

Overview: Model Checking

1. Introduction
2. Modelling parallel systems
3. Linear Time Properties
4. Regular Properties
5. Linear Temporal Logic
6. Computation Tree Logic
7. Equivalences and Abstraction
8. **Partial Order Reduction**
9. Timed Automata
10. Probabilistic Systems

A few historical notes

LTL3.4-1

1977 temporal logics (**LTL**) as specification formalism
for parallel systems [Pnueli]

1981 model checking

for **CTL** [Clarke/Emerson], [Queile/Sifakis]

for **LTL** [Lichtenstein/Pnueli], [Vardi/Wolper]

for **CTL*** [Emerson/Lei]

...

A few historical notes

LTL3.4-1

1977 **temporal logics (LTL)** as specification formalism
for parallel systems [Pnueli]

1981 **model checking**

for **CTL** [Clarke/Emerson], [Queile/Sifakis]

for **LTL** [Lichtenstein/Pnueli], [Vardi/Wolper]

for **CTL*** [Emerson/Lei]

...

.. state explosion problem ...

A few historical notes

LTL3.4-1

1977 temporal logics (**LTL**) as specification formalism
for parallel systems [Pnueli]

1981 model checking

... to attack the state explosion problem ...

1987 symbolic model checking with BDDs [McMillan]

1990 partial order reduction

[Godefroid], [Valmari], [Peled]

1992 net unfoldings

abstraction-refinement

symmetry reduction

A few historical notes

LTL3.4-1

1977 *temporal logics* (LTL) as specification formalism
for parallel systems [Pnueli]

1981 *model checking*

... to attack the *state explosion problem* ...

1987 symbolic model checking with BDDs [McMillan]

1990 **partial order reduction** for $LTL \setminus \Diamond$
[Godefroid], [Valmari], [Peled]

