Reduced Ordered Binary Decision Diagrams
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

December 13, 2010

© JPK

Advanced model checking

Switching functions
e LetVar={z,...,z,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(z, . . ., z,) denote the set of evaluations for z1, . . ., 2z,
— shorthand [z1 = by, ..., 2 = by forn(z) = by, ..., n(2m) = bm

e f:Eval(Var) — {0,1} is a switching function for Var = {z, ..., z,,}

e Logical operations and quantification are defined by:

fi() A f2() = min{ fi(+), f2() }
GV f2(0) = max{ fi(+), f2(-) }
z. f(-) = f()]:=0V f(-)]:=1, and
Vz. f(-) = f()lz=0Nf(+)]:=1

© JPK 1

Advanced model checking

Ordered Binary Decision Diagram

Let o be a variable ordering for Var where z; <, ... <, 2

An o-OBDD is a tuple %8 = (V, Vy, Vi, succy, succy, var, val, vy) with

e a finite set V' of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root vy € V

e successor functions succg, succ; : V; — V

— such that each node v € V' \ {vg} has at least one predecessor
e labeling functions var : V; — Var and val : V; — {0,1 } satisfying

ve Vi N we {succy(v),succi(v) } NV = var(v) <, var(w)

© JPK 2

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x} < x4

© JPK 3

Advanced model checking

Symbolic composition operators

© JPK 4

Advanced model checking

Consistent co-factors in OBDDs

e Let f be a switching function for Var
o Let o = (z,...,2,) avariable ordering for Var, i.e., z1 <, ... <, 2zm
e Switching function g is a g-consistent cofactor of f if

9= fluy=by.....mp, forsomeiec {0,1,...,m}

e Then it holds that:

1. for each node v of an E-OBDD B, f, is a gp-consistent cofactor of fy
2. for each p-consistent cofactor g of fo there isanode v € B with f, = ¢

© JPK 5

Advanced model checking

Reduced OBDDs

A ©-OBDD B is reduced if for every pair (v, w) of nodes in B:

v # w implies f, # f.
(A reduced ©-OBDD is abbreviated as -ROBDD)

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK 6

Advanced model checking

Transition relation as an ROBDD

()

o e
::“\@
@\

O><@;

(a) ordering x; < 3 < x| < T (b) ordering z; <’ x| <" xy <’

© JPK 7

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ¢ a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a ©-ROBDD B with fg = f

(b) Any ©-ROBDDs %% and ¢ with fs = f¢ are isomorphic

Any ©-OBDD B for f is reduced iff size(8) < size(¢) for each ©-OBDD ¢ for f

© JPK 8

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a switching function, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— if succy(v) = succy(v) = w, delete v and redirect all its incoming edges to w

e Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK 9

Advanced model checking

How to reduce an OBDD?

Q\ : \ becomes

1 0(10 1

elimination of duplicated leaves

© JPK 10

Advanced model checking

How to reduce an OBDD?

becomes ©><<>
0 1

isomorphism rule

© JPK 11

Advanced model checking

How to reduce an OBDD?

:: : :
.
.
.
.

becomes

elimination rule

© JPK 12

Advanced model checking

Soundness and completeness

if ¢ arises from a ©-OBDD 5 by applying
the elimination or isomorphism rule, then:

¢ is a p-OBDD with fy = fe

©-OBDD %3 is reduced if and only if

no reduction rule is applicable to 5

© JPK 13

Advanced model checking

Proof

© JPK 14

Advanced model checking

Variable ordering

e ROBDDs are canonical for a fixed variable ordering

— the size of the ROBDD crucially depends on the variable ordering
— # nodes in ROBDD 8 = # of p-consistent co-factors of f

e Some switching functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

e Some switching functions only have polynomial ROBDDs

— this holds, e.qg., for symmetric functions (see next)
— examples f(...)=x1 D ... B x,, 0r f(...) = 1iff > k variables x; are true

e Some switching functions only have exponential ROBDDs

— this holds, e.qg., for the middle bit of the multiplication function

© JPK 15

Advanced model checking

The function stable with exponential ROBDD

The ROBDD of fyu(T,7) = (1 <= y1) A ... A (Tn < Yn)

has 3-2" — 1 verticesunderorderingz; < ... <z, < y1 < ... < Yy

© JPK 16

Advanced model checking

The function stable with linear ROBDD
M)
@
©

1

The ROBDD of fyw(T,y) = (1 <= y1) A ... A (Tn < yYn)

has 3-n + 2 vertices under ordering z; < y1 < ... < x, < Yn

© JPK 17

Advanced model checking

Another function with an exponential ROBDD

-
-
,
7
P @ e @
7 ’
/ /
/ /
I
|
@ / //,— @
- A
7 ///
-
7/
<
- /
!
@ ! @ @ /
- -
\ 7 ' 7
- ’
(I L /
\1/
\
|
|
|
\
\
\
\
\
-
\ \ ,
NN \ ,
NN
AN \ /
“ /
NN
\@

ROBDD for f5(Z,7) = (21 Ay1) V (A1) V (zAys)
for the variable ordering 21 < 2 < z3 < 11 < y2 < U3

© JPK 18

Advanced model checking

And an optimal linear ROBDD

e ROBDDfor f3(-) = (z1Ay1)V (A1) V (2AY3)
o fororderingz; < 11 < 2 < y2 < 13 < U3

e as all variables are essential for f, this ROBDD is
optimal

e thatis, for no variable ordering a smaller ROBDD
exists

© JPK

19

Advanced model checking

Symmetric functions

f € Bval(z, ..., z,) is symmetric if and only if

f([Z1 = bl, a9 R — bm]) = f([Z1 = bil’ c e ey R — bzm])

for each permutation (i, ..., 4,) of (1,...,m)

Eg.:.x1VaV...Vz, 21N A. .. Az, the parity function, and the majority function

If fis a symmetric function with m essential variables, then

for each variable ordering e the ©-ROBDD has size O(m?)

