

Timed CTL Model Checking

Lecture #16 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 24, 2011

Timed CTL

Syntax of TCTL *state-formulas* over AP and set C :

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \textcolor{red}{g} \quad | \quad \Phi \wedge \Phi \quad | \quad \neg \Phi \quad | \quad \exists \varphi \quad | \quad \forall \varphi$$

where $a \in AP$, $\textcolor{red}{g} \in ACC(C)$ and φ is a *path-formula* defined by:

$$\varphi ::= \Phi \mathbin{U^J} \Phi$$

where $\textcolor{red}{J} \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals

abbreviate $[c, \infty)$ by $x > c$, $(c_1, c_2]$ by $c_1 < x \leq c_2$ etc.

TCTL-semantics for timed automata

- Let TA be a timed automaton with clocks C and locations Loc
- For TCTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}$$

- TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA :

$$TA \models \Phi \quad \text{if and only if} \quad \forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \Phi$$

where $\eta_0(x) = 0$ for all $x \in C$

TCTL model checking

- TCTL model-checking problem: $TA \models \Phi$ for non-Zeno TA

$$\underbrace{TA \models \Phi}_{\text{timed automaton}} \quad \text{iff} \quad \underbrace{TS(TA) \models \Phi}_{\text{infinite transition system}}$$

- Idea: consider a finite quotient of $TS(TA)$ wrt. a bisimulation
 - $TS(TA)/\cong$ is a *region* transition system and denoted $RTS(TA)$
 - dependence on Φ is ignored for the moment . . .
- Transform TCTL formula Φ into an “equivalent” CTL-formula $\widehat{\Phi}$
- Then: $TA \models_{TCTL} \Phi$ iff $\underbrace{RTS(TA)}_{\text{finite transition system}} \models_{CTL} \widehat{\Phi}$

Eliminating timing parameters

- Eliminate all intervals $J \neq [0, \infty)$ from TCTL formulas
 - introduce a fresh clock, z say, that does not occur in TA
- Formally: for any state s of $TS(TA)$ it holds:

$$s \models \exists \diamond^J \Phi \quad \text{iff} \quad \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists \diamond((z \in J) \wedge \Phi)$$

- where $TA \oplus z$ is TA (over C) extended with $z \notin C$

atomic clock constraints are atomic propositions, i.e., a CTL formula results

Correctness

Let $TA = (Loc, Act, C, \hookrightarrow, Loc_0, Inv, AP, L)$. For clock $z \notin C$, let

$$TA \oplus z = (Loc, Act, C \cup \{z\}, \hookrightarrow, Loc_0, Inv, AP, L).$$

For any state s of $TS(TA)$ it holds that:

1. $s \models \exists(\Phi \cup^J \Psi)$ iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists((\Phi \vee \Psi) \cup ((z \in J) \wedge \Psi))$
2. $s \models \forall(\Phi \cup^J \Psi)$ iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \forall((\Phi \vee \Psi) \cup ((z \in J) \wedge \Psi))$

Clock equivalence \cong

(A) Equivalent clock valuations satisfy the same clock constraints g :

$$\eta \cong \eta' \Rightarrow (\eta \models g \text{ iff } \eta' \models g)$$

(B) Time-divergent paths of equivalent states are “equivalent”

- this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under \cong is finite

Clock equivalence

- Correctness criteria (A) and (B) are ensured if equivalent states:
 - agree on the integer parts of all clock values, and
 - agree on the ordering of the fractional parts of all clocks

⇒ This yields a denumerable infinite set of equivalence classes

- Observe that:
 - if clocks exceed the maximal constant with which they are compared their precise value is not of interest

⇒ The number of equivalence classes is then finite (C)

Clock equivalence: definition

Clock valuations $\eta, \eta' \in \text{Eval}(C)$ are *equivalent*, denoted $\eta \cong \eta'$, if either:

- for all $x \in C$: $\eta(x) > c_x$ and $\eta'(x) > c_x$, or
- for any $x, y \in C$ with $\eta(x) \leq c_x$ and $\eta'(x) \leq c_x$, and $\eta(y) \leq c_y$ and $\eta'(y) \leq c_y$ it holds:
 - $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $\text{frac}(\eta(x)) = 0$ iff $\text{frac}(\eta'(x)) = 0$, and
 - $\text{frac}(\eta(x)) \leq \text{frac}(\eta(y))$ iff $\text{frac}(\eta'(x)) \leq \text{frac}(\eta'(y))$.