1992 net unfoldings
abstraction-refinement
symmetry reduction

Partial order reduction

LTL3.4-2

description of
 $P = P_1 \parallel \dots \parallel P_n$

specification
 $LTL \setminus \Diamond$ formula φ

model checker

NO + error indication

YES

Partial order reduction

LTL3.4-2

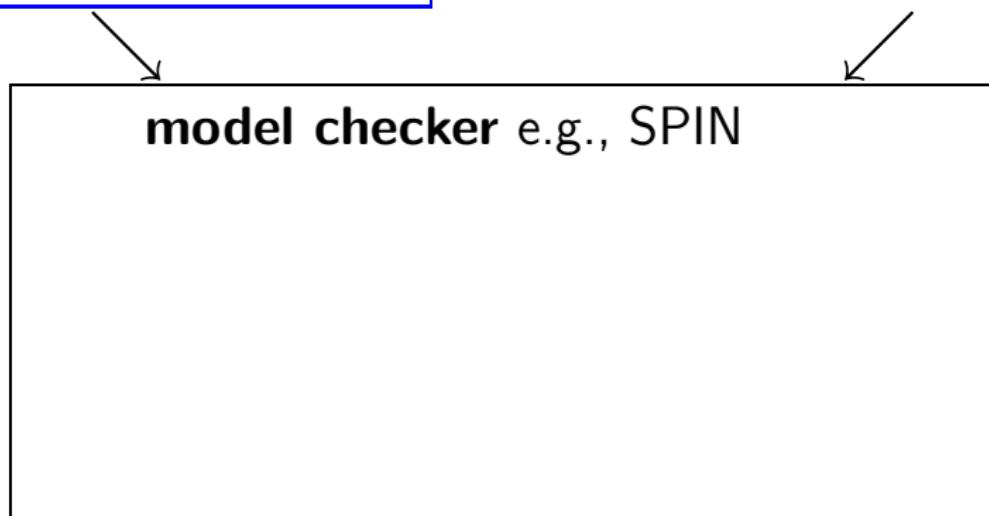
description of

$P = P_1 \parallel \dots \parallel P_n$

e.g., by PROMELA

specification

$LTL \setminus \Diamond$ formula φ



NO + error indication

YES

Partial order reduction

LTL3.4-2

description of

$P = P_1 \parallel \dots \parallel P_n$

e.g., by PROMELA

specification

$LTL \setminus \Diamond$ formula φ

model checker e.g., SPIN

NBA \mathcal{A} for $\neg\varphi$

NO + error indication

YES

Partial order reduction

LTL3.4-2

description of

$P = P_1 \parallel \dots \parallel P_n$

e.g., by PROMELA

specification

$LTL \setminus \Diamond$ formula φ

model checker e.g., SPIN

NBA \mathcal{A} for $\neg\varphi$

on-the-fly-construction

of a fragment \mathcal{T}_{red} of $\mathcal{T}_P \times \mathcal{A}$

NO + error indication

YES

Partial order reduction

LTL3.4-2

description of

$$P = P_1 \parallel \dots \parallel P_n$$

e.g., by PROMELA

specification

$LTL \setminus \Diamond$ formula φ

model checker e.g., SPIN

NBA \mathcal{A} for $\neg\varphi$

on-the-fly-construction

of a fragment \mathcal{T}_{red} of $\mathcal{T}_P \times \mathcal{A}$

with integrated persistence checking

$$\mathcal{T}_{\text{red}} \models \Diamond\Box\neg F?$$

NO + error indication

YES

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes that represent the same the same behavior up to the interleaving order

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes that represent the same the same behavior up to the interleaving order

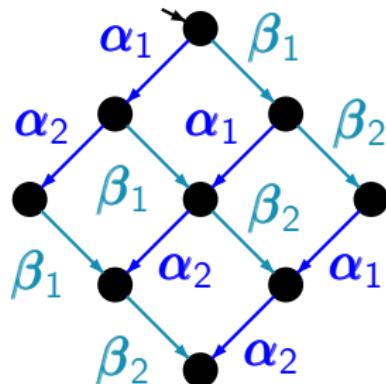
$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Basic idea of partial order reduction

LTL3.4-3

- for **asynchronous** systems
- analyze **representatives** of path equivalence classes that represent the same the same behavior up to the **interleaving order**

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

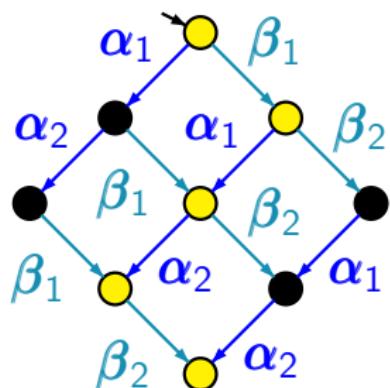


Basic idea of partial order reduction

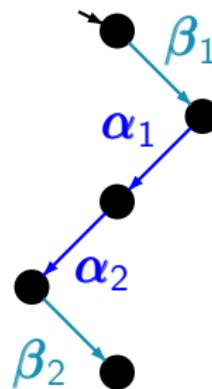
LTL3.4-3

- for **asynchronous** systems
- analyze **representatives** of path equivalence classes that represent the same the same behavior up to the **interleaving order**

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



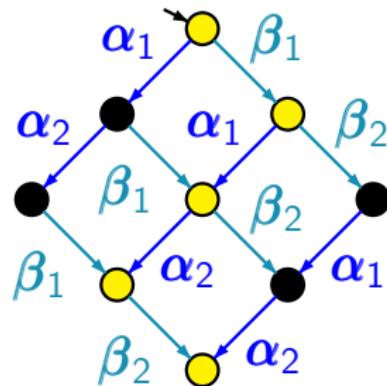
$$\mathcal{T}_{\text{red}}$$



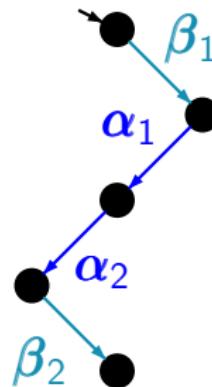
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



