

Symbolic Model Checking with ROBDDs

Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 10, 2011

Symbolic representation of transition systems

- let $TS = (S, \rightarrow, I, AP, L)$ be a “large” finite transition system
 - the set of actions is irrelevant here and has been omitted, i.e., $\rightarrow \subseteq S \times S$
- For $n \geq \lceil \log |S| \rceil$, let injective function $enc : S \rightarrow \{0, 1\}^n$
 - note: $enc(S) = \{0, 1\}^n$ is no restriction, as all elements $\{0, 1\}^n \setminus enc(S)$ can be treated as the encoding of pseudo states that are unreachable
- Identify the states $s \in S = enc^{-1}(\{0, 1\}^n)$ with $enc(s) \in \{0, 1\}^n$
- And $T \subseteq S$ by its **characteristic** function $\chi_T : \{0, 1\}^n \rightarrow \{0, 1\}$
 - that is $\chi_T(enc(s)) = 1$ if and only if $s \in T$
- And $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0, 1\}^{2n} \rightarrow \{0, 1\}$
 - such that $\Delta(enc(s), enc(s')) = 1$ if and only if $s \rightarrow s'$

Switching functions

- Let $\text{Var} = \{z_1, \dots, z_m\}$ be a finite set of Boolean variables
- An **evaluation** is a function $\eta : \text{Var} \rightarrow \{0, 1\}$
 - let $\text{Eval}(z_1, \dots, z_m)$ denote the set of evaluations for z_1, \dots, z_m
 - shorthand $[z_1 = b_1, \dots, z_m = b_m]$ for $\eta(z_1) = b_1, \dots, \eta(z_m) = b_m$
- $f : \text{Eval}(\text{Var}) \rightarrow \{0, 1\}$ is a **switching function** for $\text{Var} = \{z_1, \dots, z_m\}$
- Logical operations and quantification are defined by:

$$\begin{aligned} f_1(\cdot) \wedge f_2(\cdot) &= \min\{f_1(\cdot), f_2(\cdot)\} \\ f_1(\cdot) \vee f_2(\cdot) &= \max\{f_1(\cdot), f_2(\cdot)\} \\ \exists z. f(\cdot) &= f(\cdot)|_{z=0} \vee f(\cdot)|_{z=1}, \text{ and} \\ \forall z. f(\cdot) &= f(\cdot)|_{z=0} \wedge f(\cdot)|_{z=1} \end{aligned}$$

Symbolic model checking

- Take a symbolic representation of a transition system (Δ and χ_B)
- Backward reachability $Pre^*(B) = \{ s \in S \mid s \models \exists \diamond B \}$
- Initially: $f_0 = \chi_B$ characterizes the set $T_0 = B$
- Then, successively compute the functions $f_{j+1} = \chi_{T_{j+1}}$ for:

$$T_{j+1} = T_j \cup \{ s \in S \mid \exists s' \in S. s' \in Post(s) \wedge s' \in T_j \}$$

- Second set is given by: $\exists \bar{x}' . (\underbrace{\Delta(\bar{x}, \bar{x}')}_{s' \in Post(s)} \wedge \underbrace{f_j(\bar{x}')}_{s' \in T_j})$
 - $f_j(\bar{x}')$ arises from f_j by renaming the variables x_i into their primed copies x'_i

Symbolic computation of $\text{Sat}(\exists(C \cup B))$

$f_0(\bar{x}) := \chi_B(\bar{x});$

$j := 0;$

repeat

$f_{j+1}(\bar{x}) := f_j(\bar{x}) \vee (\chi_C(\bar{x}) \wedge \exists \bar{x}'. (\Delta(\bar{x}, \bar{x}') \wedge f_j(\bar{x}')));$

$j := j + 1$

until $f_j(\bar{x}) = f_{j-1}(\bar{x});$

return $f_j(\bar{x}).$

Symbolic computation of $\text{Sat}(\exists \square B)$

Compute the largest set $T \subseteq B$ with $\text{Post}(t) \cap T \neq \emptyset$ for all $t \in T$

Take $T_0 = B$ and $T_{j+1} = T_j \cap \{s \in S \mid \exists s' \in S. s' \in \text{Post}(s) \wedge s' \in T_j\}$

Symbolically this amounts to:

$f_0(\bar{x}) := \chi_B(\bar{x});$

$j := 0;$

repeat

$f_{j+1}(\bar{x}) := f_j(\bar{x}) \wedge \exists \bar{x}'. (\Delta(\bar{x}, \bar{x}') \wedge f_j(\bar{x}'));$

$j := j + 1$

until $f_j(\bar{x}) = f_{j-1}(\bar{x});$

return $f_j(\bar{x}).$

Symbolic model checkers mostly use ROBDDs to represent switching functions

Ordered Binary Decision Diagram

Let \wp be a **variable ordering** for Var where $z_1 <_{\wp} \dots <_{\wp} z_m$

An \wp -**OBDD** is a tuple $\mathfrak{B} = (V, V_I, V_T, \text{succ}_0, \text{succ}_1, \text{var}, \text{val}, v_0)$ with

