© JPK

Timed CTL
Lecture #17 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

January 18, 2011

Advanced model checking

Timelock, time-divergence and Zenoness

e A path is time-divergent if its execution time is infinite

. d d
ExecTime(sg —> s1 —> ...) = E di = o0
1=0

e TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

e TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions

© JPK 1

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:
d ::= true ‘ a ‘ g | <I>/\<I>‘ - ‘ 390|Vg0
where a € AP, g € ACC(C') and ¢ is a path-formula defined by:
o= P

where J C IR, IS an interval whose bounds are naturals
&7 asserts that a ®-state is reached at time instant ¢t € J
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,m e Nand n < m

for right-open intervals, m = oo is also allowed

© JPK 2

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:
J07® = -vo/-® and vO'® = 307 =@
JO7 & asserts that for some path during the interval .J, ® holds

VO’ & requires this to hold for all paths

Standard O and <-operator are obtained as follows:

OPp =029 and O0& =002 ¢

© JPK

Advanced model checking

Timed properties in TCTL

© JPK 4

Advanced model checking

Semantics of TCTL

For state s = (¢,n) in TS(TA) the satisfaction relation |~ is defined by:

— frue

_ g iff
_ iff
— —d ff
— GAT ff
— 3, ff
— Vo ff

a € L(0)

nEy

nots =&

(s =®)and (s = V)

m = ¢ for some 7w € Pathsg,(s)

7w = o for all 7 € Pathsg,(s)

path quantification over time-divergent paths only

© JPK

Advanced model checking

The = relation
For infinite path fragments in TS(TA) performing co many actions let:

Sog—=> S]] —=> So———> ... Withdo,dl,dg...>o

denote the equivalence class containing all infinite path fragments
Induced by execution fragments of the form:

4l JFo ol Jk1 4l Jk2
0 0] 1 1 a2 2 2 a3
SO0 ... — Sotdy — S1 ... — S1+dl — S22 ... = Sat+dy —>
Vv Vo Vo
time passage of time passage of time passage of
d time-units dq time-units do time-units

where k; € IN, d; € IRy and a; € Act such that Zf;l d;{ = d,.

do dy :
For m € sp=—=s1=—= ... we have EzecTime(m) =) .. di

© JPK 6

Advanced model checking

Semantics of TCTL

. : do dq
For time-divergent path 7 € so—= s;=—= ..., we have:

rEO/Y iff 3i>0.s,+d = ¥ for some d € [0, d;] with
1—1
Y dp+deJ and
k=0

where for S; = <€7,7 777J> and d > 0 we have S;+d = <€7,7 ?72—|—d>

© JPK

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks ' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {selLocxEval(lC)|sE= o}

e TA satisfies TCTL-formula & iff ® holds in all initial states of TA:
TA=® ifandonlyif V¢, € Locy. (£g,n0) = P

where ng(x) =0forallz € C

© JPK 8

Advanced model checking

Example

© JPK 9

Advanced model checking

Timed CTL versus CTL

e Due to ignoring time-convergent paths in TCTL semantics possibly:

IS(TA) ’:TCTL \V/gg but IS(TA) \#CTL \V/@

TCTL semantics CTL semantics

— CTL semantics considers all paths, timed CTL only time-divergent paths

e For® = VO(on — V<off) and the light switch

— there are time-convergent paths on which location on is never left

© JPK 10

Advanced model checking

Characterizing timelock

e TCTL semantics is also well-defined for TA with timelock

e A state contains a timelock whenever no time-divergent paths
emanate from it

e A state is timelock-free if and only if it satisfies d0Otrue

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent path
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TA is timelock-free iff Vs € Reach(TS(TA)): s = d0Otrue

e Timelocks can thus be checked by a timed CTL formula

© JPK 11

Advanced model checking

TCTL model checking
e TCTL model-checking problem: TA = & for non-zeno TA

TAE® iff TS(TA) = &
N— (. ~ /

timed automaton infinite transition system

— timelocks in TA are irrelevant as their presence can be checked

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on @ is ignored for the moment . . .