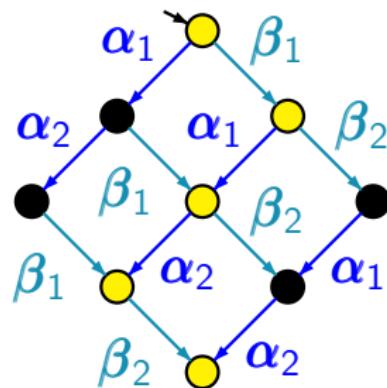
$$\mathcal{T}_{\text{red}}$$



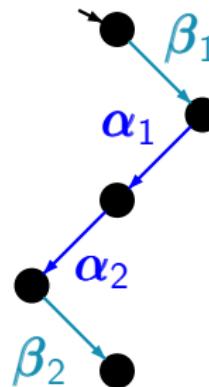
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



$$\mathcal{T}_{\text{red}}$$



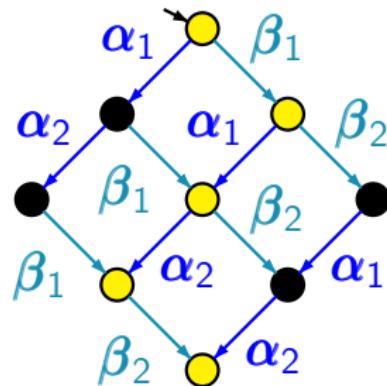
requirement: for all $LTL \setminus \Diamond$ formulas φ :

$$\mathcal{T} \models \varphi \text{ iff } \mathcal{T}_{\text{red}} \models \varphi$$

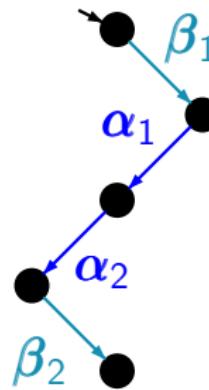
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



$$\mathcal{T}_{\text{red}}$$



requirement: for all $LTL \setminus \Diamond$ formulas φ :

$$\mathcal{T} \models \varphi \text{ iff } \mathcal{T}_{\text{red}} \models \varphi$$

hence: ensure that the reduction yields $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

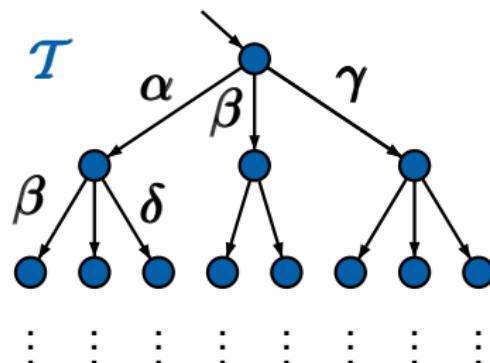
goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

