OverView OVERVIEWT.3

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

Computation-Tree Logic

Equivalences and Abstraction
bisimulation
CTL, CTL*-equivalence
computing the bisimulation quotient «—
abstraction stutter steps
simulation relations

1/1
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e transitions: arise by lifting 7's transitions to the
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Applications of the bisimulation quotient ...

1. equivalence checking: check whether 77 ~ 15

for two transition systems 77, 7>,
e.g., abstract model and its refinement

regard Ty W 15
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Applications of the bisimulation quotient

PARTSPLITALG5.3-1B

1. equivalence checking: check whether 77 ~ 15

for two transition systems 77, 7>,
e.g., abstract model and its refinement

regard 73 W 75 and check whether for all
bisimulation equivalence classes C in 77 © Ty:

ﬂSo’l#Q iff ﬂSo»z;éQ

where S ; is the set of initial states in 7;

T i i i’E i i T YT
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Applications of the bisimulation quotient

PARTSPLITALG5.3-1B

1. equivalence checking: check whether 77 ~ 15

for two transition systems 77, 7>,
e.g., abstract model and its refinement

regard 73 W 75 and check whether for all
bisimulation equivalence classes C in 77 © Ty:

NSy1# 2 iff NSo2 # S
where S ; is the set of initial states in 7;

175 \ \ 74 TZI tH 115

14/1



Applications of the bisimulation quotient

PARTSPLITALG5.3-1B

1. equivalence checking: check whether 77 ~ 15

for two transition systems 7y, 15,
e.g., abstract model and its refinement

regard 73 W 75 and check whether for all
bisimulation equivalence classes C in 77 © Ty:

NSo1# @ iff CNSp#D

where S ; is the set of initial states in 7;

2. graph minimization:
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Applications of the bisimulation quotient

PARTSPLITALG5.3-1B

1. equivalence checking: check whether 77 ~ 15

for two transition systems 7y, 15,
e.g., abstract model and its refinement

regard 73 W 75 and check whether for all
bisimulation equivalence classes C in 77 © Ty:

050’1759 iff 050,27'5@
where S ; is the set of initial states in 7;
2. graph minimization:

replace T with 7/~ and analyze T/~
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Computing the bisimulation quotient

. relies on a partitioning refinement algorithm ...
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Computing the bisimulation quotient

. relies on a partitioning refinement algorithm ...

here: only explanations for finite transition systems,
possibly with terminal states
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Notations: partitions and co.
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Notations: partitions and co.
T = (S, Act,—, So, AP, L) finite transition system

partition for T: decomposition of the state space S into
pairwise disjoint nonempty subsets

S B={B,...,B}

(s

21/1



Notations: partitions, block
T = (S, Act,—, So, AP, L) finite transition system

partition for T: decomposition of the state space S into
pairwise disjoint nonempty subsets

S B={B,...,B} st

a(% . 540

° B,‘ﬂBj=Qf0ri7éj
e S=BU...UB,

The B;'s are called blocks of B.
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Notations: partitions, block, superblock ...
T = (S, Act,—, So, AP, L) finite transition system

partition for T: decomposition of the state space S into
pairwise disjoint nonempty subsets

S B={B,...,B} st
@ e Bi#o
ﬂﬂ e BNB =@ forij
e S=BU...UB,

The B;'s are called blocks of B.
A superblock denotes any union of blocks.
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equivalences on S




Partitions and equivalences PARTSPLITALGS.3-4A

partitions = equivalences on S

e partition B ~» equivalence relation Rg where

Re ={(s,5) : [s]z =[]}
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Partitions and equivalences PARTSPLITALGS.3-4A

partitions = equivalences on S

e partition B ~» equivalence relation Rg where

Re ={(s,5) : [s]z =[]}
[s]z = unique block B; € B with s € B;

26/1



Partitions and equivalences PARTSPLITALGS.3-4A

partitions = equivalences on S

e partition B ~» equivalence relation Rg where

Re ={(s,5) : [s]z =[]}
[s]z = unique block B; € B with s € B;

e equivalence R on S ~» partition B=S/R
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Notations for partitions: finer, coarser

Let B; and B, be partitions for 7T .

B; is called finer than B (and B coarser than By) if
VB € B; 3B’ € B, such that B C B,
i.e., if all blocks B’ € B, are superblocks of B;

Example: if R is a bisimulation for 7 and an
equivalence then S/R is finer than §/~
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Notations for partitions: finer, coarser

Let B; and B, be partitions for 7T .

B; is called finer than B (and B coarser than By) if
VB € B; 3B’ € B, such that B C B,
i.e., if all blocks B’ € B, are superblocks of B;

B is called strictly finer than By if
(1) By is finer than By and (2) By # B>
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Computing the bisimulation quotient  rurseumaces s

by stepwise refinement of partitions the state set S

T

Biex Brk=S/~
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Computing the bisimulation quotient  rurseumaces s

by stepwise refinement of partitions the state set S

AV

Bap = By B, By By = S/N

initial partition: Bap = By

identifies all states with the same labeling
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Computing the bisimulation quotient  rurseumaces s

by stepwise refinement of partitions the state set S

AV

Bap = By B, By By = S/N

initial partition: Bap = By = S/Rap where
Rap = {(s1,9) : L(s1) = L(=2) }
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Characterization of S/NT PARTSPLITALGS.3-6

. as the coarsest partition of the
state space S such that ....
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Bisimulation equivalence ~7 PARTSPLITALGS.3-6

~ is the coarsest equivalence on S s.t.

1. 53 ~1 5 implies L(s) = L(sp)

2. S| ~T S 51 ~VT S
can be completed to l l

l}
S| 51 ~T
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Bisimulation quotient S/NT PARTSPLITALG5.3-6

~ is the coarsest equivalence on S s.t.

1. 53 ~1 5 implies L(s) = L(sp)

2. S| ~T S 51 ~VT S
l can be completed to l l
s S| ~T S

bisimulation quotient space S/~
coarsest partition B of the state space S s.t.
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~ is the coarsest equivalence on S s.t.

1. 53 ~1 5 implies L(s) = L(sp)
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l can be completed to l l
S| 51 ~T
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Bisimulation quotient S/NT PARTSPLITALG5.3-6

~ is the coarsest equivalence on S s.t.

1. 53 ~1 5 implies L(s) = L(sp)

2. S| ~T S 51 ~VT S
l can be completed to l l
s S| ~T S

bisimulation quotient space S/~
coarsest partition B of the state space S s.t.
1. B is finer than Bap
2. for all blocks B, C € B:
B C Pre(C) or BNPre(C)=2
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Bisimulation quotient S/NT PARTSPLITALG5.3-6

~ is the coarsest equivalence on S s.t.