$$s \cong s' \quad \text{iff} \quad \ell = \ell' \quad \text{and} \quad \eta \cong \eta'$$

Regions

- The *clock region* of $\eta \in \text{Eval}(C)$, denoted $[\eta]$, is defined by:

$$[\eta] = \{ \eta' \in \text{Eval}(C) \mid \eta \cong \eta' \}$$

- The *state region* of $s = \langle \ell, \eta \rangle \in \text{TS(TA)}$ is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle \mid \eta' \in [\eta] \}$$

Example $c_x=2, c_y=1$

Bounds on the number of regions

The *number of clock regions* is bounded from below and above by:

$$|C|! * \prod_{x \in C} c_x \leq | \underbrace{\text{Eval}(C) / \cong}_{\text{number of regions}} | \leq |C|! * 2^{|C|-1} * \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x \geq 1$ for any $x \in C$

the number of state regions is $|Loc|$ times larger

Proof

Preservation of atomic properties

1. For $\eta, \eta' \in \text{Eval}(C)$ such that $\eta \cong \eta'$:

$\eta \models g$ if and only if $\eta' \models g$ for any $g \in \text{ACC}(\text{TA} \cup \Phi)$

2. For $s, s' \in \text{TS}(\text{TA})$ such that $s \cong s'$:

$s \models a$ if and only if $s' \models a$ for any $a \in AP'$

where AP' includes all propositions in TA and atomic clock constraints in TA and Φ

Clock equivalence is a bisimulation

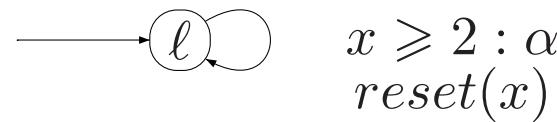
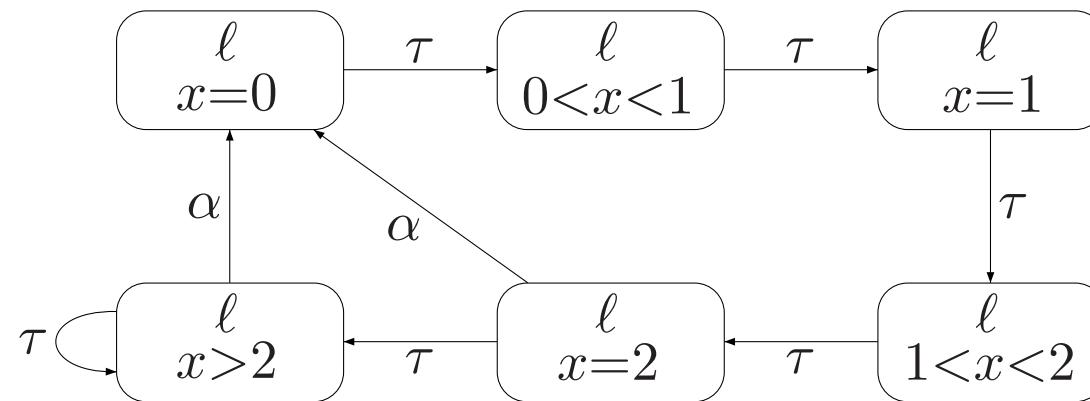
Clock equivalence is a bisimulation equivalence over AP'

Proof

Region automaton: intuition

- Region automaton = quotient of $TS(TA)$ under \cong
- State regions are states in quotient transition system under \cong
- Transitions in region automaton “mimic” those in $TS(TA)$
- Delays are **abstract**
 - the exact delay is not recorded, only that some delay took place
 - if any clock x exceeds c_x , delays are self-loops
- Discrete transitions correspond to **actions**

A simple example



Unbounded and successor regions

- Clock region $r_\infty = \{ \eta \in \text{Eval}(C) \mid \forall x \in C. \eta(x) > c_x \}$ is *unbounded*
- r' is the *successor (clock) region* of r , denoted $r' = \text{succ}(r)$, if either:
 1. $r = r_\infty$ and $r = r'$, or
 2. $r \neq r_\infty$, $r \neq r'$ and $\forall \eta \in r:$

$$\exists d \in \mathbb{R}_{>0}. (\eta + d \in r' \quad \text{and} \quad \forall 0 \leq d' \leq d. \eta + d' \in r \cup r')$$

- The *successor region*: $\text{succ}(\langle \ell, r \rangle) = \langle \ell, \text{succ}(r) \rangle$
- Note: the location invariants are ignored so far!

