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Bisimulation quotient T /∼T /∼T /∼ partsplitalg5.3-1

T /∼T /∼T /∼ arises by collapsing all bisimilar states in TTT
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Bisimulation quotient T /∼T /∼T /∼ partsplitalg5.3-1

T /∼T /∼T /∼ arises by collapsing all bisimilar states in TTT
• states of T /∼T /∼T /∼: bisimulation equivalence classes of TTT
• transitions: arise by lifting TTT ’s transitions to the
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TTT T /∼T /∼T /∼
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Applications of the bisimulation quotient partsplitalg5.3-1b
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Applications of the bisimulation quotient partsplitalg5.3-1b

1. equivalence checking: check whether T1 ∼ T2T1 ∼ T2T1 ∼ T2

for two transition systems T1T1T1, T2T2T2,
e.g., abstract model and its refinement
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T1T1T1 T2T2T2 T1 � T2T1 � T2T1 � T2

12 / 1



Applications of the bisimulation quotient partsplitalg5.3-1b

1. equivalence checking: check whether T1 ∼ T2T1 ∼ T2T1 ∼ T2

for two transition systems T1T1T1, T2T2T2,
e.g., abstract model and its refinement
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1. equivalence checking: check whether T1 ∼ T2T1 ∼ T2T1 ∼ T2

for two transition systems T1T1T1, T2T2T2,
e.g., abstract model and its refinement

regard T1 � T2T1 � T2T1 � T2 and check whether for all
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C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅ iff C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅

where S0,iS0,iS0,i is the set of initial states in TiTiTi

T1T1T1 T2T2T2

CCC

DDD

T1 � T2T1 � T2T1 � T2
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Applications of the bisimulation quotient partsplitalg5.3-1b

1. equivalence checking: check whether T1 ∼ T2T1 ∼ T2T1 ∼ T2

for two transition systems T1T1T1, T2T2T2,
e.g., abstract model and its refinement

regard T1 � T2T1 � T2T1 � T2 and check whether for all
bisimulation equivalence classes CCC in T1 � T2T1 � T2T1 � T2:

C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅ iff C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅

where S0,iS0,iS0,i is the set of initial states in TiTiTi

2. graph minimization:
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Applications of the bisimulation quotient partsplitalg5.3-1b

1. equivalence checking: check whether T1 ∼ T2T1 ∼ T2T1 ∼ T2

for two transition systems T1T1T1, T2T2T2,
e.g., abstract model and its refinement

regard T1 � T2T1 � T2T1 � T2 and check whether for all
bisimulation equivalence classes CCC in T1 � T2T1 � T2T1 � T2:

C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅C ∩ S0,1 �= ∅ iff C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅C ∩ S0,2 �= ∅

where S0,iS0,iS0,i is the set of initial states in TiTiTi

2. graph minimization:

replace TTT with T /∼T /∼T /∼ and analyze T /∼T /∼T /∼
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Computing the bisimulation quotient partsplitalg5.3-1a

.... relies on a partitioning refinement algorithm ...
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Computing the bisimulation quotient partsplitalg5.3-1a

.... relies on a partitioning refinement algorithm ...

here: only explanations for finite transition systems,
possibly with terminal states
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Notations: partitions and co. partsplitalg5.3-4
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Notations: partitions, block partsplitalg5.3-4

T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L) finite transition system

partition for TTT : decomposition of the state space SSS into
pairwise disjoint nonempty subsets

B =
{
B1, . . . , Bk

}
B =

{
B1, . . . , Bk

}
B =

{
B1, . . . , Bk

}
s.t.

• Bi �= ∅Bi �= ∅Bi �= ∅

• Bi ∩ Bj = ∅Bi ∩ Bj = ∅Bi ∩ Bj = ∅ for i �= ji �= ji �= j

• S = B1 ∪ . . . ∪ BkS = B1 ∪ . . . ∪ BkS = B1 ∪ . . . ∪ Bk

B1B1B1 B2B2B2

B4B4B4 B3B3B3

SSS

The BiBiBi ’s are called blocks of BBB.
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Notations: partitions, block, superblock partsplitalg5.3-4

T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L) finite transition system

partition for TTT : decomposition of the state space SSS into
pairwise disjoint nonempty subsets

B =
{
B1, . . . , Bk

}
B =

{
B1, . . . , Bk

}
B =

{
B1, . . . , Bk

}
s.t.

• Bi �= ∅Bi �= ∅Bi �= ∅

• Bi ∩ Bj = ∅Bi ∩ Bj = ∅Bi ∩ Bj = ∅ for i �= ji �= ji �= j

• S = B1 ∪ . . . ∪ BkS = B1 ∪ . . . ∪ BkS = B1 ∪ . . . ∪ Bk

B1B1B1 B2B2B2

B4B4B4 B3B3B3

SSS

The BiBiBi ’s are called blocks of BBB.
A superblock denotes any union of blocks.
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Partitions and equivalences partsplitalg5.3-4a

partitions =̂̂=̂= equivalences on SSS
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partitions =̂̂=̂= equivalences on SSS

• partition BBB ��� equivalence relation RRRBBB where

RB =
{
(s, s ′) : [s]B = [s ′]B

}
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RB =

{
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}
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Partitions and equivalences partsplitalg5.3-4a

partitions =̂̂=̂= equivalences on SSS

• partition BBB ��� equivalence relation RRRBBB where

RB =
{
(s, s ′) : [s]B = [s ′]B

}
RB =

{
(s, s ′) : [s]B = [s ′]B

}
RB =

{
(s, s ′) : [s]B = [s ′]B

}
[s]B =[s]B =[s]B = unique block Bi ∈ BBi ∈ BBi ∈ B with s ∈ Bis ∈ Bis ∈ Bi

• equivalence RRR on SSS ��� partition B = S/RB = S/RB = S/R
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Notations for partitions: finer, coarser partsplitalg5.3-5
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Notations for partitions: finer, coarser partsplitalg5.3-5

Let B1B1B1 and B2B2B2 be partitions for TTT .
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Notations for partitions: finer, coarser partsplitalg5.3-5
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Notations for partitions: finer, coarser partsplitalg5.3-5

Let B1B1B1 and B2B2B2 be partitions for TTT .

B1B1B1 is called finer than B2B2B2 (and B2B2B2 coarser than B1B1B1) if

∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2 such that B ⊆ B ′B ⊆ B ′B ⊆ B ′,

i.e., if all blocks B ′ ∈ B2B ′ ∈ B2B ′ ∈ B2 are superblocks of B1B1B1

B ′B ′B ′

B2B2B2

BBB
B1B1B1
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Notations for partitions: finer, coarser partsplitalg5.3-5

Let B1B1B1 and B2B2B2 be partitions for TTT .

B1B1B1 is called finer than B2B2B2 (and B2B2B2 coarser than B1B1B1) if

∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2 such that B ⊆ B ′B ⊆ B ′B ⊆ B ′,

i.e., if all blocks B ′ ∈ B2B ′ ∈ B2B ′ ∈ B2 are superblocks of B1B1B1

B ′B ′B ′

B2B2B2

BBB
B1B1B1

Example: if RRR is a bisimulation for TTT and an
equivalence then S/RS/RS/R is finer than S/∼S/∼S/∼
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Notations for partitions: finer, coarser partsplitalg5.3-5

Let B1B1B1 and B2B2B2 be partitions for TTT .

B1B1B1 is called finer than B2B2B2 (and B2B2B2 coarser than B1B1B1) if

∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2∀B ∈ B1 ∃B ′ ∈ B2 such that B ⊆ B ′B ⊆ B ′B ⊆ B ′,

i.e., if all blocks B ′ ∈ B2B ′ ∈ B2B ′ ∈ B2 are superblocks of B1B1B1

B ′B ′B ′

B2B2B2

BBB
B1B1B1

B1B1B1 is called strictly finer than B2B2B2 if

(1) B1B1B1 is finer than B2B2B2 and (2) B1 �= B2B1 �= B2B1 �= B2
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Computing the bisimulation quotient partsplitalg5.3-3

by stepwise refinement of partitions the state set SSS
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by stepwise refinement of partitions the state set SSS

S/∼S/∼S/∼
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Computing the bisimulation quotient partsplitalg5.3-3

by stepwise refinement of partitions the state set SSS

Bk =Bk =Bk = S/∼S/∼S/∼

��� ��� . . .. . .. . . ��� ���

B0B0B0 B1B1B1 Bk−1Bk−1Bk−1
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Computing the bisimulation quotient partsplitalg5.3-3

by stepwise refinement of partitions the state set SSS

Bk =Bk =Bk = S/∼S/∼S/∼

��� ��� . . .. . .. . . ��� ���

BAP =BAP =BAP = B0B0B0 B1B1B1 Bk−1Bk−1Bk−1

initial partition: BAP = B0BAP = B0BAP = B0

identifies all states with the same labeling
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Computing the bisimulation quotient partsplitalg5.3-3

by stepwise refinement of partitions the state set SSS

Bk =Bk =Bk = S/∼S/∼S/∼

��� ��� . . .. . .. . . ��� ���

BAP =BAP =BAP = B0B0B0 B1B1B1 Bk−1Bk−1Bk−1

initial partition: BAP = B0 = S/RAPBAP = B0 = S/RAPBAP = B0 = S/RAP where

RAP =
{

(s1, s2) : L(s1) = L(s2)
}

RAP =
{

(s1, s2) : L(s1) = L(s2)
}

RAP =
{

(s1, s2) : L(s1) = L(s2)
}
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Characterization of S/∼TS/∼TS/∼T partsplitalg5.3-6

... as the coarsest partition of the
state space SSS such that ....
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Bisimulation equivalence ∼T∼T∼T partsplitalg5.3-6

∼T∼T∼T is the coarsest equivalence on SSS s.t.
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Bisimulation equivalence ∼T∼T∼T partsplitalg5.3-6

∼T∼T∼T is the coarsest equivalence on SSS s.t.

