© JPK

Timed CTL Model Checking
Lecture #16 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

January 24, 2011

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

<I>:::true|a|g‘<I>A<I>| ﬁCI3|E|gp|Vg0

where a € AP, g € ACC(C) and ¢ is a path-formula defined by:

=0l &
where J C IR, IS an interval whose bounds are naturals

abbreviate [c, c0) by z > ¢, (¢1, c2] by ¢1 < = < ¢5 etc.

© JPK

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks ' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {selLocxEval(lC)|sE= o}

e TA satisfies TCTL-formula & iff ® holds in all initial states of TA:
TA=® ifandonlyif V¢, € Locy. (£g,n0) = P

where ng(x) =0forallz € C

© JPK 2

Advanced model checking

TCTL model checking

e TCTL model-checking problem: TA = & for non-Zeno TA

TA=® iff TS(TA) =&
A (& ~ J

timed automaton infinite transition system

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on @ is ignored for the moment . . .

e Transform TCTL formula ® into an “equivalent” CTL-formula o

o Then: TAEren @ iff RTS(TA) |=cn @

finite transition system

© JPK 3

Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # |0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA

e Formally: for any state s of TS(TA) it holds:

s =300 iff s{z:=0} E3IO((zeJ)A)

~~
state in TS(TA @ z)

— where TA @ z is TA (over C) extended with z € C

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK

Advanced model checking

Correctness
Let TA = (Loc, Act, C', —, Locy, Inv, AP, L). For clock z &€ C, let
TA® 2z = (Loc,Act,CU{ z},—,Locg,Inv,AP, L).
For any state s of TS(TA) it holds that:

L sE3@U/D) iff s{z:=0}):3((<I>v\11)u((zeJ)A\If))

state in TS(TA @ z)

2. sEVY(@U/W) iff s{z:=0} |:V((<I>\/\I!)U((z€J)/\\I!)>

~
state in TS(TA @ z)

© JPK 5

Advanced model checking

Clock equivalence =

(A) Equivalent clock valuations satisfy the same clock constraints g:

/

n=n = (nEg iff v E=g)

(B) Time-divergent paths of equivalent states are “equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK 6

Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK

Advanced model checking

Clock equivalence: definition

Clock valuations 7, n" € Eval(C') are equivalent, denoted n = 7/, if either:
e forallz € C: n(z) > ¢, and n'(z) > c,, Or

e for any z,y € C with n(z) < ¢, and n'(x) < ¢, and n(y) < ¢, and
n'(y) < ¢, it holds:

= [n(x)] = |n'(z)] and frac(n(z)) = 0 iff frac(n’(z)) = 0, and

— frac(n(z)) < frac(n(y)) ff frac(n'(z)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK 8

Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted [n], is defined by:

m = {n eBval(C) |n=7n}

e The state region of s = (¢,) € TS(TA) is defined by:

[s] = (&) = {{sn) [0 e}

© JPK 9

Advanced model checking

Example c,=2, c,=1

© JPK 10

Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

Cltx [ee < | Bval(C)/= | < [C#297 s [(20 +2)

Ve

zeC number of regions zeC

where for the upper bound it is assumed that ¢, > 1 forany x € C'

the number of state regions is |Loc| times larger

© JPK 11

Advanced model checking

Proof

© JPK 12

Advanced model checking

Preservation of atomic properties

1. Forn,n" € Eval(C) such that n = 7'

nkEg ifandonlyif ' = gforany g e ACC(TAU D)

2. For s, s’ € TS(TA) such that s = ¢’

slk=a ifandonlyif s =aforanyac AP’

where AP’ includes all propositions in TA and atomic clock constraints in TA and &

© JPK 13

Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’

© JPK

14

Advanced model checking

Proof

© JPK 15

Advanced model checking

Region automaton: intuition

e Region automaton = quotient of TS(TA) under =
e State regions are states in quotient transition system under =

e Transitions in region automaton “mimic” those in TS(TA)

e Delays are abstract

— the exact delay is not recorded, only that some delay took place
— if any clock x exceeds c,, delays are self-loops

e Discrete transitions correspond to actions

© JPK 16

Advanced model checking

A simple example

@) z22:a

reset(x)

© JPK 17

Advanced model checking

Unbounded and successor regions

e Clock region ro, = {n € Eval(C) | Vx € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted »’ = succ(r), if either:

1. r =randr =1/, or
2. 1 # oo, F 1 and Vn € r:
Jd € R-o. (n+d e’ and V0<d <d.nt+d €rur’)
e The successor region: succ({¢,r)) = (¢,succ(r))

e Note: the location invariants are ignored so far!