- a finite set V of nodes, partitioned into V_I (**inner**) and V_T (**terminals**)
 - and a distinguished **root** $v_0 \in V$
- **successor functions** $\text{succ}_0, \text{succ}_1 : V_I \rightarrow V$
 - such that each node $v \in V \setminus \{v_0\}$ has at least one predecessor
- **labeling functions** $\text{var} : V_I \rightarrow \text{Var}$ and $\text{val} : V_T \rightarrow \{0, 1\}$ satisfying

$$v \in V_I \wedge w \in \{\text{succ}_0(v), \text{succ}_1(v)\} \cap V_I \Rightarrow \text{var}(v) <_{\wp} \text{var}(w)$$

Reduced OBDDs

A ϕ -OBDD \mathfrak{B} is *reduced* if for every pair (v, w) of nodes in \mathfrak{B} :

$$v \neq w \text{ implies } f_v \neq f_w$$

⇒ ϕ -ROBDDs any ϕ -consistent cofactor is represented by **exactly one** node

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and \wp a variable ordering for Var . Then:

- (a) For each switching function f for Var there **exists** a \wp -ROBDD \mathfrak{B} with $f_{\mathfrak{B}} = f$
- (b) Any \wp -ROBDDs \mathfrak{B} and \mathfrak{C} with $f_{\mathfrak{B}} = f_{\mathfrak{C}}$ are **isomorphic**

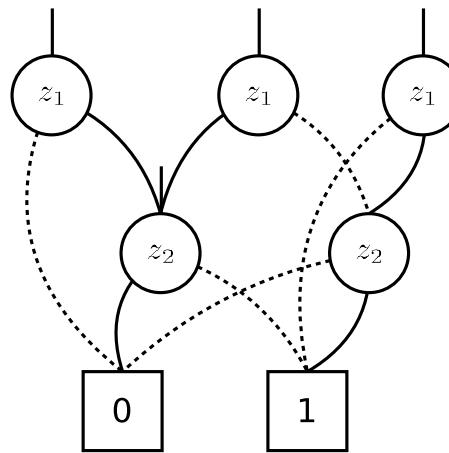
Any \wp -OBDD \mathfrak{B} for f is reduced iff $\text{size}(\mathfrak{B}) \leq \text{size}(\mathfrak{C})$ for each \wp -OBDD \mathfrak{C} for f

Synthesis of ROBDDs

- Construct a \wp -ROBDD for $f_1 \text{ op } f_2$ given \wp -ROBDDs for f_1 and f_2
 - where op is a Boolean connective such as disjunction, implication, etc.
- Idea: use a **single** ROBDD with (global) variable ordering \wp to represent **several** switching functions
- This yields a **shared** OBDD, which is:
 - a combination of several ROBDDs with variable ordering \wp by **sharing** nodes for common \wp -consistent cofactors
- The size of \wp -SOBDD $\overline{\mathcal{B}}$ for functions f_1, \dots, f_k is at most $N_{f_1} + \dots + N_{f_k}$ where N_f denotes the size of the \wp -ROBDD for f

Shared OBDDs

A **shared** \wp -OBDD is an OBDD with **multiple** roots



Shared OBDD representing $\underbrace{z_1 \wedge \neg z_2}_{f_1}$, $\underbrace{\neg z_2}_{f_2}$, $\underbrace{z_1 \oplus z_2}_{f_3}$ and $\underbrace{\neg z_1 \vee z_2}_{f_4}$

Main underlying idea: combine several OBDDs with same variable ordering
such that common \wp -consistent co-factors are shared

Using shared OBDDs for model checking Φ

Use a single SOBDD for:

- $\Delta(\bar{x}, \bar{x}')$ for the transition relation
- $f_a(\bar{x})$, $a \in AP$, for the satisfaction sets of the atomic propositions
- The satisfaction sets $Sat(\Psi)$ for the state subformulae Ψ of Φ

In practice, often the interleaved variable order for Δ is used.