1. s1s1s1 ∼T∼T∼T s2s2s2 implies L(s1) = L(s2)L(s1) = L(s2)L(s1) = L(s2)

2. s1s1s1 ∼T∼T∼T s2s2s2 s1s1s1 ∼T∼T∼T s2s2s2

↓↓↓ can be completed to ↓↓↓ ↓↓↓
s ′1s
′
1s
′
1 s ′1s

′
1s
′
1 ∼T∼T∼T s ′2s

′
2s
′
2
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Bisimulation quotient S/∼TS/∼TS/∼T partsplitalg5.3-6

∼T∼T∼T is the coarsest equivalence on SSS s.t.

1. s1s1s1 ∼T∼T∼T s2s2s2 implies L(s1) = L(s2)L(s1) = L(s2)L(s1) = L(s2)

2. s1s1s1 ∼T∼T∼T s2s2s2 s1s1s1 ∼T∼T∼T s2s2s2

↓↓↓ can be completed to ↓↓↓ ↓↓↓
s ′1s
′
1s
′
1 s ′1s

′
1s
′
1 ∼T∼T∼T s ′2s

′
2s
′
2

bisimulation quotient space S/∼TS/∼TS/∼T :
coarsest partition BBB of the state space SSS s.t.
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∼T∼T∼T is the coarsest equivalence on SSS s.t.

1. s1s1s1 ∼T∼T∼T s2s2s2 implies L(s1) = L(s2)L(s1) = L(s2)L(s1) = L(s2)

2. s1s1s1 ∼T∼T∼T s2s2s2 s1s1s1 ∼T∼T∼T s2s2s2

↓↓↓ can be completed to ↓↓↓ ↓↓↓
s ′1s
′
1s
′
1 s ′1s

′
1s
′
1 ∼T∼T∼T s ′2s

′
2s
′
2

bisimulation quotient space S/∼TS/∼TS/∼T :
coarsest partition BBB of the state space SSS s.t.

1. BBB is finer than BAPBAPBAP

44 / 1



Bisimulation quotient S/∼TS/∼TS/∼T partsplitalg5.3-6

∼T∼T∼T is the coarsest equivalence on SSS s.t.

1. s1s1s1 ∼T∼T∼T s2s2s2 implies L(s1) = L(s2)L(s1) = L(s2)L(s1) = L(s2)

2. s1s1s1 ∼T∼T∼T s2s2s2 s1s1s1 ∼T∼T∼T s2s2s2

↓↓↓ can be completed to ↓↓↓ ↓↓↓
s ′1s
′
1s
′
1 s ′1s

′
1s
′
1 ∼T∼T∼T s ′2s

′
2s
′
2

bisimulation quotient space S/∼TS/∼TS/∼T :
coarsest partition BBB of the state space SSS s.t.

1. BBB is finer than BAPBAPBAP

2. for all blocks B , C ∈ BB , C ∈ BB, C ∈ B:

B ⊆ Pre(C )B ⊆ Pre(C )B ⊆ Pre(C ) or B ∩ Pre(C ) = ∅B ∩ Pre(C ) = ∅B ∩ Pre(C ) = ∅
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Bisimulation quotient S/∼TS/∼TS/∼T partsplitalg5.3-6

∼T∼T∼T is the coarsest equivalence on SSS s.t.

1. s1s1s1 ∼T∼T∼T s2s2s2 implies L(s1) = L(s2)L(s1) = L(s2)L(s1) = L(s2)

2. s1s1s1 ∼T∼T∼T s2s2s2 s1s1s1 ∼T∼T∼T s2s2s2

↓↓↓ can be completed to ↓↓↓ ↓↓↓
s ′1s
′
1s
′
1 s ′1s

′
1s
′
1 ∼T∼T∼T s ′2s

′
2s
′
2

bisimulation quotient space S/∼TS/∼TS/∼T :
coarsest partition BBB of the state space SSS s.t.

1. BBB is finer than BAPBAPBAP

2. for all blocks B , C ∈ BB , C ∈ BB, C ∈ B:

B ⊆ Pre(C )B ⊆ Pre(C )B ⊆ Pre(C ) or B ∩ Pre(C ) = ∅B ∩ Pre(C ) = ∅B ∩ Pre(C ) = ∅

where Pre(C ) =
{
s ∈ S : ∃s ′ ∈ CPre(C ) =

{
s ∈ S : ∃s ′ ∈ CPre(C ) =

{
s ∈ S : ∃s ′ ∈ C s.t. s → s ′

}
s → s ′

}
s → s ′

}
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Partitioning refinement algorithm partsplitalg5.3-7

input: finite TS TTT with state space SSS over APAPAP
(possibly with terminal states)

output: bisimulation quotient S/∼TS/∼TS/∼T
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP

i := 0i := 0i := 0
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0

49 / 1



Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0
REPEAT Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)

BiBiBi Bi+1Bi+1Bi+1
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0
REPEAT Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)

i := i+1i := i+1i := i+1
UNTIL Bi = Bi−1Bi = Bi−1Bi = Bi−1 ←←← no more refinement possible

BiBiBi Bi+1Bi+1Bi+1
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0
REPEAT Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)

i := i+1i := i+1i := i+1
UNTIL Bi = Bi−1Bi = Bi−1Bi = Bi−1 ←←← no more refinement possible

hence: Bi = S/∼TBi = S/∼TBi = S/∼T

BiBiBi Bi+1Bi+1Bi+1
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0
REPEAT Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)

i := i+1i := i+1i := i+1
UNTIL Bi = Bi−1Bi = Bi−1Bi = Bi−1 ←←← no more refinement possible

hence: Bi = S/∼TBi = S/∼TBi = S/∼Treturn BiBiBi

BiBiBi Bi+1Bi+1Bi+1
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Partitioning refinement algorithm partsplitalg5.3-7

B0 := BAPB0 := BAPB0 := BAP ←←← identifies states with the same labeling

i := 0i := 0i := 0
REPEAT Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)

i := i+1i := i+1i := i+1
UNTIL Bi = Bi−1Bi = Bi−1Bi = Bi−1 ←←← no more refinement possible

hence: Bi = S/∼TBi = S/∼TBi = S/∼Treturn BiBiBi

BiBiBi Bi+1Bi+1Bi+1

loop invariant:

BiBiBi is coarser than S/∼TS/∼TS/∼T and finer than BAPBAPBAP
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Maximal number of iterations? partsplitalg5.3-7a

B0 := BAPB0 := BAPB0 := BAP ; i := 0i := 0i := 0

REPEAT

Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi); i := i+1i := i+1i := i+1

UNTIL no further refinement is possible
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Maximal number of iterations? partsplitalg5.3-7a

B0 := BAPB0 := BAPB0 := BAP ; i := 0i := 0i := 0

REPEAT

Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi); i := i+1i := i+1i := i+1

UNTIL no further refinement is possible

Assuming that BiBiBi is strictly coarser than Bi+1Bi+1Bi+1 for all iii ,
what is the maximal number of refinement steps ?
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Maximal number of iterations? partsplitalg5.3-7a

B0 := BAPB0 := BAPB0 := BAP ; i := 0i := 0i := 0

REPEAT

Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi); i := i+1i := i+1i := i+1

UNTIL no further refinement is possible

Assuming that BiBiBi is strictly coarser than Bi+1Bi+1Bi+1 for all iii ,
what is the maximal number of refinement steps ?

answer:
∣∣S∣∣− 1
∣∣S∣∣− 1
∣∣S∣∣− 1

Note that
∣∣Bi

∣∣ ≥ i+1
∣∣Bi

∣∣ ≥ i+1
∣∣Bi

∣∣ ≥ i+1.
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Maximal number of iterations? partsplitalg5.3-7a

B0 := BAPB0 := BAPB0 := BAP ; i := 0i := 0i := 0

REPEAT

Bi+1 := Refine(Bi)Bi+1 := Refine(Bi)Bi+1 := Refine(Bi); i := i+1i := i+1i := i+1

UNTIL no further refinement is possible

Assuming that BiBiBi is strictly coarser than Bi+1Bi+1Bi+1 for all iii ,
what is the maximal number of refinement steps ?

answer:
∣∣S∣∣− 1
∣∣S∣∣− 1
∣∣S∣∣− 1

Note that
∣∣Bi

∣∣ ≥ i+1
∣∣Bi

∣∣ ≥ i+1
∣∣Bi

∣∣ ≥ i+1.