1. 53 ~1 5 implies L(s) = L(sp)

2. S| ~T S 51 ~VT S
l can be completed to l l
s S| ~T S

bisimulation quotient space S/~
coarsest partition B of the state space S s.t.

1. B is finer than Bap
2. for all blocks B, C € B:

B C Pre(C) or BNPre(C)=2
where Pre(C) ={s€ S:3s5’ € Cst. s - &'}
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Partitioning refinement algorithm PARTSPLITALGS.3-7

input:  finite TS 7 with state space S over AP
(possibly with terminal states)

output: bisimulation quotient S/~
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Partitioning refinement algorithm

PARTSPLITALGH.3-7

Bo = BAP
i:=0
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Partitioning refinement algorithm PARTSPLITALGS.3-7

Bo :=Bap
i:=0

identifies states with the same labeling
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Partitioning refinement algorithm PARTSPLITALGS.3-7

By := Bap <+ identifies states with the same labeling
i:=0
REPEAT B;,; := Refine(B;)

D D
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Partitioning refinement algorithm PARTSPLITALGS.3-7

By := Bap <+ identifies states with the same labeling
i:=0
REPEAT B, := Refine(B;)
i:=i+1
UNTIL B;=Bi_1 < no more refinement possible

D @
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Partitioning refinement algorithm PARTSPLITALGS.3-7

By := Bap <+ identifies states with the same labeling
i:=0
REPEAT B, := Refine(B;)

i:=i+1
UNTIL B;=Bi_1 < no more refinement possible
hence: Bi =S/~

D -
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Partitioning refinement algorithm PARTSPLITALGS.3-7

By := Bap <+ identifies states with the same labeling
i:=0
REPEAT B;,; := Refine(B;)

i:=i+1
UNTIL B;=Bi_1 < no more refinement possible
return B; hence: Bi =S/~

D D
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Partitioning refinement algorithm PARTSPLITALGS.3-7

By := Bap <+ identifies states with the same labeling
i:=0
REPEAT B;,; := Refine(B;)

i:=i+1
UNTIL B;=Bi_1 < no more refinement possible
return B; hence: Bi =S/~

D -

loop invariant:

B; is coarser than S/~ and finer than Bap
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Maximal number of iterations? T SR

Bo = BAP; i:=0
REPEAT
Bis1 := Refine(B;); i:=i+1

UNTIL no further refinement is possible

55/1



Maximal number of iterations? T SR

Bo = BAP; i:=0
REPEAT
Bis1 := Refine(B;); i:=i+1

UNTIL no further refinement is possible

Assuming that B; is strictly coarser than B;;1 for all i,
what is the maximal number of refinement steps ?

56 /1
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Bo = BAP; i:=0
REPEAT
Bis1 := Refine(B;); i:=i+1

UNTIL no further refinement is possible

Assuming that B; is strictly coarser than B;;1 for all i,
what is the maximal number of refinement steps ?

answer: |S| -1

Note that |B;| > i+1.

57/1



Maximal number of iterations? T SR

Bo = BAP; i:=0
REPEAT
Bis1 := Refine(B;); i:=i+1

UNTIL no further refinement is possible

Assuming that B; is strictly coarser than B;;1 for all i,
what is the maximal number of refinement steps ?

answer: |S| -1

Note that |B;| > i+1.

Hence: if there are k = |S|—1 iterations then
By consists of singletons
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The initial partition PARTSPLITALGS.3-9

initial partition Bap:

identifies all states s, t

s.t. L(s) = L(t)
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The initial partition PARTSPLITALGS.3-9

initial partition Bap:

identifies all states s, t

s.t. L(s) = L(t)

Bap = {{50,52,56,55}, {s1}, {53,54}}
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Initial partition PARTSPLITALGS.3-8
initial partition Bap:

e identifies all states with the same labeling

e agrees with the quotient under the equivalence
Ss=pp t iff L(S) = L(t)
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Initial partition PARTSPLITALGS.3-8
initial partition Bap:

e identifies all states with the same labeling

e agrees with the quotient under the equivalence
Ss=pp t iff L(S) = L(t)

compute Bap by an on-the-fly generation of
the decision tree for AP
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Initial partition PARTSPLITALGS.3-8A

compute Bap by an on-the-fly generation of the
decision tree for AP = {ay, ..., ak}
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Initial partition PARTSPLITALGS.3-8A

compute Bap by an on-the-fly generation of the
decision tree for AP = {ay, ..., ak}

1

inner nodes at level i: decision “a; € L(s) ?"

leaves: sets of states with the same labeling
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Initial partition PARTSPLITALGS.3-8A

compute Bap by an on-the-fly generation of the
decision tree for AP = {ay, ..., ak}

1

inner nodes at level i: decision “a; € L(s) ?"

leaves: sets of states with the same labeling

ar ¢ L(s)
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Computing the initial partition PARTSPLITALGS. 3-8

compute Bap by an on-the-fly generation of the
decision tree for AP = {ay, ..., ak}
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Computing the initial partition PARTSPLITALGS. 3-8

compute Bap by an on-the-fly generation of the
decision tree for AP = {ay, ..., ak}

initally: each leaf represents the empty state-set

for each state s:
traverse the decision tree from the root to a leaf v
insert s in the set for v
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Example: initial partition

PARTSPLITALGS.3-8B

decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?
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decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?

{0} {s} {s1}



Example: initial partition PARTSPLITALGS.3-88

decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?

P

{s0} {0} {51} {ss,5} {s0,% % 5} {51}




Example: initial partition PARTSPLITALGS.3-88

decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?

N N,

{s0} {0} {s1} {53 ss}| {s0,%2,%,55} {s1}
L(s))= @




Example: initial partition PARTSPLITALGS.3-88

decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?

{so} {o} {s1i} {ss:su} {%0,%,%5} {s1}
/ /
L(si)=2 L(si)={a}




Example: initial partition PARTSPLITALGS.3-88

decision tree for

AP = {a, b}

1. level: a€ L(s)?
2. level: belL(s)?

N T N

{o} {0} {s1} {/53 51} {So 52, %, 55}
L(s))=2 L(s)= {a} L(s))= {a b}




Computation of the initial partition PARTSPLITALGS.3-10

generate the root node vy of the decision tree
FOR ALL states s DO
V=1
FOR i=1,...,kop | AP={a1,...,a}
IF a; € L(s)
THEN v := find_or_add(right son of v)

ELSE v := find_or_add(left son of v)
FI

0D

suppose

0D
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generate the root node vy of the decision tree
FOR ALL states s DO
V=1
FOR i=1,...,kop | AP={a1,...,a}
IF a; € L(s)
THEN v := find_or_add(right son of v)

ELSE v := find_or_add(left son of v)
FI

0D «—v is a leaf of depth k

suppose

0D
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Computation of the initial partition PARTSPLITALGS.3-10

generate the root node vy of the decision tree
FOR ALL states s DO
V=1
FOR i=1,...,kop | AP={a1,...,a}
IF a; € L(s)
THEN v := find_or_add(right son of v)

ELSE v := find_or_add(left son of v)
FI

0D «—v is a leaf of depth k

add s into the state-set of v
0D

suppose
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Computation of the initial partition PARTSPLITALGS.3-10

generate the root node vy of the decision tree
FOR ALL states s DO
V=1
FOR i=1,...,kop | AP={a1,...,a}
IF a; € L(s)
THEN v := find_or_add(right son of v)

ELSE v := find_or_add(left son of v)
FI

0D «—v is a leaf of depth k

add s into the state-set of v
0D

suppose

The state-sets of the leaves are the blocks in Bap.