Example

Characterizing time convergence

For non-zeno TA and $\pi = s_0 s_1 s_2 \dots$ a path in $TS(TA)$:

(a) π is *time-convergent* $\Rightarrow \exists$ state region $\langle \ell, r \rangle$ such that for some j :

$$s_i \in \langle \ell, r \rangle \text{ for all } i \geq j$$

(b) If \exists state region $\langle \ell, r \rangle$ with $r \neq r_\infty$ and an index j such that:

$$s_i \in \langle \ell, r \rangle \text{ for all } i \geq j$$

then π is *time-convergent*

time-convergent paths are paths that only perform delays from some time instant on

Region automaton

For non-zeno TA with $TS(TA) = (S, Act, \rightarrow, I, AP, L)$ let:

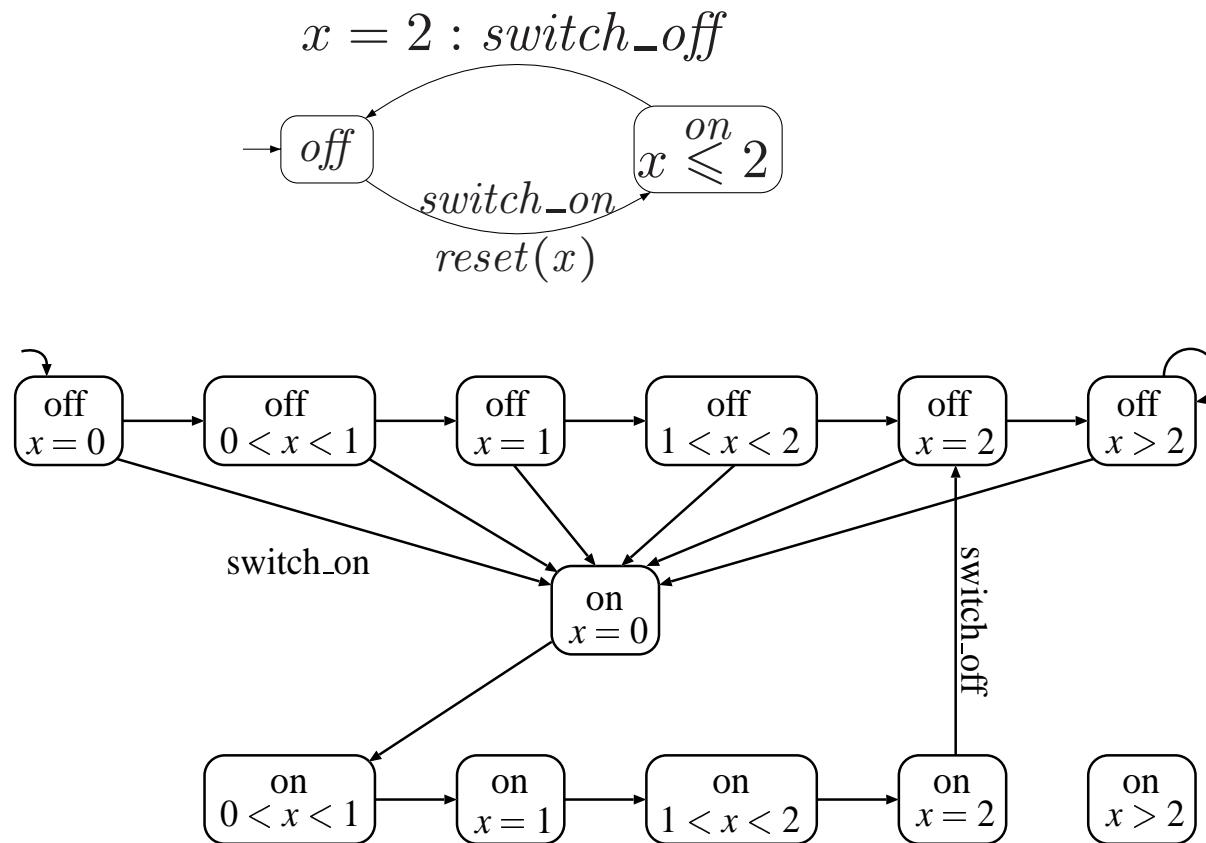
$$RTS(TA, \Phi) = (S', Act \cup \{\tau\}, \rightarrow', I, AP', L') \quad \text{with}$$