Hence: if there are k =
∣∣S |−1k =
∣∣S |−1k =
∣∣S |−1 iterations then

BkBkBk consists of singletons
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The initial partition partsplitalg5.3-9

initial partition BAPBAPBAP :

identifies all states sss, ttt
s.t. L(s) = L(t)L(s) = L(t)L(s) = L(t)
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The initial partition partsplitalg5.3-9

initial partition BAPBAPBAP :

identifies all states sss, ttt
s.t. L(s) = L(t)L(s) = L(t)L(s) = L(t)

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}
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The initial partition partsplitalg5.3-9

initial partition BAPBAPBAP :

identifies all states sss, ttt
s.t. L(s) = L(t)L(s) = L(t)L(s) = L(t)

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

BAP =
{
{s0, s2, s6, s5}, {s1}, {s3, s4}

}
BAP =

{
{s0, s2, s6, s5}, {s1}, {s3, s4}

}
BAP =

{
{s0, s2, s6, s5}, {s1}, {s3, s4}

}
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Initial partition partsplitalg5.3-8

initial partition BAPBAPBAP :

• identifies all states with the same labeling

• agrees with the quotient under the equivalence

s ≡AP ts ≡AP ts ≡AP t iff L(s) = L(t)L(s) = L(t)L(s) = L(t)

62 / 1



Initial partition partsplitalg5.3-8

initial partition BAPBAPBAP :

• identifies all states with the same labeling

• agrees with the quotient under the equivalence

s ≡AP ts ≡AP ts ≡AP t iff L(s) = L(t)L(s) = L(t)L(s) = L(t)

compute BAPBAPBAP by an on-the-fly generation of
the decision tree for APAPAP
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Initial partition partsplitalg5.3-8a

compute BAPBAPBAP by an on-the-fly generation of the
decision tree for AP = {a1, ..., ak}AP = {a1, ..., ak}AP = {a1, ..., ak}
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Initial partition partsplitalg5.3-8a

compute BAPBAPBAP by an on-the-fly generation of the
decision tree for AP = {a1, ..., ak}AP = {a1, ..., ak}AP = {a1, ..., ak}
↑↑↑
inner nodes at level iii : decision “ai ∈ L(s)ai ∈ L(s)ai ∈ L(s) ?”

leaves: sets of states with the same labeling
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Initial partition partsplitalg5.3-8a

compute BAPBAPBAP by an on-the-fly generation of the
decision tree for AP = {a1, ..., ak}AP = {a1, ..., ak}AP = {a1, ..., ak}
↑↑↑
inner nodes at level iii : decision “ai ∈ L(s)ai ∈ L(s)ai ∈ L(s) ?”

leaves: sets of states with the same labeling

a1 �∈ L(s)a1 �∈ L(s)a1 �∈ L(s)

a2 �∈ L(s)a2 �∈ L(s)a2 �∈ L(s) a2 ∈ L(s)a2 ∈ L(s)a2 ∈ L(s)

a1 ∈ L(s)a1 ∈ L(s)a1 ∈ L(s)

a2 /∈ L(s)a2 /∈ L(s)a2 /∈ L(s)

a2 ∈ L(s)a2 ∈ L(s)a2 ∈ L(s)
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Computing the initial partition partsplitalg5.3-8c

compute BAPBAPBAP by an on-the-fly generation of the
decision tree for AP = {a1, ..., ak}AP = {a1, ..., ak}AP = {a1, ..., ak}
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Computing the initial partition partsplitalg5.3-8c

compute BAPBAPBAP by an on-the-fly generation of the
decision tree for AP = {a1, ..., ak}AP = {a1, ..., ak}AP = {a1, ..., ak}

initally: each leaf represents the empty state-set

for each state sss :
traverse the decision tree from the root to a leaf vvv
insert sss in the set for vvv
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0}

a ∈ L(s0)a ∈ L(s0)a ∈ L(s0)

b �∈ L(s0)b �∈ L(s0)b �∈ L(s0)
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0} {s0}{s0}{s0} {s1}{s1}{s1}

���
a ∈ L(s1)a ∈ L(s1)a ∈ L(s1)

b ∈ L(s1)b ∈ L(s1)b ∈ L(s1)
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0} {s0}{s0}{s0} {s1}{s1}{s1}

��� � . . .�� . . .�� . . .�

{s3, s4}{s3, s4}{s3, s4} {s0, s2, s6, s5}{s0, s2, s6, s5}{s0, s2, s6, s5} {s1}{s1}{s1}
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0} {s0}{s0}{s0} {s1}{s1}{s1}

��� � . . .�� . . .�� . . .�

{s3, s4}{s3, s4}{s3, s4} {s0, s2, s6, s5}{s0, s2, s6, s5}{s0, s2, s6, s5} {s1}{s1}{s1}
↗↗↗

L(si)=∅L(si)=∅L(si)=∅
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0} {s0}{s0}{s0} {s1}{s1}{s1}

��� � . . .�� . . .�� . . .�

{s3, s4}{s3, s4}{s3, s4} {s0, s2, s6, s5}{s0, s2, s6, s5}{s0, s2, s6, s5} {s1}{s1}{s1}
↗↗↗

L(si)=∅L(si)=∅L(si)=∅
↗↗↗

L(si)={a}L(si)={a}L(si)={a}
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Example: initial partition partsplitalg5.3-8b

s0s0s0

s1s1s1 s2s2s2

s3s3s3 s6s6s6

s4s4s4 s5s5s5

{a}{a}{a}

{a, b}{a, b}{a, b} {a}{a}{a}

∅∅∅ {a}{a}{a}

∅∅∅ {a}{a}{a}

decision tree for
AP = {a, b}AP = {a, b}AP = {a, b}
1. level: a ∈ L(s)a ∈ L(s)a ∈ L(s) ?
2. level: b ∈ L(s)b ∈ L(s)b ∈ L(s) ?

{s0}{s0}{s0} {s0}{s0}{s0} {s1}{s1}{s1}

��� � . . .�� . . .�� . . .�

{s3, s4}{s3, s4}{s3, s4} {s0, s2, s6, s5}{s0, s2, s6, s5}{s0, s2, s6, s5} {s1}{s1}{s1}
↗↗↗

L(si)=∅L(si)=∅L(si)=∅
↗↗↗

L(si)={a}L(si)={a}L(si)={a}
↑↑↑

L(si)={a, b}L(si)={a, b}L(si)={a, b}
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Computation of the initial partition partsplitalg5.3-10

generate the root node v0v0v0 of the decision tree
FOR ALL states sss DO

v := v0v := v0v := v0

FOR i = 1, . . . , ki = 1, . . . , ki = 1, . . . , k OD

IF ai ∈ L(s)ai ∈ L(s)ai ∈ L(s)
THEN v :=v :=v := find or add(find or add(find or add(right son of v)v)v)
ELSE v :=v :=v := find or add(find or add(find or add(left son of v)v)v)

FI
OD

OD

suppose
AP = {a1, . . . , ak}AP = {a1, . . . , ak}AP = {a1, . . . , ak}
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Computation of the initial partition partsplitalg5.3-10

generate the root node v0v0v0 of the decision tree
FOR ALL states sss DO

v := v0v := v0v := v0

FOR i = 1, . . . , ki = 1, . . . , ki = 1, . . . , k OD

IF ai ∈ L(s)ai ∈ L(s)ai ∈ L(s)
THEN v :=v :=v := find or add(find or add(find or add(right son of v)v)v)
ELSE v :=v :=v := find or add(find or add(find or add(left son of v)v)v)

FI
OD ←−←−←− vvv is a leaf of depth kkk

OD

suppose
AP = {a1, . . . , ak}AP = {a1, . . . , ak}AP = {a1, . . . , ak}
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Computation of the initial partition partsplitalg5.3-10

generate the root node v0v0v0 of the decision tree
FOR ALL states sss DO

v := v0v := v0v := v0

FOR i = 1, . . . , ki = 1, . . . , ki = 1, . . . , k OD

IF ai ∈ L(s)ai ∈ L(s)ai ∈ L(s)
THEN v :=v :=v := find or add(find or add(find or add(right son of v)v)v)
ELSE v :=v :=v := find or add(find or add(find or add(left son of v)v)v)