80/1



Computation of the initial partition PARTSPLITALGS.3-10

generate the root node vy of the decision tree
FOR ALL states s DO
vi= 1 complexity:
FOR i=1,...,k OD O(|S|-|API)

IF a; € L(s)
THEN v := find_or_add(right son of v)

ELSE v := find_or_add(left son of v)
FI

0D «—v is a leaf of depth k

add s into the state-set of v
0D

The state-sets of the leaves are the blocks in Bap.
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Partitioning refinement (schema)

PARTSPLITALG5.3-11

B := BAP
WHILE refinements are possible DO

B := Refine(B)
0D

return B
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Partitioning refinement (schema)

PARTSPLITALG5.3-11

B:= BAP —

0D

return B

complexity: O(|S|-|AP|)

WHILE refinements are possible DO
B := Refine(B)
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Partitioning refinement (schema)

PARTSPLITALG5.3-11

B := BAP —
WHILE refinem

0D

complexity: O(|S|-|AP|)

ents are possible DO

B := Refine(B)

return B «—

B=S/~r
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Partitioning refinement (schema)

PARTSPLITALG5.3-11

B := BAP
WHILE refinements are possible DO
B := Refine(B)

0D

return B
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Partitioning refinement (schema)

B := BAP
WHILE refinements are possible DO
B := Refine(B)

0D

return B

refinement: stabilization for some superblock C of B:
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Partitioning refinement (schema)

PARTSPLITALG5.3-11

0D

B := BAP
WHILE refinements are possible DO

B := Refine(B)

return B

refinement: stabilization for some superblock C of B:
split each block B € B into two blocks:
B N Pre(C) and B\ Pre(C)
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Partitioning refinement (schema)

B := BAP
WHILE refinements are possible DO

B := Refine(B, B) for some splitter C

0D

return B

refinement: stabilization for some superblock C of B:
split each block B € B into two blocks:
B N Pre(C) and B\ Pre(C)
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Partitioning splitter algorithm

B := BAP
WHILE refinements are possible DO

B := Refine(B, B) for some splitter C

0D

return B

refinement: stabilization for some superblock C of B:
split each block B € B into two blocks:
B N Pre(C) and B\ Pre(C)
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Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP

WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B)

0D

return B
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Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP
WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B) = |J Refine(B, C)
BeB
0D
return B
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Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP
WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B) = |J Refine(B, C)
BeB
0D
return B

Refine(B, C)

block B superblock C
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Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP
WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B) = |J Refine(B, C)
BeB
0D
return B

Refine(B, C)

block B superblock C
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Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP
WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B) = |J Refine(B, C)
BeB
0D
return B

Refine(B, C) = {B N Pre(C), B\ Pre(C)}

block B superblock C

9% /1



Partitioning splitter algorithm PARTSPLITALGS. 3115

B := BAP
WHILE refinements are possible DO
choose some superblock C of B;
B := Refine(B, B) = |J Refine(B, C)
BeB
0D
return B

Refine(B, C) = {B N Pre(C), B\ Pre(C)} \{2}

block B superblock C
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}

If B is finer than Bap and coarser than S/~ then:
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}

If B is finer than Bap and coarser than S/~ then:

(a) Refine(B, C) is finer than B
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}

If B is finer than Bap and coarser than S/~ then:

(a) Refine(B, C) is finer than B and Bap
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}

If B is finer than Bap and coarser than S/~ then:
(a) Refine(B, C) is finer than B and Bap
(b) Refine(B, C) is coarser than S/~
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The refinement operator PARTSPLITALGS.3-114
Let B be a partition for S and C a superblock of B.
Refine(B, C) = |J Refine(B, C)
where Refine(B, C) :efB N Pre(C), B\ Pre(C)} \ {2}

If B is finer than Bap and coarser than S/~ then:
(a) Refine(B, C) is finer than B and Bap

(b) Refine(B, C) is coarser than S/~

(c) Refine(B,C)=Bforall CeB iff B=S5/~t
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Example: partitioning splitter algorithm ..o
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @

refinement
w.rt. @
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @

refinement
w.rt. @

3
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @

refinement
w.rt. @

reflnement
w.rt. @
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Example: partitioning splitter algorithm ..o

i =
uh =

refinement
w.rt @

refinement
w.rt. @

refinement
w.rt. @
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Example: partitioning splitter algorithm ..o

reflnement
w.rt @

refinement
w.rt. @

reflnement
w.rt. @

7 bisimulation equivalence classes
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The refinement operator PARTSPLITALGS.3-13

given a partition B and a superblock C of B,
how to compute

Refine(B, C)

efficiently ?
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The refinement operator PARTSPLITALGS.3-13

given a partition B and a superblock C of B,
how to compute
Refine(B, C) = |J Refine(B, C)
BeB
efficiently ?
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The refinement operator PARTSPLITALGS.3-13

given a partition B and a superblock C of B,
how to compute

Refine(B, C) = |J Refine(B, C)
BeB
efficiently ?
where for all blocks B € B:

Refine(B, C) = { BN Pre(C), B\ Pre(C) } \ {&}

=L

block B superblock C
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Refinement operator Refine(B, C) PARTSPLITALGS 3-13A
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Refinement operator Refine(B, C) PARTSPLITALGS 3-13A

FOR ALL s’ C DO

0D

114/1



Refinement operator Refine(B, C) PARTSPLITALGS 3-13A

FOR ALL s’ € C DO
FOR ALL s € Pre(s’) DO

0D
0D
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Refinement operator Refine(B, C) PARTSPLITALGS 3-13A

FOR ALL s’€ C DO
FOR ALL s € Pre(s’) DO
“move” state s from block [s]z = B
to the new block BN Pre(C)

0D
0D
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Refinement operator Refine(B, C) PARTSPLITALGS 3-13A

FOR ALL s’€ C DO
FOR ALL s € Pre(s’) DO
“move” state s from block [s]z = B
to the new block BN Pre(C)

0D
0D

.. states left in block B € B belong to the
new block B\ Pre(C)

