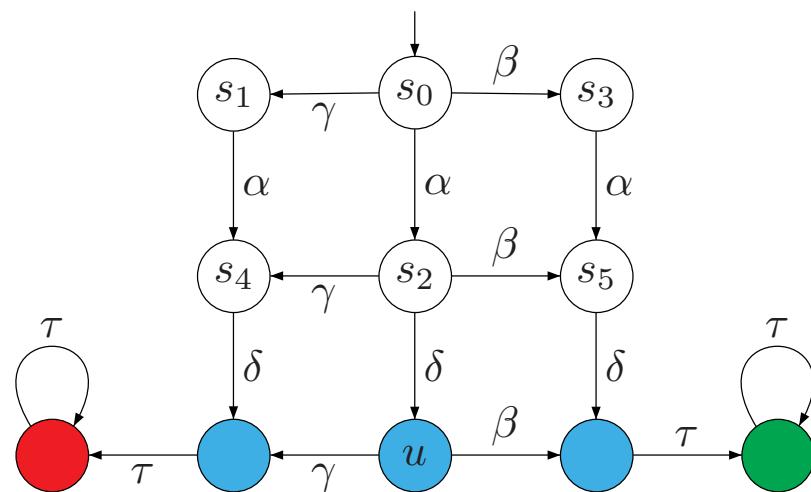
if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \triangleq TS$.

Strong cycle condition

(A4') Strong cycle condition

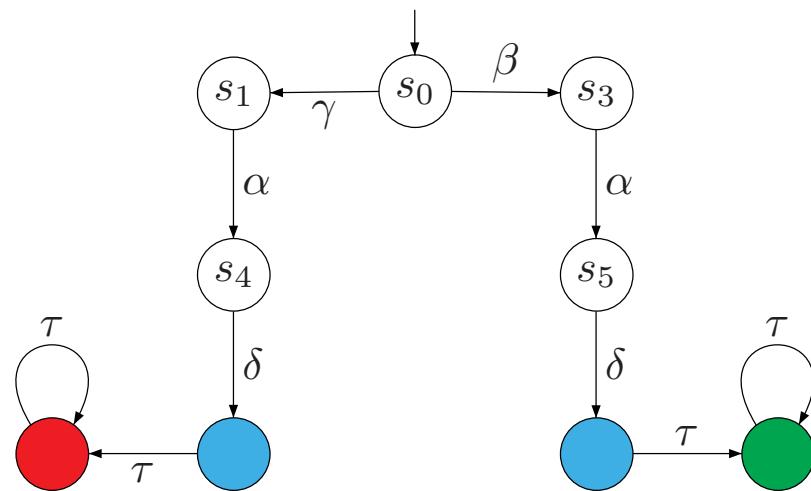
On any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} ,

there exists $j \in \{1, \dots, n\}$ such that $\text{ample}(s_j) = \text{Act}(s_j)$.


- If (A1) through (A3) hold: (A4') implies the cycle condition (A4)
- (A4') can be checked easily in DFS when backward edge is found

The branching-time ample approach

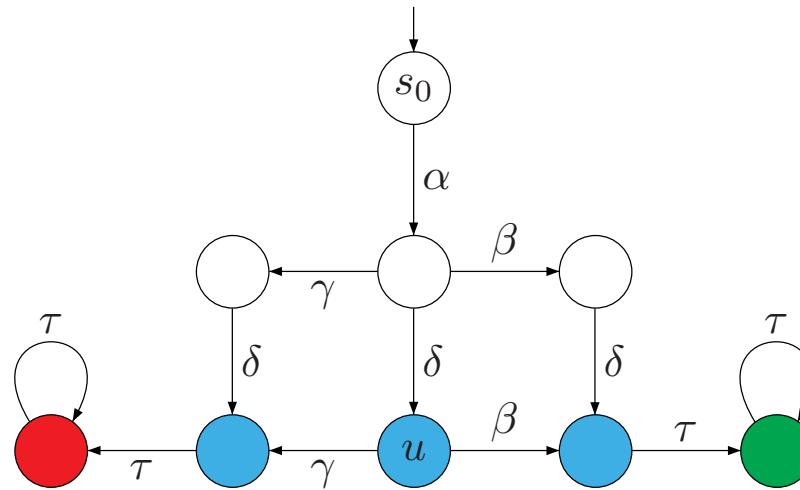
- Linear-time ample approach:
 - during state space generation obtain \widehat{TS} such that $\widehat{TS} \triangleq TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\setminus\Diamond}$
 - static partial order reduction: generate \widehat{TS} prior to verification
 - on-the-fly partial order reduction: generate \widehat{TS} during the verification
 - generation of \widehat{TS} by means of static analysis of program graphs
- Branching-time ample approach
 - during state space generation obtain \widehat{TS} such that $\widehat{TS} \approx^{div} TS$
⇒ this preserves all $CTL_{\setminus\Diamond}$ and $CTL_{\setminus\Diamond}^*$ formulas
 - static partial order reduction only


as \approx^{div} is strictly finer than \triangleq , try (A1) through (A4)

Example

transition system TS

Conditions (A1)-(A4) are insufficient


$\widehat{TS} \models \forall \square (a \rightarrow (\forall \diamond b \vee \forall \diamond c))$ but TS does not and thus $\widehat{TS} \not\approx^{\text{div}} TS$

Branching condition

(A5)

If $ample(s) \neq Act(s)$ then $|ample(s)| = 1$

A sound reduction for $\text{CTL}_{\setminus \Diamond}^*$

$\widehat{TS} \not\models \forall \Box (a \rightarrow (\forall \Diamond b \vee \forall \Diamond c))$ and TS does not ;in fact $\widehat{TS} \approx^{\text{div}} TS$

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A5) are satisfied, then $\widehat{TS} \approx^{\text{div}} TS$.

recall that this implies that \widehat{TS} and TS are $\text{CTL}_{\setminus \bigcirc}^*$ -equivalent

Ample-set conditions for CTL^{*}

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in \widehat{TS} such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

(A5) Branching condition

If $\text{ample}(s) \neq \text{Act}(s)$ then $|\text{ample}(s)| = 1$