FI
OD ←−←−←− vvv is a leaf of depth kkk

add sss into the state-set of vvv
OD

suppose
AP = {a1, . . . , ak}AP = {a1, . . . , ak}AP = {a1, . . . , ak}
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Computation of the initial partition partsplitalg5.3-10

generate the root node v0v0v0 of the decision tree
FOR ALL states sss DO

v := v0v := v0v := v0

FOR i = 1, . . . , ki = 1, . . . , ki = 1, . . . , k OD

IF ai ∈ L(s)ai ∈ L(s)ai ∈ L(s)
THEN v :=v :=v := find or add(find or add(find or add(right son of v)v)v)
ELSE v :=v :=v := find or add(find or add(find or add(left son of v)v)v)

FI
OD ←−←−←− vvv is a leaf of depth kkk

add sss into the state-set of vvv
OD

The state-sets of the leaves are the blocks in BAPBAPBAP .

suppose
AP = {a1, . . . , ak}AP = {a1, . . . , ak}AP = {a1, . . . , ak}
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Computation of the initial partition partsplitalg5.3-10

generate the root node v0v0v0 of the decision tree
FOR ALL states sss DO

v := v0v := v0v := v0

FOR i = 1, . . . , ki = 1, . . . , ki = 1, . . . , k OD

IF ai ∈ L(s)ai ∈ L(s)ai ∈ L(s)
THEN v :=v :=v := find or add(find or add(find or add(right son of v)v)v)
ELSE v :=v :=v := find or add(find or add(find or add(left son of v)v)v)

FI
OD ←−←−←− vvv is a leaf of depth kkk

add sss into the state-set of vvv
OD

The state-sets of the leaves are the blocks in BAPBAPBAP .

complexity:
O

(
|S |·|AP|

)
O

(
|S |·|AP|

)
O

(
|S |·|AP|

)
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP ←−←−←− complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP ←−←−←− complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB ←−←−←− B = S/∼TB = S/∼TB = S/∼T
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB

refinement: stabilization for some superblock CCC of BBB:
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B)B := Refine(B)B := Refine(B)
OD

return BBB

refinement: stabilization for some superblock CCC of BBB:

split each block B ∈ BB ∈ BB ∈ B into two blocks:

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C ) and B \ Pre(C )B \ Pre(C )B \ Pre(C )
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Partitioning refinement (schema) partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) for some splitter CCC
OD

return BBB

refinement: stabilization for some superblock CCC of BBB:

split each block B ∈ BB ∈ BB ∈ B into two blocks:

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C ) and B \ Pre(C )B \ Pre(C )B \ Pre(C )
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Partitioning splitter algorithm partsplitalg5.3-11

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) for some splitter CCC
OD

return BBB

refinement: stabilization for some superblock CCC of BBB:

split each block B ∈ BB ∈ BB ∈ B into two blocks:

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C ) and B \ Pre(C )B \ Pre(C )B \ Pre(C )
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B)

OD

return BBB
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) =

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B , C)

OD

return BBB
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) =

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B , C)

OD

return BBB

Refine(B, C )Refine(B , C )Refine(B , C)

block BBB superblock CCC
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) =

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B , C)

OD

return BBB

Refine(B, C )Refine(B , C )Refine(B , C)

block BBB superblock CCC
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) =

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B , C)

OD

return BBB

Refine(B, C )Refine(B , C )Refine(B , C) =
{
B ∩ Pre(C ), B \ Pre(C )

}
=

{
B ∩ Pre(C ), B \ Pre(C )

}
=

{
B ∩ Pre(C ), B \ Pre(C )

}

block BBB superblock CCC

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )

B \ Pre(C )B \ Pre(C )B \ Pre(C )
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Partitioning splitter algorithm partsplitalg5.3-11b

B := BAPB := BAPB := BAP

WHILE refinements are possible DO

choose some superblock CCC of BBB;
B := Refine(B, B)B := Refine(B, B)B := Refine(B, B) =

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B , C)

OD

return BBB

Refine(B, C )Refine(B , C )Refine(B , C) =
{
B ∩ Pre(C ), B \ Pre(C )

}
=

{
B ∩ Pre(C ), B \ Pre(C )

}
=

{
B ∩ Pre(C ), B \ Pre(C )

}
\{∅}\{∅}\{∅}

block BBB superblock CCC

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )

B \ Pre(C )B \ Pre(C )B \ Pre(C )
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The refinement operator partsplitalg5.3-11a

Let BBB be a partition for SSS and CCC a superblock of BBB.

Refine(B, C ) =
⋃

B∈B
Refine(B, C )Refine(B, C ) =

⋃
B∈B

Refine(B , C)Refine(B, C) =
⋃

B∈B
Refine(B, C )

where Refine(B, C ) =
{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B, C ) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}
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Let BBB be a partition for SSS and CCC a superblock of BBB.

Refine(B, C ) =
⋃

B∈B
Refine(B, C )Refine(B, C ) =

⋃
B∈B

Refine(B , C)Refine(B, C) =
⋃

B∈B
Refine(B, C )

where Refine(B, C ) =
{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B, C ) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}

If BBB is finer than BAPBAPBAP and coarser than S/∼TS/∼TS/∼T then:
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Let BBB be a partition for SSS and CCC a superblock of BBB.

Refine(B, C ) =
⋃

B∈B
Refine(B, C )Refine(B, C ) =

⋃
B∈B

Refine(B , C)Refine(B, C) =
⋃

B∈B
Refine(B, C )

where Refine(B, C ) =
{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B, C ) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}

If BBB is finer than BAPBAPBAP and coarser than S/∼TS/∼TS/∼T then:

(a) Refine(B, C)Refine(B, C )Refine(B, C ) is finer than BBB
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Refine(B, C ) =
⋃
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The refinement operator partsplitalg5.3-11a

Let BBB be a partition for SSS and CCC a superblock of BBB.

Refine(B, C ) =
⋃

B∈B
Refine(B, C )Refine(B, C ) =

⋃
B∈B

Refine(B , C)Refine(B, C) =
⋃

B∈B
Refine(B, C )

where Refine(B, C ) =
{
B ∩ Pre(C ), B \ Pre(C )

}
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{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}

If BBB is finer than BAPBAPBAP and coarser than S/∼TS/∼TS/∼T then:

(a) Refine(B, C)Refine(B, C )Refine(B, C ) is finer than BBB and BAPBAPBAP

(b) Refine(B, C)Refine(B, C )Refine(B, C ) is coarser than S/∼TS/∼TS/∼T

100 / 1



The refinement operator partsplitalg5.3-11a

Let BBB be a partition for SSS and CCC a superblock of BBB.

Refine(B, C ) =
⋃

B∈B
Refine(B, C )Refine(B, C ) =

⋃
B∈B

Refine(B , C)Refine(B, C) =
⋃

B∈B
Refine(B, C )

where Refine(B, C ) =
{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B, C ) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}

If BBB is finer than BAPBAPBAP and coarser than S/∼TS/∼TS/∼T then:

(a) Refine(B, C)Refine(B, C )Refine(B, C ) is finer than BBB and BAPBAPBAP

(b) Refine(B, C)Refine(B, C )Refine(B, C ) is coarser than S/∼TS/∼TS/∼T
(c) Refine(B, C) = BRefine(B, C ) = BRefine(B, C ) = B for all C ∈ BC ∈ BC ∈ B iff B = S/∼TTTB = S/∼TTTB = S/∼TTT
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Example: partitioning splitter algorithm partsplitalg5.3-12
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refinement
w.r.t. •
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Example: partitioning splitter algorithm partsplitalg5.3-12

=⇒
refinement
w.r.t. • 
� refinement

w.r.t. •
⇐=
refinement
w.r.t. •
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Example: partitioning splitter algorithm partsplitalg5.3-12

=⇒
refinement
w.r.t. • 
� refinement

w.r.t. •
⇐=
refinement
w.r.t. •
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Example: partitioning splitter algorithm partsplitalg5.3-12

=⇒
refinement
w.r.t. • 
� refinement

w.r.t. •
⇐=
refinement
w.r.t. •

777 bisimulation equivalence classes
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The refinement operator partsplitalg5.3-13

given a partition BBB and a superblock CCC of BBB,
how to compute

Refine(B, C )Refine(B, C)Refine(B, C )

efficiently ?
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The refinement operator partsplitalg5.3-13

given a partition BBB and a superblock CCC of BBB,
how to compute

Refine(B, C )Refine(B, C)Refine(B, C ) =
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B , C)

efficiently ?
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The refinement operator partsplitalg5.3-13

given a partition BBB and a superblock CCC of BBB,
how to compute

Refine(B, C )Refine(B, C)Refine(B, C ) =
⋃

B∈B
Refine(B, C )=

⋃
B∈B

Refine(B, C )=
⋃

B∈B
Refine(B , C)

efficiently ?