117/1



Refinement operator Refine(B, C) PARTSPLITALGS 3-13A

FOR ALL s’€ C DO
FOR ALL s € Pre(s’) DO
“move” state s from block [s]z = B
to the new block BN Pre(C)

0D
0D

.. states left in block B € B belong to the
new block B\ Pre(C)

time complexity:

O( X |Pre(s)] +1C])

s'eC

18/1



Example: refinement operator PARTSPLITALGS.3-14

X y
partition B
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Example: refinement operator PARTSPLITALGS.3-14

superblock C = {x, y}

X y
partition B ~~ Refine(B, C)
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Example: refinement operator PARTSPLITALGS.3-14

X

superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

nOmOmO,

block B’

mOm0
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Example: refinement operator PARTSPLITALGS.3-14

W

X

Q superblock C = {x, y}

y

partition B ~~ Refine(B, C)

block B

ROmOmO,

B N Pre(C)

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

X

Q superblock C = {x, y}

y

partition B ~~ Refine(B, C)

block B

ROmOmO,

B N Pre(C)

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

X

Q superblock C = {x, y}

y

partition B ~~ Refine(B, C)

block B

ROmOmO,

B N Pre(C)

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

o

Q superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

- "- O,

B N Pre(C)

~(&—®

block B’

om0

B’ n Pre(C)

125/1



Example: refinement operator PARTSPLITALGS.3-14

W

Q superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

W

%@ superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

W

%@ superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

block B’

om0

B’ n Pre(C)
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Example: refinement operator PARTSPLITALGS.3-14

W

%@ superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

block B’

~X—X

B’ n Pre(C)

~V—W
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Example: refinement operator PARTSPLITALGS.3-14

W

Q superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

block B’

—0—X — B'\ Pre(C)=2

B’ n Pre(C)

~V—W
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Example: refinement operator PARTSPLITALGS.3-14

W

Q superblock C = {x, y}
y

partition B ~~ Refine(B, C)

block B

——)—(u) « new block B\ Pre(C)

B N Pre(C)

~(&—®

hisa<Z!

—0—X — B'\ Pre(C)=2

B’ n Pre(C)

~V—W
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Example: refinement operator PARTSPLITALGS.3-14

W

X

superblock C = {x, y}

s

Refine(B, C)

B\ Pre(C)
B N Pre(C)

S

B' N Pre(C)
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Partitioning splitter algorithm PARTSPLITALGS.3-15

B:= BAP
WHILE there is a splitter C for B DO

select such a splitter C;
B := Refine(B, C)

0D

return B
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Partitioning splitter algorithm PARTSPLITALGS.3-15

B := Bap «——|time complexity: O(|S|-|AP|)
WHILE there is a splitter C for B DO

select such a splitter C;
B := Refine(B, C)

0D

return B
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Partitioning splitter algorithm PARTSPLITALGS.3-15

B := Bap «——|time complexity: O(|S|-|AP|)
WHILE there is a splitter C for B DO

select such a splitter C;

B := Refine(B, C)

oD

each state s’ € C causes
return B

the costs O(|Pre(s’)| + 1)
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Partitioning splitter algorithm PARTSPLITALGS.3-15

B := Bap «——|time complexity: O(|S|-|AP|)
WHILE there is a splitter C for B DO

select such a splitter C;

B := Refine(B, C)

oD

each state s’ € C causes
return B

the costs O(|Pre(s’)| + 1)

time complexity:

O(Z > 1Pre(s)| +1Cl) + ISI-AP])

s'eC
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Partitioning splitter algorithm PARTSPLITALGS.3-15

B := Bap «——|time complexity: O(|S|-|AP|)
WHILE there is a splitter C for B DO

select such a splitter C;

B := Refine(B, C)

oD

each state s’ € C causes
return B

the costs O(|Pre(s’)| + 1)

time complexity:
o(z 3" |Pre(s))| +[Cl) + IS |AP|)
s'eC
+ cost for splitter search and management
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Partitioning splitter algorithms PARTSPLITALGS 3154

2 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters
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Partitioning splitter algorithms PARTSPLITALGS 3154

2 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters

e Kanellakis-Smolka algorithm:

refinement according to all blocks of the
partition of the previous iteration
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Partitioning splitter algorithms PARTSPLITALGS 3154

2 instances of the partitioning splitter algorithm
that differ in the choice and management of splitters
e Kanellakis-Smolka algorithm:

refinement according to all blocks of the
partition of the previous iteration

e Paige-Tarjan-algorithm:

simultaneous refinement according to
2 superblocks
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Kanellakis-Smolka algorithm PARTSPLITALGS.3-16
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Kanellakis-Smolka algorithm PARTSPLITALGS.3-16

B := Bap; B :={S}
REPEAT
Baq := B;
FOR ALL C € Byg DO B := Refine(B, C) 0D
UNTIL B = Byg4
return B
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Kanellakis-Smolka algorithm PARTSPLITALGS.3-16

B:=Bap; Byd:={S} | cost: O(|S|-|AP])
REPEAT

Boa == B;

FOR ALL C € Byg DO B := Refine(B, C) 0D
UNTIL B = Byg4
return B
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Kanellakis-Smolka algorithm PARTSPLITALGS.3-16

B :=Bap; Bod:={S} «+—| cost: O(|S|-|AP])

REPEAT

Bod = B;

FOR ALL C € Byg DO B := Refine(B, C) 0D
UNTIL B = Byg4
return B

maximal |S| iterations

144 /1



Kanellakis-Smolka algorithm

PARTSPLITALGH.3-16

B := Bap; B :={S}
REPEAT
Bod = B;

UNTIL B = Byyq
return B

—

cost: O(|S|-|AP])

FOR ALL C € Byg DO B := Refine(B, C) 0D

e maximal |S| iterations

e per iteration: each state s’ € C causes the costs

O(|Pre(s')| +1)
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Kanellakis-Smolka algorithm

PARTSPLITALGH.3-16

B := Bap; B :={S}
REPEAT
Bod = B;

UNTIL B = Byyq
return B

—

cost: O(|S|-|AP])

FOR ALL C € Byg DO B := Refine(B, C) 0D

e maximal |S| iterations

e per iteration: each state s’ € C causes the costs

O(|Pre(s')] + 1)
e cost per iteration: O(m+ |S|)
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Kanellakis-Smolka algorithm PARTSPLITALGS.3-16

B:=Bap; Byd:={S} | cost: O(|S|-|AP])
REPEAT

Boa == B;

FOR ALL C € Byg DO B := Refine(B, C) 0D
UNTIL B = Byg4
return B

e maximal |S| iterations
e per iteration: each state s’ € C causes the costs
O(|Pre(s")| + 1)
e cost per iteration: O(m+|S|)
if m = number of edges = ) |Pre(s’)|
7
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Kanellakis-Smolka algorithm