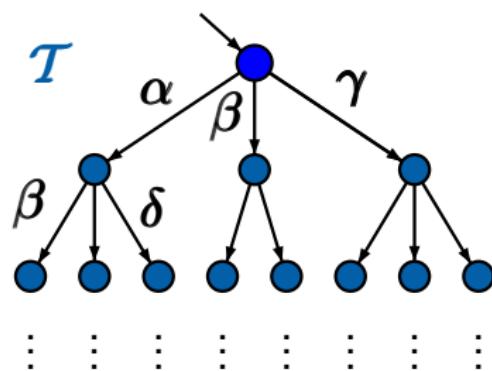


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

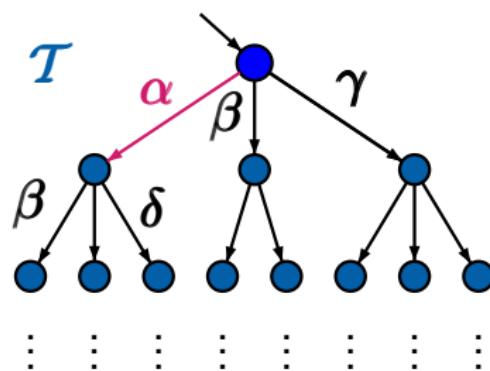


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

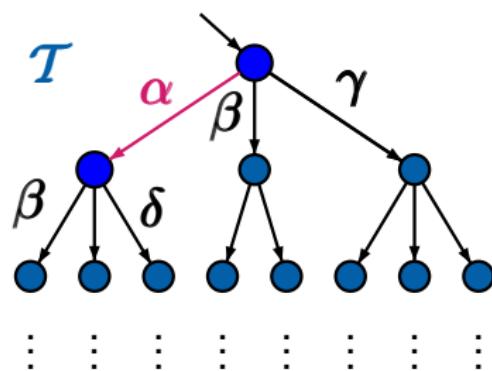


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

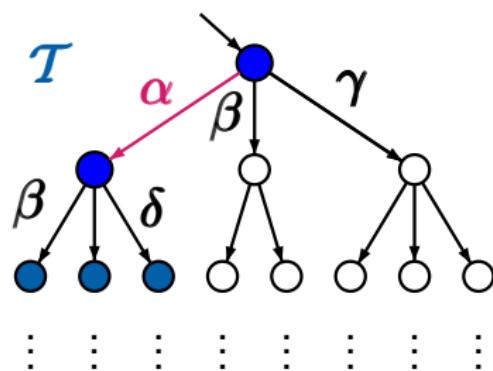


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

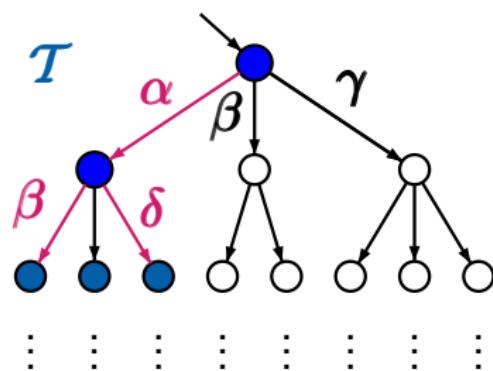


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

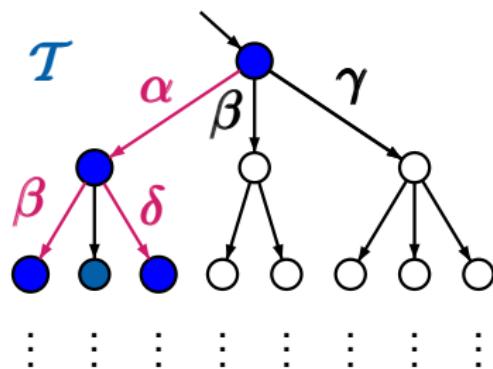


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

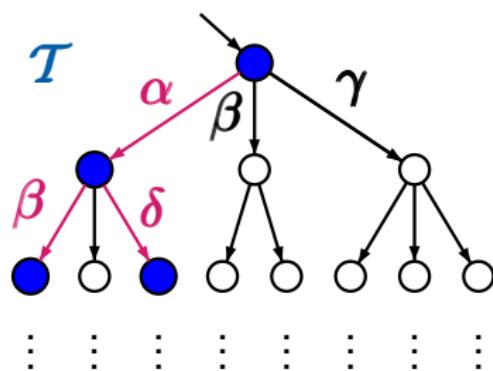


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

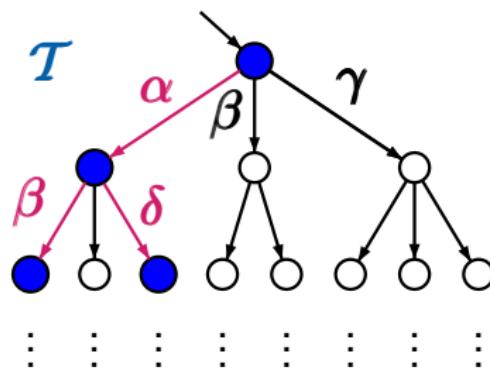
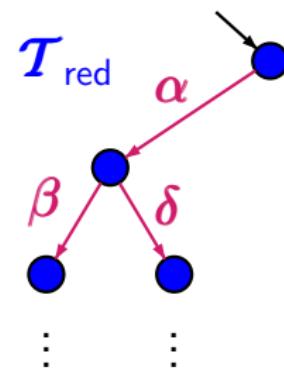