where for all blocks B ∈ BB ∈ BB ∈ B:

Refine(B, C ) =
{

B ∩ Pre(C ), B \ Pre(C )
}
\ {∅}Refine(B, C ) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}Refine(B , C) =

{
B ∩ Pre(C ), B \ Pre(C )

}
\ {∅}

block BBB superblock CCC
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

OD
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO

OD
OD
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO
“move” state sss from block [s]B = B[s]B = B[s]B = B

to the new block B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )
OD

OD
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO
“move” state sss from block [s]B = B[s]B = B[s]B = B

to the new block B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )
OD

OD

... states left in block B ∈ BB ∈ BB ∈ B belong to the
new block B \ Pre(C )B \ Pre(C )B \ Pre(C )
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Refinement operator Refine(B, C )Refine(B, C )Refine(B, C) partsplitalg5.3-13a

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO
“move” state sss from block [s]B = B[s]B = B[s]B = B

to the new block B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )
OD

OD

... states left in block B ∈ BB ∈ BB ∈ B belong to the
new block B \ Pre(C )B \ Pre(C )B \ Pre(C )

time complexity:

O
( ∑

s ′∈C
|Pre(s ′)|+ |C |

)
O

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
O

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
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Example: refinement operator partsplitalg5.3-14

sss ttt uuu vvv www

xxx yyy

partition BBB
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sss ttt uuu vvv www

xxx yyy

superblock C = {x , y}C = {x , y}C = {x , y}

partition BBB ��� Refine(B, C )Refine(B, C )Refine(B, C)
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superblock C = {x , y}C = {x , y}C = {x , y}

partition BBB ��� Refine(B, C )Refine(B, C )Refine(B, C)

sss ttt uuu

vvv www

block BBB

block B ′B ′B ′

. . .. . .. . .
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Example: refinement operator partsplitalg5.3-14

sss ttt uuu vvv www

xxx yyy

superblock C = {x , y}C = {x , y}C = {x , y}

partition BBB ��� Refine(B, C )Refine(B, C )Refine(B, C)

sss ttt uuu

vvv www

block B

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )

block B ′B ′B ′
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Example: refinement operator partsplitalg5.3-14
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block BBB

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )

block B ′B ′B ′

B ′ ∩ Pre(C )B ′ ∩ Pre(C )B ′ ∩ Pre(C )

←←← new block B \ Pre(C )B \ Pre(C )B \ Pre(C )

←←← B ′ \ Pre(C ) = ∅B ′ \ Pre(C ) = ∅B ′ \ Pre(C ) = ∅

. . .. . .. . .

sss ttt

vvv www

X X

X X
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Example: refinement operator partsplitalg5.3-14
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Example: refinement operator partsplitalg5.3-14

sss ttt uuu vvv www

xxx yyy

superblock C = {x , y}C = {x , y}C = {x , y}

Refine(B, C)Refine(B, C )Refine(B, C )

uuuB \ Pre(C )B \ Pre(C )B \ Pre(C )

B ∩ Pre(C )B ∩ Pre(C )B ∩ Pre(C )

B ′ ∩ Pre(C )B ′ ∩ Pre(C )B ′ ∩ Pre(C )

. . .. . .. . .

sss ttt

vvv www
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Partitioning splitter algorithm partsplitalg5.3-15

B := BAPB := BAPB := BAP

WHILE there is a splitter CCC for BBB DO

select such a splitter CCC ;
B := Refine(B, C )B := Refine(B, C )B := Refine(B, C)

OD

return BBB
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Partitioning splitter algorithm partsplitalg5.3-15

B := BAPB := BAPB := BAP ←−←−←− time complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE there is a splitter CCC for BBB DO

select such a splitter CCC ;
B := Refine(B, C )B := Refine(B, C )B := Refine(B, C)

OD

return BBB
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Partitioning splitter algorithm partsplitalg5.3-15

B := BAPB := BAPB := BAP ←−←−←− time complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE there is a splitter CCC for BBB DO

select such a splitter CCC ;
B := Refine(B, C )B := Refine(B, C )B := Refine(B, C)

OD

return BBB
each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes

the costs O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)
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Partitioning splitter algorithm partsplitalg5.3-15

B := BAPB := BAPB := BAP ←−←−←− time complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE there is a splitter CCC for BBB DO

select such a splitter CCC ;
B := Refine(B, C )B := Refine(B, C )B := Refine(B, C)

OD

return BBB
each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes

the costs O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

time complexity:

O
( ∑

C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)
O

( ∑
C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)
O

(∑
C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)
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Partitioning splitter algorithm partsplitalg5.3-15

B := BAPB := BAPB := BAP ←−←−←− time complexity: O(|S |·|AP|)O(|S |·|AP|)O(|S |·|AP|)
WHILE there is a splitter CCC for BBB DO

select such a splitter CCC ;
B := Refine(B, C )B := Refine(B, C )B := Refine(B, C)

OD

return BBB
each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes

the costs O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

time complexity:

O
( ∑

C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)
O

( ∑
C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)
O

(∑
C

( ∑
s ′∈C
|Pre(s ′)|+ |C |

)
+ |S |·|AP |

)

+++ cost for splitter search and management
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Partitioning splitter algorithms partsplitalg5.3-15a

222 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters
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222 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters

• Kanellakis-Smolka algorithm:

refinement according to all blocks of the
partition of the previous iteration
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Partitioning splitter algorithms partsplitalg5.3-15a

222 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters

• Kanellakis-Smolka algorithm:

refinement according to all blocks of the
partition of the previous iteration

• Paige-Tarjan-algorithm:

simultaneous refinement according to
222 superblocks
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Kanellakis-Smolka algorithm partsplitalg5.3-16
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Kanellakis-Smolka algorithm partsplitalg5.3-16

B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S}
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB
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Kanellakis-Smolka algorithm partsplitalg5.3-16

B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB
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Kanellakis-Smolka algorithm partsplitalg5.3-16

B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations
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Kanellakis-Smolka algorithm partsplitalg5.3-16

B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations

• per iteration: each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes the costs
O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)
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B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations

• per iteration: each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes the costs
O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

• cost per iteration: O(m + |S |)O(m + |S |)O(m + |S |)
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B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations

• per iteration: each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes the costs
O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

• cost per iteration: O(m + |S |)O(m + |S |)O(m + |S |)
if mmm === number of edges ===

∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)|
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B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S} ←−←−←− cost: O(|S |·|AP |)O(|S |·|AP |)O(|S |·|AP |)
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations

• per iteration: each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes the costs
O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

• cost per iteration: O(m + |S |)O(m + |S |)O(m + |S |) = O(m)= O(m)= O(m)

if mmm === number of edges ===
∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)| ≥ |S |≥ |S |≥ |S |
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B := BAPB := BAPB := BAP ; Bold := {S}Bold := {S}Bold := {S}
REPEAT

Bold := BBold := BBold := B;
FOR ALL C ∈ BoldC ∈ BoldC ∈ Bold DO B := Refine(B, C)B := Refine(B, C )B := Refine(B, C ) OD

UNTIL B = BoldB = BoldB = Bold

return BBB

• maximal |S ||S ||S | iterations

• per iteration: each state s ′ ∈ Cs ′ ∈ Cs ′ ∈ C causes the costs
O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)O(|Pre(s ′)|+ 1)

• cost per iteration: O(m + |S |)O(m + |S |)O(m + |S |) = O(m)= O(m)= O(m)

if mmm === number of edges ===
∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)|

∑
s ′
|Pre(s ′)| ≥ |S |≥ |S |≥ |S |

time complexity:
O

(
|S |·m + |S |·|AP|

)
O

(
|S |·m + |S |·|AP|

)
O

(
|S |·m + |S |·|AP|

)
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Example: Kanellakis-Smolka algorithm partsplitalg5.3-17

s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

1. iteration:

1. refinement w.r.t. {v1, v2, v3}{v1, v2, v3}{v1, v2, v3}
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1. iteration:

1. refinement w.r.t. {v1, v2, v3}{v1, v2, v3}{v1, v2, v3}
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

1. iteration:

1. refinement w.r.t. {v1, v2, v3}{v1, v2, v3}{v1, v2, v3}
2. refinement w.r.t. {w}{w}{w}: no changes
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u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

1. iteration:

1. refinement w.r.t. {v1, v2, v3}{v1, v2, v3}{v1, v2, v3}
2. refinement w.r.t. {w}{w}{w}: no changes

3. refinement w.r.t. {s1, s2, s3}{s1, s2, s3}{s1, s2, s3}: no changes
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3
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u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

1. iteration:

1. refinement w.r.t. {v1, v2, v3}{v1, v2, v3}{v1, v2, v3}
2. refinement w.r.t. {w}{w}{w}: no changes