PARTSPLITALGH.3-16

B := Bap; B :={S}
REPEAT
Bod = B;

UNTIL B = Byyq
return B

—

cost: O(|S|-|AP])

FOR ALL C € Byg DO B := Refine(B, C) 0D

e maximal |S| iterations

e per iteration: each state s’ € C causes the costs

O(|Pre(s')| +1)

e cost per iteration: O(m+ |S|) = O(m)
if m = number of edges = ) |Pre(s’)| > |5
sl
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Kanellakis-Smolka algorithm

PARTSPLITALGH.3-16

B := Bap; B :={S}
REPEAT

time complexity:

O(|S|-m + |S|-|AP|)

Bod = B;

UNTIL B = Byyq
return B

FOR ALL C € Byg DO B := Refine(B, C) 0D

e maximal |S| iterations

e per iteration: each state s’ € C causes the costs

O(|Pre(s')| +1)

e cost per iteration: O(m+ |S|) = O(m)
if m = number of edges = ) |Pre(s’)| > |5
sl
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Example: Kanellakis-Smolka algorithm  iuuseumes sz

S1 S 53

th ur us

i va vz ow
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Example: Kanellakis-Smolka algorithm

S1 S 53

th ur us

i va vz ow

1. iteration:

1. refinement w.r.t. {vi, v, v3}

PARTSPLITALGH.3-17
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w
1. iteration:

1. refinement w.r.t. {vi, v, v3}

PARTSPLITALGH.3-17
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w
1. iteration:

1. refinement w.r.t. {vi, v, v3}

2. refinement w.r.t. {w}: no changes

PARTSPLITALGH.3-17
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w

1. iteration:

1. refinement w.r.t. {vi, v, v3}

2. refinement w.r.t. {w}: no changes

PARTSPLITALGH.3-17

3. refinement w.r.t. {s1, s, s3}: no changes
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w

1. iteration:

refinement w.r.t. {vi, v, v3}

refinement w.r.t. {w}: no changes

=

PARTSPLITALGH.3-17

refinement w.r.t. {s1, s, s3}: no changes

refinement w.r.t. {u, th, u3}: no changes
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w

2. iteration:

PARTSPLITALGH.3-17
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Example: Kanellakis-Smolka algorithm

S1 L)) S3 S1 S S3
——2
th us us3 th us us
w v» v3 w v 3 w
2. iteration:

1. refinement w.r.t. {uz}

PARTSPLITALGH.3-17
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Example: Kanellakis-Smolka algorithm  iuuseumes sz

51 52 53 S1 52 53 51 5 53
——2 ——2
U 1)) u3 h wn u3 U 1)} u3
v v3 w i 2 v3 w i 2 vz w
2. iteration:

1. refinement w.r.t. {uz}
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Example: Kanellakis-Smolka algorithm  iuuseumes sz

51 52 53 S1 52 53 51 5 53
——2 ——2
U 1)) u3 h wn u3 U 1)} u3
v v3 w i 2 v3 w i 2 vz w
2. iteration:

1. refinement w.r.t. {uz}

2. refinement w.r.t. other blocks of the first
iteration: no changes
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Example: Kanellakis-Smolka algorithm  iuuseumes sz

51 52 53 S1 52 53 51 5 53
——2 ——2
U 1)) u3 h wn u3 U 1)} u3
v v3 w w v v3 w v v3 w

3. iteration:
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Example: Kanellakis-Smolka algorithm

PARTSPLITALGH.3-17

51 52 53 S1 52 53 51 5 53
——2 ——2
U 1)) u3 h wn u3 U 1)} u3
v v3 w w v v3 w v v3 w

3. iteration:

refinement w.r.t. all blocks of the second iteration:
no changes
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Example: Kanellakis-Smolka algorithm  iuuseumes sz

51 52 53 S1 52 53 51 5 53
——2 ——2
U 1)) u3 h wn u3 U 1)} u3
v v3 w i 2 v3 w i 2 vz w
3. iteration:

refinement w.r.t. all blocks of the second iteration:
no changes

6 bisimulation equivalence classes:

{517 52}7 {53}a {ul’ u2}a {U3}, {Vlz V2, V3}a {W}
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Partitioning splitter algorithm PARTSPLITALGS.3-18

AP = {a, b}

® = (a
n ® = (b

® = g
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Partitioning splitter algorithm PARTSPLITALGS.3-18

AP = {a, b}

® = (a
n ® = (b

® = g

refinement w.r.t. @:
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Partitioning splitter algorithm PARTSPLITALGS.3-18

O AP = {a, b}
<<.>> o = {3
h ® = {b}
w ® = g

refinement w.r.t. @:
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Partitioning splitter algorithm

o

refinement w.r.t. @®: causes the costs

Z|Pre(s’)| =n

sl

PARTSPLITALGS.3-18

{a, b}
{a}
{b}
7

o000
I 111l
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Partitioning splitter algorithm PARTSPLITALGS.3-18

e )

refinement w.r.t. @®: causes the costs

Z|Pre(s’)| =n

{a, b}
{a}
{b}
7

o000
1> 11

alternatively: refinement w.r.t. @: constant costs
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap

Paige-Tarjan algorithm:
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap

Paige-Tarjan algorithm:
loop invariant:

(1) B finer than B4 and coarser than Bap
(2) B is stable for each block in Bgg

172/1



Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap

Paige-Tarjan algorithm:
loop invariant:

(1) B finer than B4 and coarser than Bap
(2) B is stable for each block in Bgg

iteration: ternary refinement operator
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap

Paige-Tarjan algorithm:
loop invariant:

(1) B finer than B4 and coarser than Bap
(2) B is stable for each block in Bgg

iteration: ternary refinement operator

initially:  Bgg = {S}
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Partitioning splitter algorithms PARTSPLITALGS.3-10

Kanellakis-Smolka algorithm:
initially:  Bog = B = Bap
iteration: stabilization for each block in Bgyyq

loop invariant: B finer than B4 and coarser than Bap

Paige-Tarjan algorithm:
loop invariant:

(1) B finer than B4 and coarser than Bap
(2) B is stable for each block in Bgg

iteration: ternary refinement operator

initially: ~ Boig = {S}, B = Refine(Bap, S)
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20

S1 L)

i Vo
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20
S S state space S = {51,52, v, v2}

Bap = { {51, 2}, {n, 2} }

i Vo
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20

S1

i

$

Vo

state space S = {51,52, v, v2}

Bap = { {51, 2}, {n, 2} }

Pre(S) = set of nonterminal states
= {51,52, V1}
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20

S S state space S = {51,52, v, v2}
Bap = { {s1, %}, {v1, v} }
Vi V2
Pre(S) = set of nonterminal states
= {51,52, V1}