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$



The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent
- \mathcal{T}_{red} is smaller than \mathcal{T}

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent
- \mathcal{T}_{red} is smaller than \mathcal{T}
- efficient construction of \mathcal{T}_{red} is possible

The reduced transition system \mathcal{T}_{red}

LTL3.4-6

is a fragment of \mathcal{T} that results from \mathcal{T} by

- a DFS-based on-the-fly analysis and
- choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$ for each expanded state,
- expanding only the α -successors of s where $\alpha \in \text{ample}(s)$

The reduced transition system \mathcal{T}_{red}

LTL3.4-6

is a fragment of \mathcal{T} that results from \mathcal{T} by

- a DFS-based on-the-fly analysis and
- choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$ for each expanded state,
- expanding only the α -successors of s where $\alpha \in \text{ample}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$

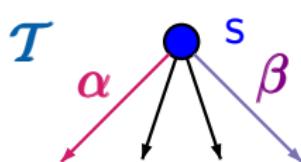
The reduced transition system \mathcal{T}_{red}

LTL3.4-6

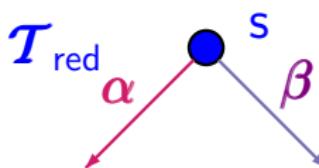
is a fragment of \mathcal{T} that results from \mathcal{T} by
... choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$



$$\text{ample}(s) = \{\alpha, \beta\}$$



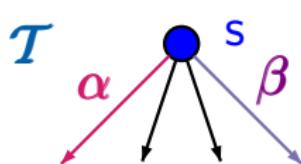
The reduced transition system \mathcal{T}_{red}

LTL3.4-6

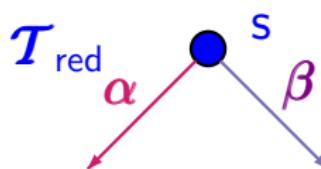
is a fragment of \mathcal{T} that results from \mathcal{T} by
... choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$



$$\text{ample}(s) = \{\alpha, \beta\}$$

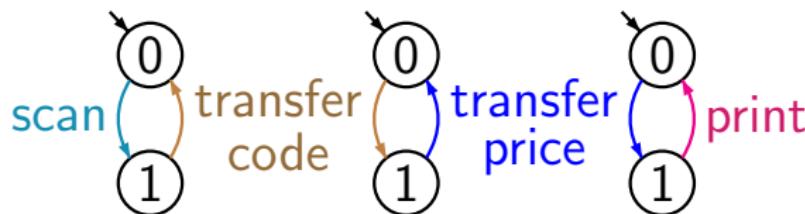


state space S_{red} of \mathcal{T}_{red} : all states that are reachable
from the initial states in \mathcal{T} via \Rightarrow