3. refinement w.r.t. {s1, s2, s3}{s1, s2, s3}{s1, s2, s3}: no changes

4. refinement w.r.t. {u1, u2, u3}{u1, u2, u3}{u1, u2, u3}: no changes

155 / 1



Example: Kanellakis-Smolka algorithm partsplitalg5.3-17

s1s1s1 s2s2s2 s3s3s3
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v1v1v1 v2v2v2 v3v3v3 www

2. iteration:
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

2. iteration:

1. refinement w.r.t. {u3}{u3}{u3}
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3
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=⇒=⇒=⇒
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2. iteration:

1. refinement w.r.t. {u3}{u3}{u3}

158 / 1



Example: Kanellakis-Smolka algorithm partsplitalg5.3-17

s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

2. iteration:

1. refinement w.r.t. {u3}{u3}{u3}
2. refinement w.r.t. other blocks of the first

iteration: no changes
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3
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3. iteration:
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

3. iteration:

refinement w.r.t. all blocks of the second iteration:
no changes
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s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

=⇒=⇒=⇒
s1s1s1 s2s2s2 s3s3s3

u1u1u1 u2u2u2 u3u3u3

v1v1v1 v2v2v2 v3v3v3 www

3. iteration:

refinement w.r.t. all blocks of the second iteration:
no changes

666 bisimulation equivalence classes:

{s1, s2}, {s3}, {u1, u2}, {u3}, {v1, v2, v3}, {w}{s1, s2}, {s3}, {u1, u2}, {u3}, {v1, v2, v3}, {w}{s1, s2}, {s3}, {u1, u2}, {u3}, {v1, v2, v3}, {w}
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Partitioning splitter algorithm partsplitalg5.3-18

nnn . . .. . .. . .

APAPAP === {a, b}{a, b}{a, b}
• =̂̂=̂= {a}{a}{a}
• =̂̂=̂= {b}{b}{b}• =̂̂=̂= ∅∅∅

163 / 1



Partitioning splitter algorithm partsplitalg5.3-18

nnn . . .. . .. . .

APAPAP === {a, b}{a, b}{a, b}
• =̂̂=̂= {a}{a}{a}
• =̂̂=̂= {b}{b}{b}• =̂̂=̂= ∅∅∅

refinement w.r.t. •:

164 / 1



Partitioning splitter algorithm partsplitalg5.3-18

nnn . . .. . .. . .

APAPAP === {a, b}{a, b}{a, b}
• =̂̂=̂= {a}{a}{a}
• =̂̂=̂= {b}{b}{b}• =̂̂=̂= ∅∅∅

refinement w.r.t. •:

165 / 1



Partitioning splitter algorithm partsplitalg5.3-18

nnn . . .. . .. . .

APAPAP === {a, b}{a, b}{a, b}
• =̂̂=̂= {a}{a}{a}
• =̂̂=̂= {b}{b}{b}• =̂̂=̂= ∅∅∅

refinement w.r.t. •: causes the costs∑
s ′

∣∣Pre(s ′)
∣∣ = n

∑
s ′

∣∣Pre(s ′)
∣∣ = n

∑
s ′

∣∣Pre(s ′)
∣∣ = n
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Partitioning splitter algorithm partsplitalg5.3-18

nnn . . .. . .. . .

APAPAP === {a, b}{a, b}{a, b}
• =̂̂=̂= {a}{a}{a}
• =̂̂=̂= {b}{b}{b}• =̂̂=̂= ∅∅∅

refinement w.r.t. •: causes the costs∑
s ′

∣∣Pre(s ′)
∣∣ = n

∑
s ′

∣∣Pre(s ′)
∣∣ = n

∑
s ′

∣∣Pre(s ′)
∣∣ = n

alternatively: refinement w.r.t. •: constant costs
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Partitioning splitter algorithms partsplitalg5.3-19

Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP
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Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold
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iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP
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Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP

Paige-Tarjan algorithm:
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Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP

Paige-Tarjan algorithm:
loop invariant:

(1) BBB finer than BoldBoldBold and coarser than BAPBAPBAP

(2) BBB is stable for each block in BoldBoldBold
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Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP

Paige-Tarjan algorithm:
loop invariant:

(1) BBB finer than BoldBoldBold and coarser than BAPBAPBAP

(2) BBB is stable for each block in BoldBoldBold

iteration: ternary refinement operator
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Partitioning splitter algorithms partsplitalg5.3-19

Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP

Paige-Tarjan algorithm:
loop invariant:

(1) BBB finer than BoldBoldBold and coarser than BAPBAPBAP

(2) BBB is stable for each block in BoldBoldBold

iteration: ternary refinement operator

initially: Bold = {S}Bold = {S}Bold = {S}
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Partitioning splitter algorithms partsplitalg5.3-19

Kanellakis-Smolka algorithm:

initially: Bold = B = BAPBold = B = BAPBold = B = BAP

iteration: stabilization for each block in BoldBoldBold

loop invariant: BBB finer than BoldBoldBold and coarser than BAPBAPBAP

Paige-Tarjan algorithm:
loop invariant:

(1) BBB finer than BoldBoldBold and coarser than BAPBAPBAP

(2) BBB is stable for each block in BoldBoldBold

iteration: ternary refinement operator

initially: Bold = {S}Bold = {S}Bold = {S}, B = Refine(BAP , S)B = Refine(BAP , S)B = Refine(BAP , S)
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BAPBAPBAP is generally not stable w.r.t. SSS partsplitalg5.3-20
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s1s1s1 s2s2s2

v1v1v1 v2v2v2
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BAPBAPBAP is generally not stable w.r.t. SSS partsplitalg5.3-20

s1s1s1 s2s2s2

v1v1v1 v2v2v2

state space S =
{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
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s1s1s1 s2s2s2

v1v1v1 v2v2v2

state space S =
{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
Pre(S) =Pre(S) =Pre(S) = set of nonterminal states

=
{
s1, s2, v1

}
=

{
s1, s2, v1

}
=

{
s1, s2, v1

}
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s1s1s1 s2s2s2

v1v1v1 v2v2v2

state space S =
{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
Pre(S) =Pre(S) =Pre(S) = set of nonterminal states

=
{
s1, s2, v1

}
=

{
s1, s2, v1

}
=

{
s1, s2, v1

}
{v1, v2}{v1, v2}{v1, v2} ∩∩∩ Pre(S)Pre(S)Pre(S) === {v1}{v1}{v1}
{v1, v2}{v1, v2}{v1, v2} \\\ Pre(S)Pre(S)Pre(S) === {v2}{v2}{v2}
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s1s1s1 s2s2s2

v1v1v1 v2v2v2

state space S =
{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
Pre(S) =Pre(S) =Pre(S) = set of nonterminal states

=
{
s1, s2, v1

}
=

{
s1, s2, v1

}
=

{
s1, s2, v1

}
{v1, v2}{v1, v2}{v1, v2} ∩∩∩ Pre(S)Pre(S)Pre(S) === {v1}{v1}{v1}
{v1, v2}{v1, v2}{v1, v2} \\\ Pre(S)Pre(S)Pre(S) === {v2}{v2}{v2}

initial partition of Paige/Tarjan algorithm:

Refine(BAP , S)Refine(BAP , S)Refine(BAP , S)
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s1s1s1 s2s2s2

v1v1v1 v2v2v2

state space S =
{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
S =

{
s1, s2, v1, v2

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
BAP =

{
{s1, s2}, {v1, v2}

}
Pre(S) =Pre(S) =Pre(S) = set of nonterminal states

=
{
s1, s2, v1

}
=

{
s1, s2, v1

}
=

{
s1, s2, v1

}
{v1, v2}{v1, v2}{v1, v2} ∩∩∩ Pre(S)Pre(S)Pre(S) === {v1}{v1}{v1}
{v1, v2}{v1, v2}{v1, v2} \\\ Pre(S)Pre(S)Pre(S) === {v2}{v2}{v2}

initial partition of Paige/Tarjan algorithm:

Refine(BAP , S) =
{
{s1, s2}, {v1}, {v2}

}
Refine(BAP , S) =

{
{s1, s2}, {v1}, {v2}

}
Refine(BAP , S) =

{
{s1, s2}, {v1}, {v2}

}
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

OD
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Paige-Tarjan algorithm partsplitalg5.3-21

Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;

OD
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Paige-Tarjan algorithm partsplitalg5.3-21

Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′

OD
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Paige-Tarjan algorithm partsplitalg5.3-21

Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

OD
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

refine BBB
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C)B := Refine(B, C )B := Refine(B, C )
B := Refine(B, C ′)B := Refine(B, C ′)B := Refine(B, C ′)

refine BBB
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C)B := Refine(B, C )B := Refine(B, C )
B := Refine(B, C ′)B := Refine(B, C ′)B := Refine(B, C ′)

refine BBB simultaneously
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )
refine BBB simultaneously
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )
refine BBB simultaneously
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )
refine BBB simultaneously
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