{Vl,VQ} N Pre(S) = {Vl}
{vi, } \ Pre(S) = {w}
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20

S S state space S = {51,52, v, v2}
Bap = { {s1, 22}, {v1, 2} }

i V2 )
Pre(S) = set of nonterminal states

= {517 52, Vl}

{Vl,VQ} N Pre(S) = {Vl}
{vi, } \ Pre(S) = {w}

initial partition of Paige/Tarjan algorithm:
Refine(Bap, S)
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Bap is generally not stable w.r.t. S PARTSPLITALGS.3-20

S S state space S = {51,52, v, v2}
Bap = { {s1, 22}, {v1, 2} }

i V2 )
Pre(S) = set of nonterminal states

= {517 52, Vl}

{Vl,VQ} N Pre(S) = {Vl}
{vi, } \ Pre(S) = {w}

initial partition of Paige/Tarjan algorithm:

Refine(Bap, S) = {{51,52}, {w}, {V2}}
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Paige-Tarjan algorithm PARTSPLITALGS 3-21
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Reﬁne(BAp, S),
WHILE B # Bgg DO

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),

WHILE B # Byg DO
select a block C' € By \ B;

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Reﬁne(BAp, S),

WHILE B % Bog DO
select a block C' € By \ B;
select a block C € B with C C ('

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Reﬁne(BAp, S),

WHILE B % Bog DO
select a block C' € By \ B;
select a block C € B with C C ' and |C| < |C'|/2;

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C C’ and |C| < |C'|/2;

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C ' and |C| < |C'|/2;

refine B
w.rt. Cand C'\ C

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C C’ and |C| < |C'|/2;

B := Refine(B, C) refine B
B := Refine(B, C') w.r.t. C and C,\ C

0D
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Paige-Tarjan algorithm

PARTSPLITALGS.3-21

Bold = {S}, B:= Refine(BAp, S),

WHILE B # Byg DO
select a block C' € By \ B;

< e

select a block C € B with C C C’ and |C| < |C'|/2;

B := Refine(B, C)
B := Refine(B, C')

refine B simultaneously

w.rt. Cand C'\ C

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C C’ and |C| < |C'|/2;

B 1= Refine(B, C,C\C) | iehne o mianeaush

0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C C’ and |C| < |C'|/2;

B 1= Refine(B, C,C\C) | iehne o mianeaush

add C and C'\ C to Byqg
0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Refine(BAp, S),
ﬁ C'
WHILE B # Byq DO

select a block C' € By \ B;
select a block C € B with C C C’ and |C| < |C'|/2;

B 1= Refine(B, C,C\C) | iehne o mianeaush

add C and C'\ C to B and remove C' from By
0D
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Paige-Tarjan algorithm PARTSPLITALGS 3-21

Bold = {S}, B:= Reﬁne(BAp, S),
ﬂ C'
WHILE B # Bog DO

select a block C' € By \ B;
select a block C € B with C C ' and |C| < |C'|/2;

B := Refine(B, C, C'\C) \r;f;rle lg irr]rliulée)r{egusly

add C and C'\ C to B and remove C' from By
0D

loop invariant: B is stable w.r.t. each block in Bgyq
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and
e (' asuperblock of B s.t. B is stable w.r.t. C’
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and
e (' asuperblock of B s.t. B is stable w.r.t. C’
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C

simultaneous refinement of B w.r.t. C and C'\ C:
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C

simultaneous refinement of B w.r.t. C and C"\ C:

Refine(B, C, C'\C) = |J Refine(B, C, C'\C)
BeB
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C

simultaneous refinement of B w.r.t. C and C"\ C:
Refine(B, C, C'\C) = | Refine(B, C, C'\C)
where for block B C Pre((C’): o
Refine(B, C, C'\C) = {Bi, B,, Bs} \ {&}
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C

simultaneous refinement of B w.r.t. C and C"\ C:
Refine(B, C, C'\C) = | Refine(B, C, C'\C)
where for block B C Pre((C’): o
Refine(B, C, C'\C) = {Bi, B,, Bs} \ {&}

_ &)

block B superblock C’
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The ternary refinement operator PARTSPLITALGS.3-22

Let B be a partition and

e (' asuperblock of B s.t. B is stable w.r.t. C’
e CablockinBst. CCC(C

simultaneous refinement of B w.r.t. C and C"\ C:
Refine(B, C, C'\C) = | Refine(B, C, C'\C)
where for block B C Pre((C’): o
Refine(B, C, C'\C) = {Bi, B,, Bs} \ {&}

block B superblock C’
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The ternary refinement operator PARTSPLITALGS.3-22
simultaneous refinement of B w.r.t. C and C'\ C:
Refine(B, C, C'\C) = |J Refine(B, C, C'\(C)
where for block B C Pre((C"): o

Refine(B, C, C'\C) = {Bi, B,, B:} \ {&}

block B superblock C’
B, = BnPre(C)n Pre(C'\C)
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The ternary refinement operator PARTSPLITALGS.3-22
simultaneous refinement of B w.r.t. C and C'\ C:
Refine(B, C, C'\C) = |J Refine(B, C, C'\(C)
where for block B C Pre((C"): o
Refine(B, C, C'\C) = {Bi, B,, B:} \ {&}

B, —)
S Taa—E"

block B superblock C’
B, = BnPre(C)n Pre(C'\C)
B, = (BnPre(C))\ Pre(C'\C)
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The ternary refinement operator PARTSPLITALGS.3-22
simultaneous refinement of B w.r.t. C and C'\ C:
Refine(B, C, C'\C) = |J Refine(B, C, C'\(C)
where for block B C Pre((C"): o
Refine(B, C, C'\C) = {Bi, B,, B:} \ {&}

B, —)
B; Blﬁ%gﬂ

block B superblock C’
B, = BnPre(C)n Pre(C'\C)

B, = (BnPre(C))\ Pre(C'\C)
B; = (BnPre(C'\C))\ Pre(C)
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The ternary refinement operator PARTSPLITALGS.3-22
simultaneous refinement of B w.r.t. C and C'\ C:
Refine(B, C, C'\C) = |J Refine(B, C, C'\C)
where for block B C Pre((C"): o

Refine(B, C, C'\C) = {Bi, B,, B:} \ {&}

B, —)
B; Blﬁ%gﬂ

block B superblock C’

for block B with BN Pre(C') = o:
Refine(B, C, C'\C) = {B}

207 /1



Stab“ity Of Reﬁne(B, C, C, \ C) PARTSPLITALG5.3-23

Suppose that for all blocks B € B:
B C Pre(C') or BNPre(C') =9
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Stab“ity Of Reﬁne(B, C, C, \ C) PARTSPLITALG5.3-23

Suppose that for all blocks B € B:
B C Pre(C') or BNPre(C') =9

CH D CI ),
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Stab“ity Of Reﬁne(B, C, C, \ C) PARTSPLITALG5.3-23

Suppose that for all blocks B € B:
B C Pre(C') or BNPre(C') =9

CH D CI ),

Then the new blocks By, By, B3 in Refine(B, C, C"\ C)
are stable w.r.t. the superblocks C and C"\ C.