Booking system

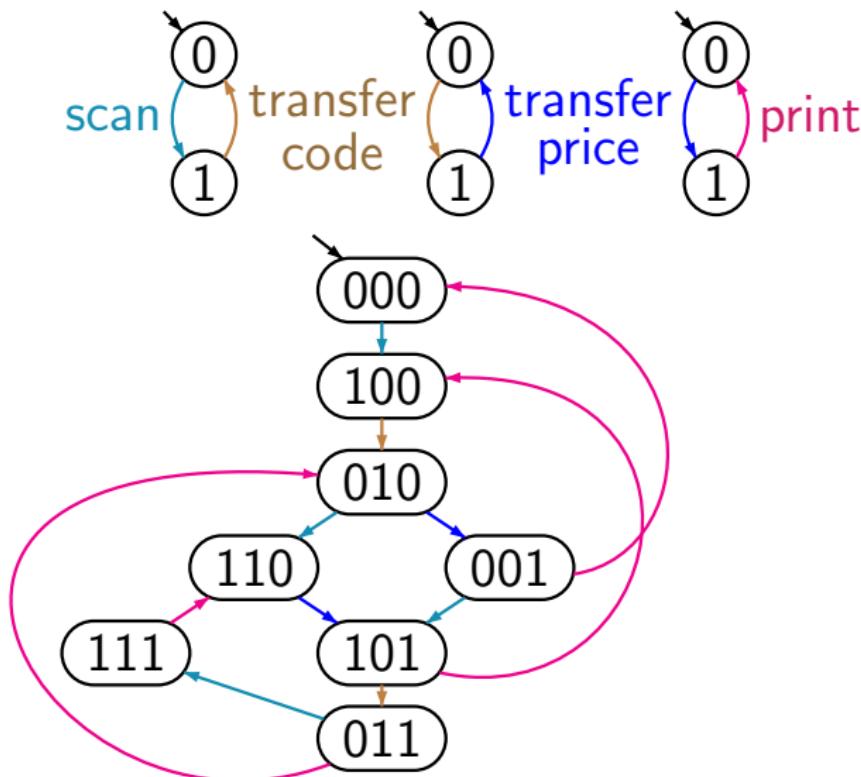
LTL3.4-7

$$\mathcal{T} = \text{SCL} \parallel \text{BP} \parallel \text{Printer}$$