e Transform TCTL formula ¢ into an “equivalent” CTL-formula)

o Then: TAEren @ iff RTS(TA) |ecn @

finite transition system

© JPK 12

Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # [0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA
— s=30'diffresetzins =z € JA D
— deal with 30 /®, ¥ /&, and VO /@ in a similar way

e Formally: for any state s of TS(TA) it holds:

s =3070 iff s{z:=0} E3IO((zeJ)A)

state in TS(TA @ z)

— where TA & z is TA (over C) extended with z ¢ C
e E.g., dJ05? @ yields 30 ((z < 2) — D)

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK 13

Advanced model checking

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA
and &:

/

n=n = (mEg iff 7' E=g)

(B) Time-divergent paths emanating from equivalent states are
“equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK 14

Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— iIf clocks exceed the maximal constant with which they are compared their
precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK 15

Advanced model checking

Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula & (both over AP and C)
Output: TA = @

AN

® := eliminate the timing parameters from &;

determine the equivalence classes under =;

construct the region transition system TS = RTS(TA);
apply the CTL model-checking algorithm to check TS |= P;
TA |= @ ifand only if TS = ®

how does clock equivalence look like?

© JPK

16

Advanced model checking

First observation

e 1 = < cwhenever n(z) < ¢, or equivalently, [n(x)] < ¢
— |d| = max{ce€ IN | c<d}and frac(d) = d— |d]

e 1) = < cwhenever |n(z)| < cor |n(z)| =cand frac(x) =0
= 1 = g only depends on |n(x) |, and whether frac(n(x)) =0

e Initial suggestion: clock valuations n» and n’ are equivalent if:

n(z)] = [n'(x)] and frac(n(z)) = 0iff frac(n'(x)) = 0

e Note: it is crucial thatin x < cand z < ¢, ¢S a natural

© JPK 17

Advanced model checking

Example

[.L =3 y= EJ
y i countable index
2 ¢—9—» o .t f
S D (I (L G=30<y<]

[
g
ol

© JPK 18

Advanced model checking

A problem

© JPK 19

Advanced model checking

Second observation

e Consider location ¢ with Inv(¢) = true and only outgoing transitions:

— one guarded with x > 2 (action o) and y > 1 (action 3)

e Letstate s = (¢, n) with1 < n(x) <2and 0 < n(y) <1

— « and g are disabled, only time may elapse

e Transition that is enabled next dependsonx <yorz >y

— e.g., if frac(n(x)) > frac(n(y)), action « is enabled first

e Suggestion for strengthening of initial proposal for all x,y € C by:

frac(n(z)) < frac(n(y)) ifandonlyif frac(n'(z)) < frac(n'(y))

© JPK 20

Advanced model checking

Example

(3<z<41<y<2,z—y<2 |

;o
9 7
1

(3<r<dl<y<2r—y>2 |

—————— {3<r<dl<y<2r—y=2 |

!

© JPK 21

Advanced model checking

Final observation

e So far, clock equivalence yield a denumerable though not finite
guotient

e For TA = @ only the clock constraints in TA and ® are relevant

— let ¢, € IN the largest constant with which x is compared in TA or &

= If n(z) > ¢, then the actual value of z is irrelevant

— constraints on = so far are only relevant for clock values of = (y) up to c,. (c,)

© JPK 22

Advanced model checking

Example revisited

C’FZQCI:‘LL

finite index

© JPK 23

Advanced model checking

Clock equivalence

Clock valuations 7, n" € Eval(C') are equivalent, denoted n = 7/, if either:
e forallz € C: n(z) > ¢, and n'(z) > c,, Or

e for any z,y € C with n(z) < ¢, and n'(x) < ¢, and n(y) < ¢, and
n'(y) < ¢, it holds:

= [n(x)] = |n'(z)] and frac(n(z)) = 0 iff frac(n’(z)) = 0, and

— frac(n(z)) < frac(n(y)) ff frac(n'(z)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK 24

Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted [n], is defined by:

m = {n eBval(C) |n=7n}

e The state region of s = (¢,) € TS(TA) is defined by:

[s] = (&) = {{sn) [0 e}

© JPK 25

Advanced model checking

Example

© JPK 26