B, _—
B; Blﬁéﬂ

block B superblock C’
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stability Of Reﬁne(B, C, Cl \ C) PARTSPLITALG5.3-23

Suppose that for all blocks B € B:
B C Pre(C') or BNPre(C') =9

CH D CI ),

Then the new blocks By, By, Bs in Refine(B, C, C"\ C)
are stable w.r.t. the superblocks C and C"\ C.

If B is stable w.r.t. all blocks in Byg and C' € By,
C € Bs.t. C ¢ (' then Refine(B, C, C'\C)

is stable w.r.t. all blocks in the partition

(Baa \ {C'H U{C, C"\ C}
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

"1 W w3

n Ue u
8
e
%1 V2

AP = {green, gray}, Boa = {S}
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

"1 W w3

n Ue u
8
e
%1 V2

AP = {green, gray}, Boa = {S}

initial partition:
Bo = Refine(BAp, S) = Bap
= {{Vlz V2}7 {U]_, «..y Ug, W1, W2, W3}}
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

"1 W w3

n Ue
ug

ty
i V2
initially: By = {S}
By, = {{vl, v {wm,..., ug,wi, wy, W3}}
first refinement step:

Refine(Bo, {v1, 2}, S \ {v1, »2})
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

M wh w3

un Ue
ug

7
Vi Vs
initially: By = {5}
By, = {{vl, v, {u,..., us, us, U7, wy, wa, W3}}
first refinement step:
Refine(By, {vi, v}, S \ {v1, »}) =
By ={{vi,w},{wn,...,ue us}, {ur}, {wr, wo, ws}}
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

"1 W w3

n Ue
ug
uy

Vi V2
initially: Bog = {S}
By = {{vl, v, {u,..., us, us, U7, wy, wa, W3}}
first refinement step:
Refine(By, {vi, v}, S \ {v1, »}) =

Bl = {{Vh V2}7 {U]_, «.., U, Ug}, {U7}, {Wla wy, W3}}
Bold = {{Vl; V2}7 {U]_, - .-, Us, Ug, U7, W1, W2, W3}}
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

"1 W w3

un Ue
ug

Uy
i V2

first refinement step:

Bl = {{Vh V2}) {ula"')uﬁa u8}7 {U7}, {W].) wo, W3}}
Boa = {{v1, vo},{w,. .., us, us, 7, w1, wa, w3} }

second refinement step:
Refine(Bl,?, ?)
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

M wo w3

un Ue
ug

Uy
i V2

first refinement step:

Bl = {{Vh V2}) {ula"')uﬁa u8}7 {U7}, {W].) wo, W3}}
Bold = {{Vla V2}1 {ula ..., Up, Ug, U7, W1, W, W3}}

second refinement step:
Reﬁne(Bh {U7}, {U]_, ..., Up, Ug, W1, W2, W3})
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Example: Paige-Tarjan algorithm PARTSPLITALGS.3-24

M wo w3

n Ue
ug
uy

i V2

first refinement step:

Bl = {{Vla V2}1 {ula ..., Us, Ug}, {U7}, {W17 W, W3}}
Bold = {{Vla V2}1 {ula ..., Ue, Ug, U7, W1, W2, W3}}
second refinement step:

Refine(By, {u:}, {w, ..., us, ug, wa, wa, ws})

= {{vh V2}, {ul, ..., Ug, Us}, {U7}, {Wl}, {W2}, {W3}}
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Paige-Tarjan algorithm PARTSPLITALGS 3-25A

B:= Refine(BAp, S); Bold = {S};

WHILE B # Bgq DO
select C' € Byg, C€Bs.t. CC C,|C| < |C)/2;
add C and C'\ C to B and remove C' from By
B := Refine(B, C,C'\ C)

0D

return B
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Paige-Tarjan algorithm PARTSPLITALGS 3-25A

B:= Refine(BAp, S); Bold = {S};

WHILE B # Bgq DO

select C' € Byg, C€Bs.t. CC C,|C| < |C)/2;

add C and C'\ C to B and remove C' from By
B := Refine(B, C, C' \ C)

0D
return B

efficient implementation of Refine(B, C, ...) with time
complexity O(|C| + |Pre(C)|)
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Paige-Tarjan algorithm PARTSPLITALGS 3-25A

B:= Refine(BAp, S); Bold = {S};

WHILE B # Bgq DO

select C' € Byg, C€Bs.t. CC C,|C| < |C)/2;

add C and C'\ C to B and remove C' from By
B := Refine(B, C, C' \ C)

0D
return B

efficient implementation of Refine(B, C, ...) with time
complexity O(|C| + |Pre(C)|) uses counters

(s, D) = |Post(s) N D| for D € By
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Details of the Paige-Tarjan algorithm  cicrseumies .20

implementation of

Refine(B, C, C'\ C) = |J Refine(B, C,C'\ C)
BeB

using counters &(s, D) = |Post(s) N D]
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Details of the Paige-Tarjan algorithm  cicrseumies .20

implementation of

Refine(B, C, C'\ C) = |J Refine(B, C,C'\ C)
BeB

using counters &(s, D) = |Post(s) N D]

D € Bodg
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Details of the Paige-Tarjan algorithm  cicrseumies .20

implementation of

Refine(B, C, C'\ C) = |J Refine(B, C,C'\ C)
BeB

using counters &(s, D) = |Post(s) N D]

/
s € Pre(D) D € Bodg
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Details of the Paige-Tarjan algorithm  cicrseumies .20

implementation of

Refine(B, C, C'\ C) = |J Refine(B, C,C'\ C)
BeB

using counters &(s, D) = |Post(s) N D]

/
s € Pre(D) D € Bodg

step 1: compute (.. .) for the new blocks
C and C’\ Cin Bold
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Details of the Paige-Tarjan algorithm  cicrseumies .20

implementation of

Refine(B, C, C'\ C) = |J Refine(B, C,C'\ C)
BeB

using counters &(s, D) = |Post(s) N D]

/
s € Pre(D) D € Bodg

step 1: compute (.. .) for the new blocks
C and C’\ Cin Bold

step 2. compute Refine(B, C,C'\ C) for all B€e B
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Implementation of Refine(B,C,C'\ C)  ruusrumos.a2mm

step 1: compute (s, C), d(s, C'\C)

step 2: compute Refine(B, C, C'\C) for all B € B
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)

step 2: compute Refine(B, C, C'\C) for all B € B
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Implementation of Refine(B,C,C'\ C)  ruusrumos.a2mm