- $S' = S / \cong = \{ [s] \mid s \in S \}$ and $I' = \{ [s] \mid s \in I \}$, the state regions
- $L'(\langle \ell, r \rangle) = L(\ell) \cup \{ g \in AP' \setminus AP \mid r \models g \}$

- \rightarrow' is defined by:
$$\frac{\ell \xleftarrow{g:\alpha, D} \ell' \quad r \models g \quad \text{reset } D \text{ in } r \models \text{Inv}(\ell')}{\langle \ell, r \rangle \xrightarrow{\alpha}^{\tau} \langle \ell', \text{reset } D \text{ in } r \rangle}$$

and
$$\frac{r \models \text{Inv}(\ell) \quad \text{succ}(r) \models \text{Inv}(\ell)}{\langle \ell, r \rangle \xrightarrow{\tau}^{\tau} \langle \ell, \text{succ}(r) \rangle}$$

Example: simple light switch



Correctness theorem [Alur and Dill, 1989]

For non-Zeno timed automaton TA and TCTL_\diamond formula Φ :

$$\underbrace{TA \models \Phi}_{\text{TCTL semantics}} \quad \text{iff} \quad \underbrace{RTS(TA, \Phi) \models \Phi}_{\text{CTL semantics}}$$

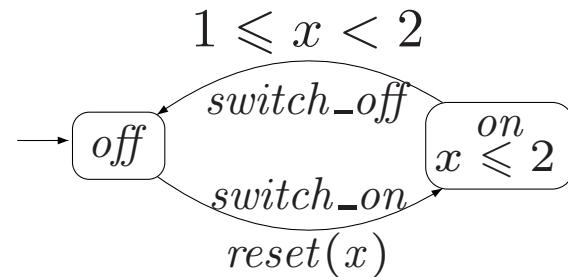
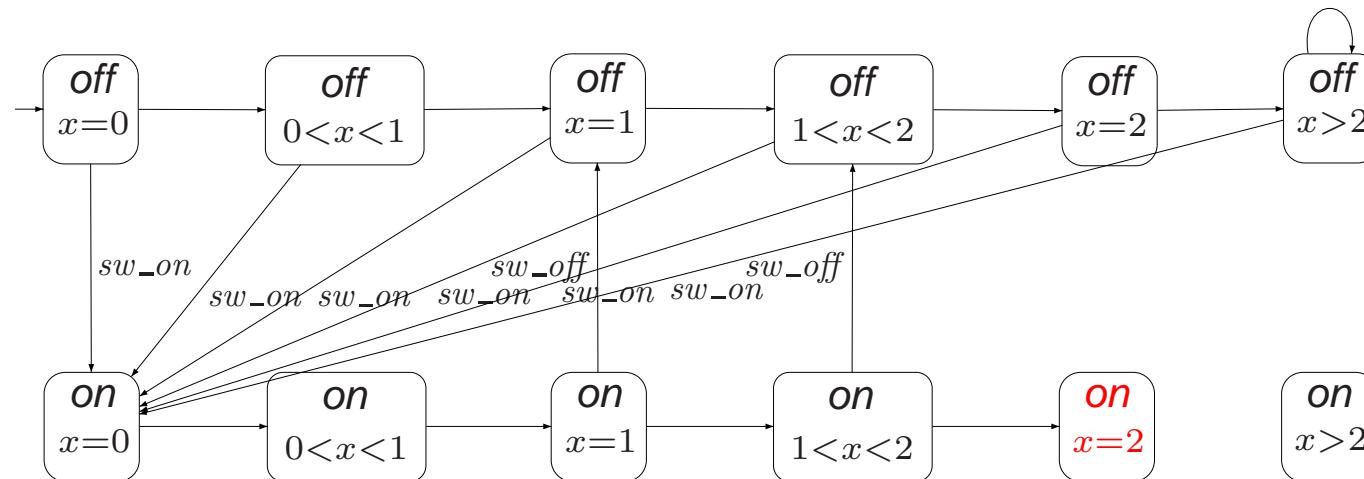
Proof