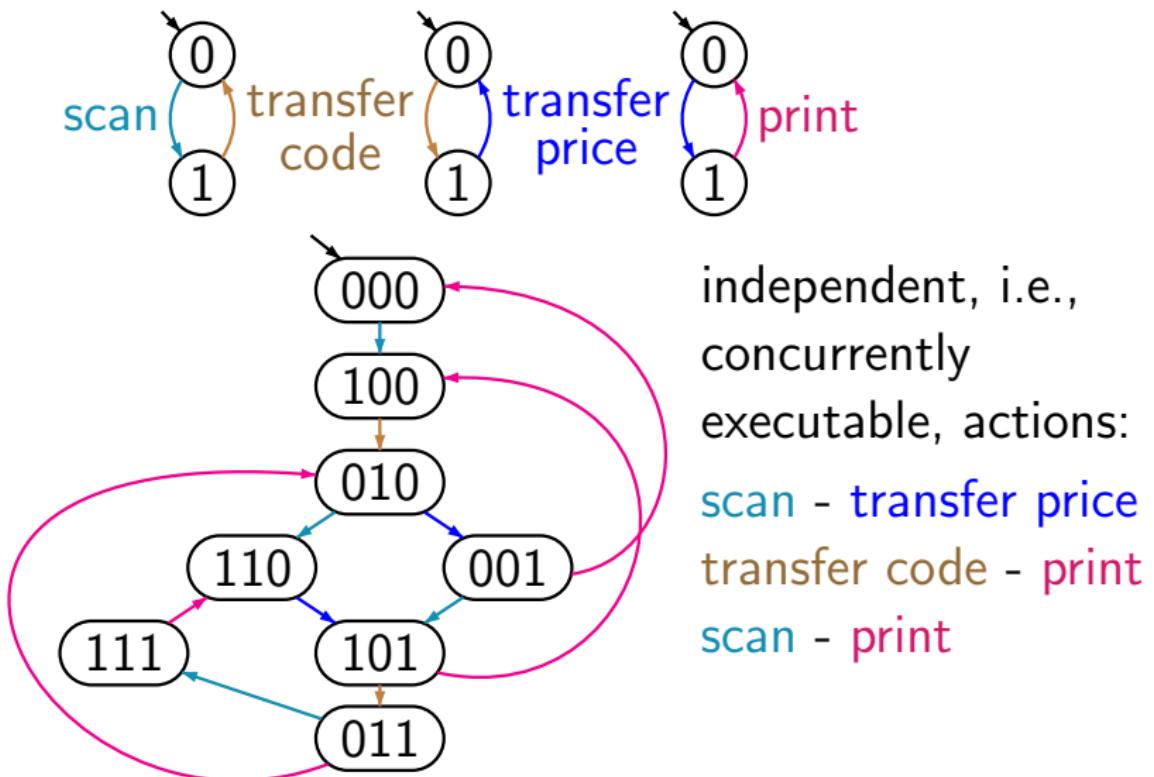
Booking system

LTL3.4-7



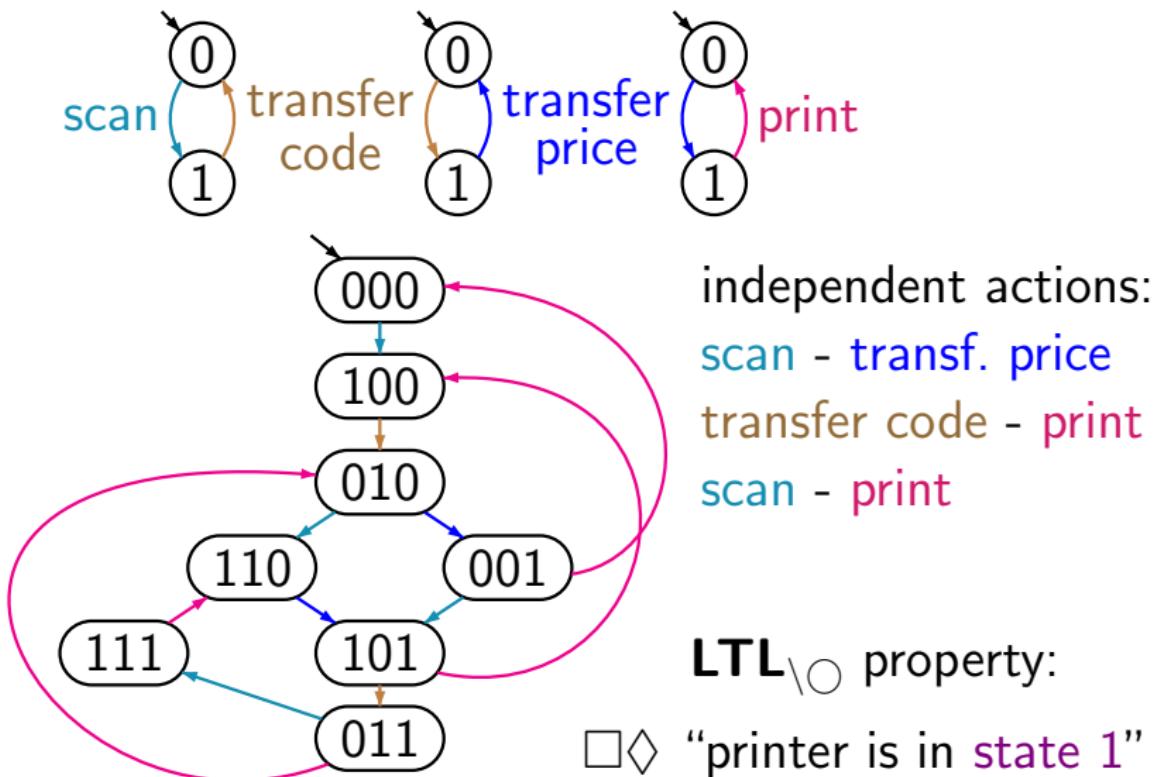
Booking system

LTL3.4-7



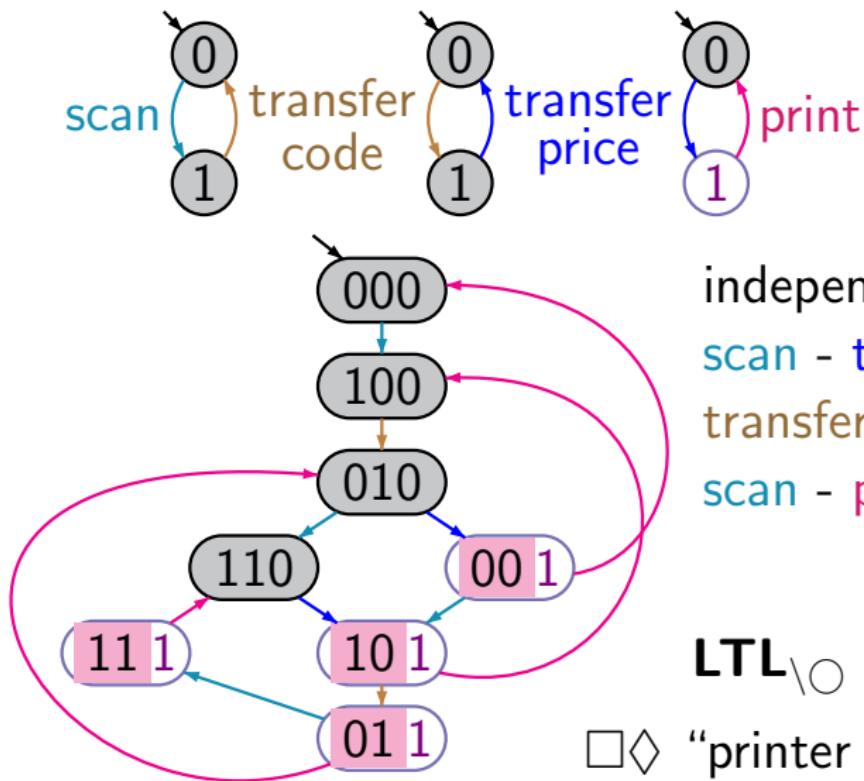