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with BN Pre(C') = & we have:
Refine(B, C, C'\C) = {B}
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
Refine(B, C, C'\C) = {Bl, B, B3} \ {2}
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)

(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
Refine(B, C, C'\C) = {Bl, B, B3} \ {2}

B, = BN Pre(C) N Pre(C"\ C)
B, = (BN Pre(C)) \ Pre(C"\ C)
Bs= (BN Pre(C'\ C)) \ Pre(C)




Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)

(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
Refine(B, C, C'\C) = {Bl, B, B3} \ {2}

B,={se B:é(s,C)>0,4(s, C'\C) > 0}
B, = (BN Pre(C)) \ Pre(C"\ C)
Bs= (BN Pre(C'\ C)) \ Pre(C)




Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
Refine(B, C, C'\C) = {Bl, B, B3} \ {2}

B,={se B:é(s,C)>0,4(s, C'\C) > 0}
B,={se B:é(s,C)>0,4(s, C'\C) =0}
Bs= (BN Pre(C'\ C)) \ Pre(C)
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Implementation of Refine(B,C,C'\ C)  ramseumos 3250

step 1: compute 4(s, C), é(s, C'\C) «|for s € Pre(C’)
(s, C) = |Post(s) N C|
d(s, C"\ C) = |Post(s) N (C'\CO)|

step 2: compute Refine(B, C, C'\C) for all B € B

for B € B with B C Pre(C’):
Refine(B, C, C'\C) = {Bl, B, B3} \ {2}

B,={se B:é(s,C)>0,4(s, C'\C) > 0}
B,={se B:é(s,C)>0,4(s, C'\C) =0}
Bs={se B:é(s,C)=0,4(s, C'\C) > 0}
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Paige-Tarjan algorithm PARTSPLITALGS.3-25

B := Refine(BAp,S); Bold = {S}.

WHILE B # Bgg DO
select C' € Byg, C€Bst. CC C',|C| < |C)/2;
add C and C'\C to B4 and remove C’ from Byq

B := Refine(B, C, C'\ C)
0D
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Paige-Tarjan algorithm PARTSPLITALGS.3-25

B := Refine(BAp,S); Bold = {S},

FOR ALL s € S D0 4(s,S) := |Post(s)| 0D

WHILE B # Byg DO
select C' € Byg, C€Bst. CC C',|C| < |C)/2;
add C and C'\C to B4 and remove C’ from Byq

B := Refine(B, C, C'\ C)
0D
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Paige-Tarjan algorithm PARTSPLITALGS.3-25

B := Refine(BAp,S); Bold = {S},
FOR ALL s € S D0 §(s,S) := |Post(s)| 0D
WHILE B # Bgyg DO
select ' € Byg, C€ Bst. CC ', |C| < |C)/2;
add C and C'\C to B4 and remove C’ from Byq
FOR ALL s € Pre(C) D0 6(s,C):=00D
FOR ALL s'e€ C DO
FOR ALL s € Pre(s’) DO 4(s, C) := (s, C)+1 0D
0D

B := Refine(B, C, C'\ C)
0D
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Paige-Tarjan algorithm PARTSPLITALGS.3-25

B := Refine(BAp,S); Bold = {S},
FOR ALL s € S D0 §(s,S) := |Post(s)| 0D
WHILE B # Bgyq DO
select ' € Byg, C€ Bst. CC ', |C| < |C)/2;
add C and C'\C to B4 and remove C’ from Byq
FOR ALL s € Pre(C) D0 6(s,C):=00D
FOR ALL s’ € C DO
FOR ALL s € Pre(s’) DO 4(s, C) := (s, C)+1 0D
0D
FOR ALL s € Pre(C) DO
d(s, C'\C) := (s, C")—é(s, C) 0D
B := Refine(B, C, C'\ C)
0D
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Complexity of the Paige-Tarjan algorithm v.erseiimies 26
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Complexity of the Paige-Tarjan algorithm v.erseiimies 26

let T = (S, Act,—, Sp, AP, L) be a finite TS

n = ## states = |S]|

m = F transitions
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Complexity of the Paige-Tarjan algorithm v.erseiimies 26

let T = (S, Act,—, Sp, AP, L) be a finite TS

n = ## states = |S]|
m = ## transitions = Y |Pre(s)|

seS
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Complexity of the Paige-Tarjan algorithm v.erseiimies 26

let T = (S, Act,—, Sp, AP, L) be a finite TS

n = ## states = |S]|
m = ## transitions = Y |Pre(s)|
s€S

in what follows, we suppose m > n
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B := Refine(Bap, S);
Bold = {S}'
WHILE B 5 Bog DO

select C' € By, C € B s.t.
CC C and|C| < |C/2;

add C and C'\C to Bogq and
remove C’ from Byg

B := Refine(B, C, C' \ C)

0D
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B := Refine(Bap, S);
Bold = {S}'
WHILE B 5 Bog DO

b

complexity: O(n - |AP|)

select C' € By, C € B s.t.
CC C and|C| < |C/2;

add C and C'\C to Bogq and
remove C’ from Byg

B := Refine(B, C, C' \ C)

0D
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B := Refine(Bap, S);
Bold = {S}'
WHILE B 5 Bog DO

b

complexity: O(n - |AP|)

select C' € By, C € B s.t.
CC C and|C| < |C/2;

add C and C'\C to Bogq and
remove C’ from Byg

B := Refine(B, C, C' \ C)

0D
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B := Refine(Bap,S); <«—| complexity: (’)(n- |AP|)

Baa := {S};
WHILE B # Bgyq DO
select C' € By, C € B s.t.
CC C and|C| < |C/2;

add C and C'\C to Bogq and
remove C’ from Byg

B := Refine(B, C, C' \ C)

0D

<

time complexity:

> |Pre(s’)| + 1

s'eC
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B := Refine(Bap, S);
Bold = {S}'
WHILE B 5 Bog DO

select C' € By, C € B s.t.
CC C and|C| < |C/2;

add C and C'\C to Bogq and
remove C’ from Byg

b

complexity: O(n - |AP|)

B := Refine(B,C,C'\ C) |«

time complexity:

O(IC| + |Pre(C)I)

0D
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Complexity of the Paige-Tarjan algorithm v.ecseiimiess

B:

= Refine(Bap,S); «—| complexity: (’)(n- |AP|)

Boa == {S};
WHILE B # Bgyq DO

select C' € By, C € B s.t.
CC C'and|C|<|C/2;

add C and C'\C to B,g4 and
remove C’ from Byg

B := Refine(B, C, C' \ C)

0D

total cost for
all refinement
operations:

O(m - log n)

time complexity:

O(IC| + |Pre(C)I)
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