Characterizing timelock freedom

Non-zeno TA is timelock-free iff no reachable state in $RTS(TA)$ is terminal

timelocks can thus be checked by a reachability analysis of $RTS(TA)$

Example



TCTL model-checking algorithm

Main ideas:

- Equip TA with a single clock
 - as opposed to a single clock for each (timed) subformula $\Phi \cup^J \Psi$
- Introduce atomic proposition for each timed subformula
- Convert timed CTL formula Φ into $\widehat{\Phi}$
- And check $\widehat{\Phi}$ on $RTS(TA)$
 - using standard CTL model checking

Extra atomic propositions

$$\text{TCTL formula } \Phi = \forall \square^{\leq 3} \left(\underbrace{\exists \diamond^{[2,6]} a}_{=\Psi_1} \wedge \underbrace{\exists \square^{]2,5[} \forall \diamond^{\geq 3} \left(\underbrace{b \wedge (x=9)}_{=\Psi_2} \right)}_{=\Psi_3} \right) \underbrace{\Psi_3}_{=\Psi_4} \underbrace{\Psi_4}_{=\Psi_5}$$

The set of propositions of R contains:

- the propositions a and b , and the clock constraint $x=9$
- the propositions a_{Ψ_1} through a_{Ψ_5} , and a_{Φ}
- the clock constraints $z \leq 3$, $z \in [2, 6]$, $z \in]2, 5[$ and $z \geq 3$

Input: non-zeno, timelock-free timed automaton TA and TCTL formula Φ

Output: “yes” if $TA \models \Phi$, “no” otherwise.

```

 $R := RTS(TA \oplus z, \Phi);$  (* with state space  $S_{rts}$  and labeling  $L_{rts}$  *)
for all  $i \leq |\Phi|$  do
  for all  $\Psi \in Sub(\Phi)$  with  $|\Psi| = i$  do

    switch( $\Psi$ ):
      true :  $Sat_R(\Psi) := S_{rts};$ 
       $a$  :  $Sat_R(\Psi) := \{s \in S_{rts} \mid a \in L_{rts}(s)\};$ 
       $\Psi_1 \wedge \Psi_2$  :  $Sat_R(\Psi) := \{s \in S_{rts} \mid \{a_{\Psi_1}, a_{\Psi_2}\} \subseteq L_{rts}(s)\};$ 
       $\neg \Psi'$  :  $Sat_R(\Psi) := \{s \in S_{rts} \mid a_{\Psi'} \notin L_{rts}(s)\};$ 
       $\exists(\Psi_1 \cup^J \Psi_2)$  :  $Sat_R(\Psi) := Sat_{CTL}(\exists((a_{\Psi_1} \vee a_{\Psi_2}) \cup ((z \in J) \wedge a_{\Psi_2})));$ 
       $\forall(\Psi_1 \cup^J \Psi_2)$  :  $Sat_R(\Psi) := Sat_{CTL}(\forall((a_{\Psi_1} \vee a_{\Psi_2}) \cup ((z \in J) \wedge a_{\Psi_2})));$ 
    end switch

    (* add  $a_{\Psi}$  to the labeling of all state regions where  $\Psi$  holds *)
    forall  $s \in S_{rts}$  with  $s\{z := 0\} \in Sat_R(\Psi)$  do  $L_{rts}(s) := L_{rts}(s) \cup \{a_{\Psi}\}$  od;
    od
od
if  $I_{rts} \subseteq Sat_R(\Phi)$  then return “yes” else return “no” fi
  
```

Time complexity

For timed automaton TA and TCTL formula Φ , the model-checking problem

$TA \models \Phi$ can be determined in time $\mathcal{O}((N+K) \cdot |\Phi|)$,

where N and K are the number of states and transitions in $RTS(TA, \Phi)$

Other verification problems

1. The TCTL model-checking problem is **PSPACE-complete**
2. Model checking safety, reachability, or ω -regular properties in TA is **PSPACE-complete**
3. Model checking LTL and CTL against TA is **PSPACE-complete**
4. The model-checking problem for timed LTL is **undecidable**
5. The satisfaction problem for TCTL is **undecidable**

all facts without proof