© JPK 18

Advanced model checking

Example

© JPK 19

Advanced model checking

Characterizing time convergence

For non-zeno TA and 7 = sg s1 S2... a path in TS(TA):

(a) wistime-convergent = d state region (/,r) such that for some j:

s; € ({,r) foralli>j

(b) If d state region (¢, r) with r # r., and an index j such that:
s; € ({,r) foralli>j
then 7 is time-convergent

time-convergent paths are paths that only perform delays from some time instant on

© JPK 20

Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S, Act, —, I, AP, L) let:

RTS(TA, @) = (S',Actu {7 },—',I,AP’ L) with
e '=5/=={[s]|seS}tand I'={]s] | s € I}, the state regions

o L'({t,r))=L() U {gcAP'\AP |r =g}

o, D .
<=2y =g resetDinr = Inv({)

(l,ry =" (¢ reset Dinr)

e —'is defined by:

r = Inv({) succ(r) = Inv(4)

and (0.1) = (£, suce(r))

© JPK 21

Advanced model checking

Example: simple light switch

x = 2 : switch_off

© JPK 22

Advanced model checking

Correctness theorem (aiur and pill, 1989

For non-Zeno timed automaton TA and TCTL formula &:

TAl=® iff RTS(TA, &) = @
\// N ~ J/
TCTL semantics CTL semantics

© JPK

23

Advanced model checking

Proof

© JPK 24

Advanced model checking

Characterizng timelock freedom

Non-zeno TA is timelock-free iff no reachable state in RTS(TA) is terminal

timelocks can thus be checked by a reachability analysis of RTS(TA)

© JPK

25

Advanced model checking

Example

1< <?2

on
—off x < 2

reset (x)

© JPK 26

Advanced model checking

TCTL model-checking algorithm

Main ideas:

e Equip TA with a single clock

— as opposed to a single clock for each (timed) subformula ® U7 ¥
e Introduce atomic proposition for each timed subformula

e Convert timed CTL formula ® into ®

e And check ® on RTS(TA)

— using standard CTL model checking

© JPK

27

Advanced model checking

Extra atomic propositions

TCTL formula @ = vO<? (3020g A 3025023 (b A (2 = 9)))
=V —EQ

The set of propositions of R contains:

e the propositions a and b, and the clock constraint =9
e the propositions ay, through ay., and ag
e the clock constraints z < 3, z € [2,6],z €]2,5[and z > 3

© JPK 28

Advanced model checking

Input: non-zeno, timelock-free timed automaton TA and TCTL formula &
Output: “yes” if TA = &, “no” otherwise.

R :=RTS(TA® z, P); (* with state space S,+s and labeling L, *)
foralli < |®|do
forall ¥ € Sub(®) with | ¥ | = i do

switch(W¥):
true » Satp(WV) := Sy
Ui A Wy : SatR(\I/) = {S € Shrts | {a\pl,agj2} C Lrts(s) };
-’ . Satp(V) :={s € Spus | agr & Lis(s) };
(0, U/ Ws) : Satp(¥) = SatCTL(3((ay, Vap,)U((z € J) Aay,)));
V(U U Wy) : Satp(¥) = SatCTL(V((aw, Vap,)U((z € J) Aay,)));
end switch

(* add a to the labeling of all state regions where ¥ holds *)
forall s € Sy with s{z := 0} € Satr(¥) do L (s) := Lys(s) U{ayg } od;
od
od

if 1,45 C Satr(®) then return “yes” else return “no” fi

© JPK 29

Advanced model checking

Time complexity

For timed automaton TA and TCTL formula &, the model-checking problem
TA = @ can be determined intime O ((N+K) - | ®|),

where N and K are the number of states and transitions in RTS(TA, ®)

© JPK

30

Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. Model checking safety, reachability, or w-regular properties in TA is
PSPACE-complete

3. Model checking LTL and CTL against TA is PSPACE-complete
4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for TCTL is undecidable

all facts without proof

© JPK 31

