© JPK

Timed Automata
Lecture #15 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

11.1.11

Advanced model checking

Time-critical systems

e Timing issues are of crucial importance for many systems, e.g.,

— landing gear controller of an airplane, railway crossing, robot controllers
— steel production controllers, communication protocols

e In time-critical systems correctness depends on:

— not only on the logical result of the computation, but
— also on the time at which the results are produced

e How to model timing issues:

— discrete-time or continuous-time?

© JPK 1

Advanced model checking

A discrete time domain

e Time has a discrete nature, i.e., time is advanced by discrete steps

— time is modelled by naturals; actions can only happen at natural time values
— a single transition corresponds to a single time unit

= delay between any two events is always a multiple of a single time unit

e Properties can be expressed in traditional temporal logic

— the next-operator “measures” time passage

— two time units after being red, the lightis green: O (red = (O (O green)
— within two time units after red, the light is green:

O (red = (green V. O green V. (O O green))

'
O<2 green

e Main application area: synchronous systems, e.g., hardware

© JPK

Advanced model checking

A discrete time domain

e Main advantage: conceptual simplicity

— labeled transition systems can be taken as is
— temporal logic can be taken as is
= traditional model-checking algorithms suffice
= adequate for synchronous systems. e.g., hardware systems

e Main limitations:

— (minimal) delay between any pair of actions is a multiple of an a priori fixed
minimal delay
= difficult (or impossible) to determine this in practice
= not invariant against changes of the time scale
= inadequate for asynchronous systems. e.g., distributed systems

© JPK

Advanced model checking

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

within four

O time-units . is modeled by

t=0 t=0.74 t=2 t=3t=m t=4

C b4 b

b= 0 t—074 t=292 t=3t=mn t=4

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within 7 time-units?

© JPK 4

Advanced model checking

Approach

e Restrict expressivity of the property language

— e.g., only allow reference to natural time units

— Timed CTL

e Model timed systems symbolically rather than explicitly

— in a similar way as program graphs and channel systems

— Timed Automata

e Consider a finite quotient of the infinite state space on-demand

— l.e., using an equivalence that depends on the property and the timed automaton

—> Region Automata

© JPK 5

Advanced model checking

A railroad crossing

signal

"approach"

Signal
'exit"

please close and open the gate at the right time!

© JPK

Advanced model checking

Modeling using transition systems

approach

OO

raise lower lower . raise

@ exit g

Train Controller Gate

No guarantee that the gate is closed when train is passing

© JPK

Advanced model checking

This can be seen as follows

—{ (far, 0, up) |

, approach
approach approach
raise [(near, 1, Up>]
IW wr
({near, 2, down)] [(in,1,up) |

the train can enter the crossing while gate is still open

© JPK 8

Advanced model checking

Timing assumptions

Train Controller Gate

appmach

UP
raise lower lower raise
enter
exat

ey (e

after delay of executlon time
> 2 minutes 1 mlnute of < 1 minute

© JPK

Advanced model checking

Resulting composite behaviour

S lower near 2 down)\

(far O up) 3pproach {

near 1 up

(-

enter in 1 up)/

© JPK

10

Advanced model checking YR

Timed automata model of train

approach

enter

after
> 2 minutes

train is now also assumed to leave crossing within five time units

© JPK 11

Advanced model checking M“‘“

Timed automata model of gate

lower

raise [up \ lower (coming dowﬂ
true) reset(z) __T s 1

\

[going up \ raise [down]

<2) peset(z) __ true

expcut.ion time
of < 1 minute

raising the gate is now also assumed to take between one and two time units

© JPK 12

Advanced model checking

Clocks

e Clocks are variables that take non-negative real values, i.e., In R

e Clocks increase implicitly, I.e., clock updates are not allowed

e All clocks increase at the same pace, I.e., with rate one

— after an elapse of d time units, all clocks advance by d

e Clocks may only be inspected and reset to zero

e Boolean conditions on clocks are used as:

— guards of edges: when is an edge enabled?
— invariants of locations: how long is it allowed to stay?

© JPK 13

Advanced model checking

Clock constraints

e A clock constraint over set C of clocks is formed according to:
gu= z<c ‘ r<ec ‘ T > cC ‘ T =c | gNg WhereceNandzxze(C

e Let CC(C) denote the set of clock constraints over C'.

e Clock constraints without any conjunctions are atomic

— let ACC(C') denote the set of atomic clock constraints over C

clock difference constraints such as x—y < ¢ can be added at
expense of slightly more involved theory

© JPK 14

Advanced model checking

Timed automaton

A timed automaton TA = (Loc, Act,C, —, Locy, Inv, AP, L) where:
e Loc is a finite set of locations

e Locy C Loc is a set of initial locations

e ('is afinite set of clocks

e — C Loc x CC(C) x Act x 2¢ x Loc is a transition relation

e Inv: Loc — CC(C) is an invariant-assignment function, and

e L :Loc — 2°F is a labeling function

© JPK 15

Advanced model checking

Intuitive interpretation

o, C
e Edge / = 7 o ¢ means:

— action « is enabled once guard g holds
— when moving from location ¢ to ¢’

x perform action «, and

x reset any clock in C' will to zero

x ... all clocks notin C keep their value

e Nondeterminism if several transitions are enabled

e Inv(¢) constrains the amount of time that may be spent in location ¢

— once the invariant Inv(¢) becomes invalid, the location ¢ must be left
— if this is impossible — no enabled transition — no further progress is possible

© JPK 16

Advanced model checking

Guards versus invariants

T 4

value
of ©

—~ 8
8 [\
=~ ro

© JPK e

Advanced model checking

Guards versus invariants

value

(\)
~ |\
8 (8
/A

w

© JPK 18

Advanced model checking

Guards versus invariants

T 4

value
of ©

—~ 8
8 [\
=~ ro

© JPK 19

Advanced model checking

Arbitrary clock differences

— — - clock x
—— clock y

—~|<
< WV
“+~| o
—_—
N

clock
value

8
V
)
N

~=
8
——

time — =

This is iImpossible to model in a discrete-time setting

© JPK 20

Advanced model checking

Fisher’'s mutual exclusion protocol

© JPK 21

Advanced model checking

Composing timed automata
Let TA; = (Loc;, Act;, C;, <, Loco;, Inv;, AP, L;) and H an action-set

TA1 || TA; = (Loc, Act; U Acty, C, <, Locy, Inv,AP, L) where:

e Loc = Loc; x Locy and Locy = Locy ; x Locy 2 and C' = C7 U Cq

° |ﬂV(<€1,€2>) = |nV1(€1) N\ |nV2(£2) and L(<€1,€2>) = Ll(gl) U L2(€2)

), <_glzoz,Dl El N, Cg2:a,D2 6/
e ~isdefined bytherules: fora ¢ H — — 1% 2 2ty
gl/\g2:a,D1UD2 p p
(b1, £2) = = (£, £5)
o, D / g:a,D p
{1 = J > / {y < > ./
fora & H: : ' and 2 2%
g , g, /
(b1, £2) = > (0, 42) (£1,05) = = (01,0))

© JPK 22

Advanced model checking

Example: arailroad crossing

© JPK 23

Advanced model checking

L
rese [T){near 2, com.doun
y<Bbhr<i

enter _

(in,2,com.doun |
y=irr<l

raise | reset(zx)
! =
(far 0,going up)) e
r<2)
approach | reset (y, z)
=1

énear,l,goéng up) |
y<hirnr<2haz2<1))

en.terl y=2

[{in,1,going up)
ly€5neg2nzg1

rz=l

© JPK 24

Advanced model checking

Clock valuations

e A clock valuation n for set C' of clocks is a function n : C' — Ry

— assigning to each clock z € C'its current value n(x)

e Clock valuation n+d for d € R Is defined by:
— (n+d)(x) = n(x) + dforall clocks x € C

e Clock valuation reset z in n for clock « is defined by:

(reset z in n)(y) = { g(y) :}"z i i

— reset xz in (reset y in n) is abbreviated by reset z, y in n

© JPK 25

Advanced model checking

Satisfaction of clock constraints

Letx € C, n e Eval(C),ce N,and g,¢g' € CC(C)

The the relation = C Eval(C') x CC(C) is defined by:

S S S SIS 3

— {rue

—x <c
— I < C
— x> cC

— T = C

=gANg

© JPK

26

Advanced model checking

Timed automaton semantics
For timed automaton TA = (Loc,Act, C, <, Locy, Inv, AP, L):

Transition system TS(TA) = (S, Act’, —, I, AP’, L’) where:

e S =Loc x Eval(C), so states are of the form s = (¢, n)

o Act’' = Act U R, (discrete) actions and time passage actions
o [={(ly,mo) | ¢y € Locy N no(z)=0forallz e C}

e AP' = AP U ACC(C)

o L'({¢,m)) =L(¢) U{geACC(C)|nFEg}

e — IS the transition relation defined on the next slide

© JPK 27

Advanced model checking

Timed automaton semantics

The transition relation — is defined by the following two rules:

e Discrete transition: (¢,n) —= (¢, /) if all following conditions hold:

— there is a transition labeled (g : o, D) from location £ to £’ such that:
— gis satisfied by n,i.e., n =g

— n' = np with all clocks in D resetto 0, i.e., n” = reset D inn

— n’ fulfills the invariant of location ¢', i.e., " = Inv(¢')

e Delay transition: (¢,) % (¢, n+d) for d € Rxg if n+d = Inv(¢)

© JPK 28

Advanced model checking

Example

© JPK 29