© JPK 20

Advanced model checking

The even parity function

feven(x1, - .., xy) = 1iff the number of variables z; with value 1 is even

truth table or propositional formula for f..., has exponential size

but an ROBDD of linear size is possible

© JPK 21

Advanced model checking

The multiplication function

e Consider two n-bit integers

— let b,_1bp_o ... bo and Cn—1Cn—2 .. .Cy

— where b,,_ is the most significant bit, and b the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD B , has at least 1.09" vertices
— where f,,_; denotes the (n—1)-st output bit of the multiplication

© JPK 22

Advanced model checking

Optimal variable ordering
e The size of ROBDDs is dependent on the variable ordering

e IS it possible to determine p such that the ROBDD has minimal size?
— to check whether a variable ordering is optimal is NP-hard
— polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]
e There are many switching functions with large ROBDDs

— for almost all switching functions the minimal size is in Q(%)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the ROBDD manipulations
— not necessary to test all n! orderings, best known algorithm in O (3"-n?)

© JPK 23

Advanced model checking

Variable swapping

© JPK 24

Advanced model checking

Sifting algorithm
[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable 2; in OBDD at hand

2. By successive swapping of z;, determine size(25) at any position for
Ly

3. Shift z; to position for which size(®8) is minimal

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

© JPK 25

Advanced model checking

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings x¢,...,x, and yq, ..., y, Of state s and t respectively:
T <Y1 <x2 <Yy < ...<xp < Yp
e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

1<z <...<2Zyp < Z1<y1<z2<yY2<...< Ty <Yy
encoding of « interleaved order of states

© JPK 26

Advanced model checking

Implementation: shared OBDDs

A shared -OBDD is an OBDD with multiple roots

Shared OBDD representing z1 A —z9, —z9, 21 D zo and —z1 V 2o
N mee? N7 N N

f1 f2 f3 fa

Main underlying idea: combine several OBDDs with same variable ordering
such that common g-consistent co-factors are shared

© JPK 27

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

e The unique table

— keeps track of ROBDD nodes that already have been created
— table entry (var(v), succy(v), succy(v)) for each inner node v
— main operation: find_or_add(z, vy, vg) With v # wvg
* return v if there exists anode v = (z, vy, vg) in the ROBDD
« If not, create a new z-node v with succy(v) = vg and succy(v) = vy
— implemented using hash functions (expected access time is O(1))

e The computed table

— keeps track of tuples for which ITE has been executed (memoization)
= realizes a kind of dynamic programming

© JPK

28

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1, f2) = (gAfi1) V (=gA f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

Then:

Jo = |TE(Z» fsuccl(v)v fsucco(v))

- f ITE(f,0,1)
J1V f2 ITE(f1, 1, f2)
finNfo = ITE(f1, f2,0)
f1 @ fo ITE(f1, ~f2, f2) = [ITE(f1,ITE(f2,0,1), f2)

If g, f1, f2 are switching functions for Var, z € Varand b € {0, 1}, then
ITE(g, f1, f2)|.=0 = ITE(g|.—b, fil.—b, f2|.—1)

© JPK

29

Advanced model checking

ITE-operator on shared OBDDs

e A node in a p-SOBDD for representing ITE(g, f1, f2) IS a node w with
Info(z, wy, wy) where:

— z is the minimal (wrt.) essential variable of ITE(g, f1, f2)
— Wy is an SOBDD-node with fwb — ITE(g|z:ba fl|z:ba f2|z:b)
e This suggests a recursive algorithm:

— determine z
— recursively compute the nodes for ITE for the cofactors of g, f1 and f5

© JPK 30

Advanced model checking

ITE(u,v1,v2) On shared OBDDs (initial version)
if u is terminal then
if val(u) = 1 then

w = v (FITE(L, fuys fog) = fo;)
else
W = Vo (* |TE(0,fvl7f'02) — f'uz *)
fi
else
z := min{var(u), var(vy), var(vs) }; (* minimal essential variable *)
wi = ITE(u|,=1, v1|2=1, v2|2=1);
wo = ITE(w|.=0, V1|20, V2]2=0);
if wg = w;y then
w = wi; (* elimination rule *)
else
w := find_or_add(z, w1, wy); (* isomorphism rule *)
fi
fi
return w

© JPK 31

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N, denotes the size of the -ROBDD for f

© JPK

32

Advanced model checking

ROBDD size under ITE

The size of the p-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N, denotes the size of the -ROBDD for f

But how to avoid multiple invocations to ITE?

= Store triples (u, vy, v2) for which ITE already has been computed

© JPK

33

Advanced model checking

Efficiency improvement by memoization

if there is an entry for (u, v, v2, w) in the computed table then
return node w
else
if u is terminal then
if val(u) = 1 then w := vy else w := v, fi

else
z := min{var(u), var(vy), var(vs) };
wi = ITE(u|.=1, V1|21, V2]221);
wo = ITE(u|.=0, v1]2=0, V2|2=0);

if wog = wy then w := w; else w := find_or_add(z, wy, wy) fi;
insert (u, vi, va, w) in the computed table;
return node w
fi
fi

The number of recursive calls for the nodes u, v, v9 equals the -ROBDD size

© JPK 34