Synthesizing shared ROBDDs

Relies on the use of two tables

- The **unique** table

- keeps track of ROBDD nodes that already have been created
- table entry $\langle \text{var}(v), \text{succ}_1(v), \text{succ}_0(v) \rangle$ for each inner node v
- main operation: $\text{find_or_add}(z, v_1, v_0)$ with $v_1 \neq v_0$
 - * return v if there exists a node $v = \langle z, v_1, v_0 \rangle$ in the ROBDD
 - * if not, create a new z -node v with $\text{succ}_0(v) = v_0$ and $\text{succ}_1(v) = v_1$
- implemented using hash functions (expected access time is $\mathcal{O}(1)$)

- The **computed** table

- keeps track of tuples for which ITE has been executed (memoization)
⇒ realizes a kind of dynamic programming

ITE normal form

The **ITE** (if-then-else) operator: $ITE(g, f_1, f_2) = (g \wedge f_1) \vee (\neg g \wedge f_2)$

The ITE operator and the representation of the SOBDD nodes in the unique table:

$$f_v = ITE(z, f_{succ_1(v)}, f_{succ_0(v)})$$

Then:

$$\begin{aligned} \neg f &= ITE(f, 0, 1) \\ f_1 \vee f_2 &= ITE(f_1, 1, f_2) \\ f_1 \wedge f_2 &= ITE(f_1, f_2, 0) \\ f_1 \oplus f_2 &= ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2) \end{aligned}$$

If g, f_1, f_2 are switching functions for Var , $z \in Var$ and $b \in \{0, 1\}$, then

$$ITE(g, f_1, f_2)|_{z=b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$$

ITE-operator on shared OBDDs

- A node in a \wp -SOBDD for representing $ITE(g, f_1, f_2)$ is a node w with $info\langle z, w_1, w_0 \rangle$ where:
 - z is the minimal (wrt. \wp) essential variable of $ITE(g, f_1, f_2)$
 - w_b is an SOBDD-node with $f_{w_b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$
- This suggests a recursive algorithm:
 - determine z
 - recursively compute the nodes for ITE for the cofactors of g , f_1 and f_2

$ITE(u, v_1, v_2)$ on shared OBDDs (initial version)

```

if  $u$  is terminal then
  if  $val(u) = 1$  then
     $w := v_1$                                      (*  $ITE(1, f_{v_1}, f_{v_2}) = f_{v_1}$  *)
  else
     $w := v_2$                                      (*  $ITE(0, f_{v_1}, f_{v_2}) = f_{v_2}$  *)
  fi
else
   $z := \min\{var(u), var(v_1), var(v_2)\}$ ;          (* minimal essential variable *)
   $w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1})$ ;
   $w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0})$ ;
  if  $w_0 = w_1$  then
     $w := w_1$ ;                                  (* elimination rule *)
  else
     $w := find\_or\_add(z, w_1, w_0)$ ;          (* isomorphism rule *)
  fi
fi
return  $w$ 

```

ROBDD size under ITE

The size of the \wp -ROBDD for $ITE(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$
where N_f denotes the size of the \wp -ROBDD for f

for some ITE-functions optimisations are possible, e.g., $f \oplus g$

ROBDD size under ITE

The size of the \wp -ROBDD for $ITE(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$
where N_f denotes the size of the \wp -ROBDD for f

But how to avoid multiple invocations to ITE?

⇒ Store triples (u, v_1, v_2) for which ITE already has been computed

Efficiency improvement by memoization

```

if there is an entry for  $(u, v_1, v_2, w)$  in the computed table then
  return node  $w$ 
else
  if  $u$  is terminal then
    if  $\text{val}(u) = 1$  then  $w := v_1$  else  $w := v_2$  fi
  else
     $z := \min\{\text{var}(u), \text{var}(v_1), \text{var}(v_2)\};$ 
     $w_1 := \text{ITE}(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});$ 
     $w_0 := \text{ITE}(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});$ 
    if  $w_0 = w_1$  then  $w := w_1$  else  $w := \text{find\_or\_add}(z, w_1, w_0)$  fi;
    insert  $(u, v_1, v_2, w)$  in the computed table;
    return node  $w$ 
  fi
fi

```

The number of recursive calls for the nodes u, v_1, v_2 equals the \wp -ROBDD size
 of $\text{ITE}(f_u, f_{v_1}, f_{v_2})$, which is bounded by $N_u \cdot N_{v_1} \cdot N_{v_2}$

Some experimental results

- Traffic alert and collision avoidance system (TCAS) (1998)
 - 277 boolean variables, reachable state space is about $9.6 \cdot 10^{56}$ states
 - $|B| = 124,618$ vertices (about 7.1 MB), construction time 46.6 sec
 - checking $\forall \square (p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices
- Synchronous pipeline circuit (1992)
 - pipeline with 12 bits: reachable state space of $1.5 \cdot 10^{29}$ states
 - checking safety property takes about $10^4 - 10^5$ sec
 - $|B_{\rightarrow}|$ is linear in data path width
 - verification of 32 bits (about 10^{120} states): 1h 25m
 - using partitioned transition relations

Some other types of BDDs

- Zero-suppressed BDDs
 - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted
- Parity BDDs
 - like ROBDDs, but non-terminals may be labeled with \oplus ; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
 - like ROBDDs, but terminals have values in \mathbb{R} , or \mathbb{N} , etc.
- Binary moment diagrams (BMD)
 - generalization of ROBDD to linear functions over bool, int and real
 - uses edge weights

Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)