OD

CCC
C ′C ′C ′
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Bold := {S}Bold := {S}Bold := {S}; B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S);

WHILE B �= BoldB �= BoldB �= Bold DO

select a block C ′ ∈ Bold \ BC ′ ∈ Bold \ BC ′ ∈ Bold \ B;
select a block C ∈ BC ∈ BC ∈ B with C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )B := Refine(B, C , C ′\C )
refine BBB simultaneously
w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

OD

CCC
C ′C ′C ′

loop invariant: BBB is stable w.r.t. each block in BoldBoldBold
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The ternary refinement operator partsplitalg5.3-22

Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′
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Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′
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The ternary refinement operator partsplitalg5.3-22

Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′
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The ternary refinement operator partsplitalg5.3-22

Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′

simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :
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The ternary refinement operator partsplitalg5.3-22

Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′

simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )
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The ternary refinement operator partsplitalg5.3-22

Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′

simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}
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Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′

simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

CCC

superblock C ′C ′C ′
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Let BBB be a partition and

• C ′C ′C ′ a superblock of BBB s.t. BBB is stable w.r.t. C ′C ′C ′

• CCC a block in BBB s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′

simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′
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simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′

B1B1B1 === B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )
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simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′

B1B1B1 === B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )

B2B2B2 === (B ∩ Pre(C )) \ Pre(C ′\C )(B ∩ Pre(C )) \ Pre(C ′\C )(B ∩ Pre(C )) \ Pre(C ′\C )
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simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′

B1B1B1 === B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )B ∩ Pre(C ) ∩ Pre(C ′\C )

B2B2B2 === (B ∩ Pre(C )) \ Pre(C ′\C )(B ∩ Pre(C )) \ Pre(C ′\C )(B ∩ Pre(C )) \ Pre(C ′\C )

B3B3B3 === (B ∩ Pre(C ′\C )) \ Pre(C )(B ∩ Pre(C ′\C )) \ Pre(C )(B ∩ Pre(C ′\C )) \ Pre(C )
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simultaneous refinement of BBB w.r.t. CCC and C ′ \ CC ′ \ CC ′ \ C :

Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B , C , C ′\C )Refine(B, C , C ′\C ) =

⋃
B∈B

Refine(B, C , C ′\C )Refine(B, C , C ′\C ) =
⋃

B∈B
Refine(B, C , C ′\C )

where for block B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′

for block BBB with B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅:

Refine(B, C , C ′\C ) = {B}Refine(B , C , C ′\C ) = {B}Refine(B, C , C ′\C ) = {B}
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Stability of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-23

Suppose that for all blocks B ∈ BB ∈ BB ∈ B:

B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′) or B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅
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Stability of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-23

Suppose that for all blocks B ∈ BB ∈ BB ∈ B:

B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′) or B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅

C ′C ′C ′ C ′C ′C ′
or
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Stability of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-23

Suppose that for all blocks B ∈ BB ∈ BB ∈ B:

B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′) or B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅

C ′C ′C ′ C ′C ′C ′
or

Then the new blocks B1, B2, B3B1, B2, B3B1, B2, B3 in Refine(B, C , C ′ \ C )Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C )
are stable w.r.t. the superblocks CCC and C ′ \ CC ′ \ CC ′ \ C .

block BBB

B1B1B1

B2B2B2

B3B3B3

CCC

superblock C ′C ′C ′
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Stability of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-23

Suppose that for all blocks B ∈ BB ∈ BB ∈ B:

B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′) or B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅

C ′C ′C ′ C ′C ′C ′
or

Then the new blocks B1, B2, B3B1, B2, B3B1, B2, B3 in Refine(B, C , C ′ \ C )Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C )
are stable w.r.t. the superblocks CCC and C ′ \ CC ′ \ CC ′ \ C .

If BBB is stable w.r.t. all blocks in BoldBoldBold and C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold,
C ∈ BC ∈ BC ∈ B s.t. C � C ′C � C ′C � C ′ then Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B, C , C ′\C )
is stable w.r.t. all blocks in the partition

(Bold \ {C ′}) ∪ {C , C ′ \ C}(Bold \ {C ′}) ∪ {C , C ′ \ C}(Bold \ {C ′}) ∪ {C , C ′ \ C}
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

AP = {green, gray}AP = {green, gray}AP = {green, gray}, Bold = {S}Bold = {S}Bold = {S}
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

AP = {green, gray}AP = {green, gray}AP = {green, gray}, Bold = {S}Bold = {S}Bold = {S}

initial partition:

B0B0B0 = Refine(BAP , S) = BAP= Refine(BAP , S) = BAP= Refine(BAP , S) = BAP

=
{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

initially: BoldBoldBold = {S}= {S}= {S}
B0B0B0 =

{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u8, w1, w2, w3}

}
first refinement step:

Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2})
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

initially: BoldBoldBold = {S}= {S}= {S}
B0B0B0 =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
first refinement step:

Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2}) ===
B1B1B1 =

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

initially: BoldBoldBold = {S}= {S}= {S}
B0B0B0 =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
first refinement step:

Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2})Refine(B0, {v1, v2}, S \ {v1, v2}) ===
B1B1B1 =

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
BoldBoldBold =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

first refinement step:
B1B1B1 =

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
BoldBoldBold =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
second refinement step:
Refine(B1,Refine(B1,Refine(B1,?, ?)))
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

first refinement step:
B1B1B1 =

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
BoldBoldBold =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
second refinement step:
Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})
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Example: Paige-Tarjan algorithm partsplitalg5.3-24

u2u2u2

v1v1v1

w1w1w1 w2w2w2

u7u7u7

w3w3w3

u8u8u8

v2v2v2

u1u1u1 u6u6u6

first refinement step:
B1B1B1 =

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1, w2, w3}

}
BoldBoldBold =

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8, u7, w1, w2, w3}

}
second refinement step:
Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})Refine(B1, {u7}, {u1, . . . , u6, u8, w1, w2, w3})
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1}, {w2}, {w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1}, {w2}, {w3}

}
=

{
{v1, v2}, {u1, . . . , u6, u8}, {u7}, {w1}, {w2}, {w3}

}
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Paige-Tarjan algorithm partsplitalg5.3-25a

B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S); Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD

return BBB
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Paige-Tarjan algorithm partsplitalg5.3-25a

B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S); Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD

return BBB

efficient implementation of Refine(B, C , ...)Refine(B, C , ...)Refine(B, C , ...) with time
complexity O

(
|C |+ |Pre(C )|

)
O

(
|C |+ |Pre(C )|

)
O

(
|C | + |Pre(C )|

)
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Paige-Tarjan algorithm partsplitalg5.3-25a

B := Refine(BAP , S)B := Refine(BAP , S)B := Refine(BAP , S); Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′ \ CC ′ \ CC ′ \ C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD

return BBB

efficient implementation of Refine(B, C , ...)Refine(B, C , ...)Refine(B, C , ...) with time
complexity O

(
|C |+ |Pre(C )|

)
O

(
|C |+ |Pre(C )|

)
O

(
|C | + |Pre(C )|

)
uses counters

δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D| for D ∈ BoldD ∈ BoldD ∈ Bold
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Details of the Paige-Tarjan algorithm partsplitalg5.3-25b

implementation of

Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =

⋃
B∈B

Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B, C , C ′ \ C )

using counters δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|
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Details of the Paige-Tarjan algorithm partsplitalg5.3-25b

implementation of

Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =

⋃
B∈B

Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B, C , C ′ \ C )

using counters δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|
↖↖↖
D ∈ BoldD ∈ BoldD ∈ Bold
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Details of the Paige-Tarjan algorithm partsplitalg5.3-25b

implementation of

Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =

⋃
B∈B

Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B, C , C ′ \ C )

using counters δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|
↗↗↗ ↖↖↖

s ∈ Pre(D)s ∈ Pre(D)s ∈ Pre(D) D ∈ BoldD ∈ BoldD ∈ Bold
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Details of the Paige-Tarjan algorithm partsplitalg5.3-25b

implementation of

Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =

⋃
B∈B

Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B, C , C ′ \ C )

using counters δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|
↗↗↗ ↖↖↖

s ∈ Pre(D)s ∈ Pre(D)s ∈ Pre(D) D ∈ BoldD ∈ BoldD ∈ Bold

step 1: compute δ(. . .)δ(. . .)δ(. . .) for the new blocks
CCC and C ′ \ CC ′ \ CC ′ \ C in BoldBoldBold
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Details of the Paige-Tarjan algorithm partsplitalg5.3-25b

implementation of

Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =

⋃
B∈B

Refine(B , C , C ′ \ C )Refine(B, C , C ′ \ C ) =
⋃

B∈B
Refine(B, C , C ′ \ C )

using counters δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|δ(s, D) = |Post(s) ∩ D|
↗↗↗ ↖↖↖

s ∈ Pre(D)s ∈ Pre(D)s ∈ Pre(D) D ∈ BoldD ∈ BoldD ∈ Bold

step 1: compute δ(. . .)δ(. . .)δ(. . .) for the new blocks
CCC and C ′ \ CC ′ \ CC ′ \ C in BoldBoldBold

step 2: compute Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B , C , C ′ \ C ) for all B ∈ BB ∈ BB ∈ B
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅B ∩ Pre(C ′) = ∅ we have:

Refine(B, C , C ′\C ) = {B}Refine(B, C , C ′\C ) = {B}Refine(B , C , C ′\C ) = {B}
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

232 / 1



Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

B1B1B1 === B ∩ Pre(C ) ∩ Pre(C ′ \ C )B ∩ Pre(C ) ∩ Pre(C ′ \ C )B ∩ Pre(C ) ∩ Pre(C ′ \ C )

B2B2B2 === (B ∩ Pre(C )) \ Pre(C ′ \ C )(B ∩ Pre(C )) \ Pre(C ′ \ C )(B ∩ Pre(C )) \ Pre(C ′ \ C )

B3B3B3 === (B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

B1B1B1 === {s ∈ B : δ(s, C) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}
B2B2B2 === (B ∩ Pre(C )) \ Pre(C ′ \ C )(B ∩ Pre(C )) \ Pre(C ′ \ C )(B ∩ Pre(C )) \ Pre(C ′ \ C )

B3B3B3 === (B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

B1B1B1 === {s ∈ B : δ(s, C) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}
B2B2B2 === {s ∈ B : δ(s, C) > 0, δ(s, C ′\C ) = 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) = 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) = 0}
B3B3B3 === (B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )(B ∩ Pre(C ′ \ C )) \ Pre(C )
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Implementation of Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C )Refine(B, C , C ′ \ C ) partsplitalg5.3-25b

step 1: compute δ(s, C )δ(s, C)δ(s, C ), δ(s, C ′\C )δ(s, C ′\C )δ(s, C ′\C )←←← for s ∈ Pre(C ′)s ∈ Pre(C ′)s ∈ Pre(C ′)

δ(s, C )δ(s , C)δ(s, C ) === |Post(s) ∩ C ||Post(s) ∩ C ||Post(s) ∩ C |
δ(s, C ′ \ C )δ(s , C ′ \ C )δ(s, C ′ \ C ) === |Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )||Post(s) ∩ (C ′\C )|

step 2: compute Refine(B, C , C ′\C )Refine(B, C , C ′\C )Refine(B , C , C ′\C ) for all B ∈ BB ∈ BB ∈ B

for B ∈ BB ∈ BB ∈ B with B ⊆ Pre(C ′)B ⊆ Pre(C ′)B ⊆ Pre(C ′):

Refine(B, C , C ′\C ) =
{
B1, B2, B3

}
\ {∅}Refine(B, C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}Refine(B , C , C ′\C ) =

{
B1, B2, B3

}
\ {∅}

B1B1B1 === {s ∈ B : δ(s, C) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) > 0}
B2B2B2 === {s ∈ B : δ(s, C) > 0, δ(s, C ′\C ) = 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) = 0}{s ∈ B : δ(s, C ) > 0, δ(s, C ′\C ) = 0}
B3B3B3 === {s ∈ B : δ(s, C) = 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) = 0, δ(s, C ′\C ) > 0}{s ∈ B : δ(s, C ) = 0, δ(s, C ′\C ) > 0}
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Paige-Tarjan algorithm partsplitalg5.3-25

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); Bold := {S}Bold := {S}Bold := {S};

WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;
add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )
OD
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Paige-Tarjan algorithm partsplitalg5.3-25

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); Bold := {S}Bold := {S}Bold := {S};
FOR ALL s ∈ Ss ∈ Ss ∈ S DO δ(s, S) := |Post(s)|δ(s, S) := |Post(s)|δ(s, S) := |Post(s)| OD
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;
add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )
OD
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Paige-Tarjan algorithm partsplitalg5.3-25

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); Bold := {S}Bold := {S}Bold := {S};
FOR ALL s ∈ Ss ∈ Ss ∈ S DO δ(s, S) := |Post(s)|δ(s, S) := |Post(s)|δ(s, S) := |Post(s)| OD
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;
add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

FOR ALL s ∈ Pre(C )s ∈ Pre(C )s ∈ Pre(C ) DO δ(s, C ) := 0δ(s, C) := 0δ(s, C ) := 0 OD

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO δ(s, C) := δ(s, C)+1δ(s, C ) := δ(s, C )+1δ(s, C ) := δ(s, C )+1 OD

OD

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )
OD
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Paige-Tarjan algorithm partsplitalg5.3-25

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); Bold := {S}Bold := {S}Bold := {S};
FOR ALL s ∈ Ss ∈ Ss ∈ S DO δ(s, S) := |Post(s)|δ(s, S) := |Post(s)|δ(s, S) := |Post(s)| OD
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t. C ⊆ C ′C ⊆ C ′C ⊆ C ′, |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;
add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and remove C ′C ′C ′ from BoldBoldBold

FOR ALL s ∈ Pre(C )s ∈ Pre(C )s ∈ Pre(C ) DO δ(s, C ) := 0δ(s, C) := 0δ(s, C ) := 0 OD

FOR ALL s ′ ∈ Cs ′ ∈ Cs ′ ∈ C DO

FOR ALL s ∈ Pre(s ′)s ∈ Pre(s ′)s ∈ Pre(s ′) DO δ(s, C) := δ(s, C)+1δ(s, C ) := δ(s, C )+1δ(s, C ) := δ(s, C )+1 OD

OD

FOR ALL s ∈ Pre(C )s ∈ Pre(C )s ∈ Pre(C ) DO
δ(s, C ′\C ) := δ(s , C ′)−δ(s, C)δ(s, C ′\C ) := δ(s, C ′)−δ(s, C )δ(s, C ′\C ) := δ(s, C ′)−δ(s, C ) OD

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )
OD
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26a
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26a

let T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L) be a finite TS

nnn = #= #= # states = |S |= |S |= |S |
mmm = #= #= # transitions
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26a

let T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L) be a finite TS

nnn = #= #= # states = |S |= |S |= |S |
mmm = #= #= # transitions =

∑
s∈S
|Pre(s)|=

∑
s∈S
|Pre(s)|=

∑
s∈S
|Pre(s)|
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26a

let T = (S , Act,→, S0, AP , L)T = (S , Act,→, S0, AP, L)T = (S , Act,→, S0, AP, L) be a finite TS

nnn = #= #= # states = |S |= |S |= |S |
mmm = #= #= # transitions =

∑
s∈S
|Pre(s)|=

∑
s∈S
|Pre(s)|=

∑
s∈S
|Pre(s)|

in what follows, we suppose m ≥ nm ≥ nm ≥ n
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S);

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD
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Complexity of the Paige-Tarjan algorithm partsplitalg5.3-26

B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); ←−←−←− complexity: O
(
n · |AP |)O

(
n · |AP |)O

(
n · |AP |)

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD
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B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); ←−←−←− complexity: O
(
n · |AP |)O

(
n · |AP |)O

(
n · |AP |)

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )

OD
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B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); ←−←−←− complexity: O
(
n · |AP |)O

(
n · |AP |)O

(
n · |AP |)

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C ) ←←←
time complexity:∑
s ′∈C
|Pre(s ′)|+ 1

∑
s ′∈C
|Pre(s ′)|+ 1

∑
s ′∈C
|Pre(s ′)|+ 1

OD
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B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); ←−←−←− complexity: O
(
n · |AP |)O

(
n · |AP |)O

(
n · |AP |)

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C ) ←←←
time complexity:

O(|C |+ |Pre(C )|)O(|C |+ |Pre(C )|)O(|C |+ |Pre(C )|)
OD
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B := Refine(BAP, S)B := Refine(BAP, S)B := Refine(BAP, S); ←−←−←− complexity: O
(
n · |AP |)O

(
n · |AP |)O

(
n · |AP |)

Bold := {S}Bold := {S}Bold := {S};
WHILE B �= BoldB �= BoldB �= Bold DO

select C ′ ∈ BoldC ′ ∈ BoldC ′ ∈ Bold, C ∈ BC ∈ BC ∈ B s.t.
C ⊆ C ′C ⊆ C ′C ⊆ C ′ and |C | ≤ |C ′|/2|C | ≤ |C ′|/2|C | ≤ |C ′|/2;

add CCC and C ′\CC ′\CC ′\C to BoldBoldBold and
remove C ′C ′C ′ from BoldBoldBold

B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C )B := Refine(B, C , C ′ \ C ) ←←←
time complexity:

O(|C |+ |Pre(C )|)O(|C |+ |Pre(C )|)O(|C |+ |Pre(C )|)
OD

total cost for
all refinement
operations:

O(m · log n)O(m · log n)O(m · log n)
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