Booking system

LTL3.4-7



Booking system

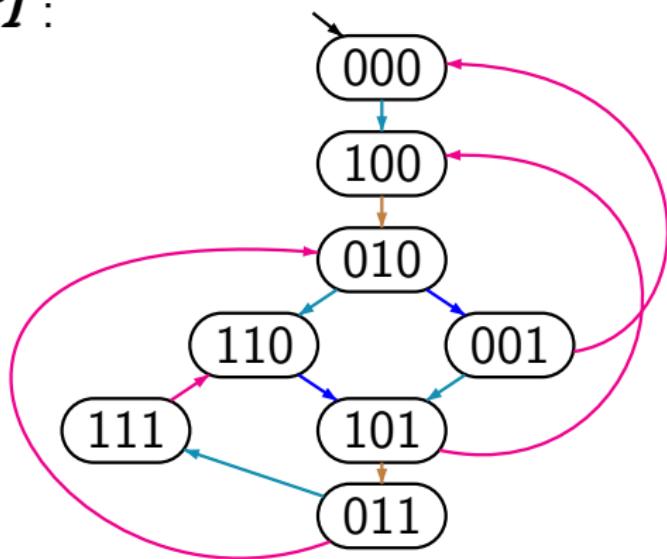
LTL3.4-7



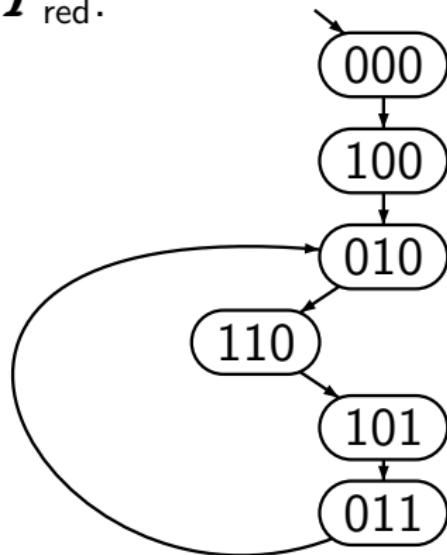
Booking system

LTL3.4-8

T:



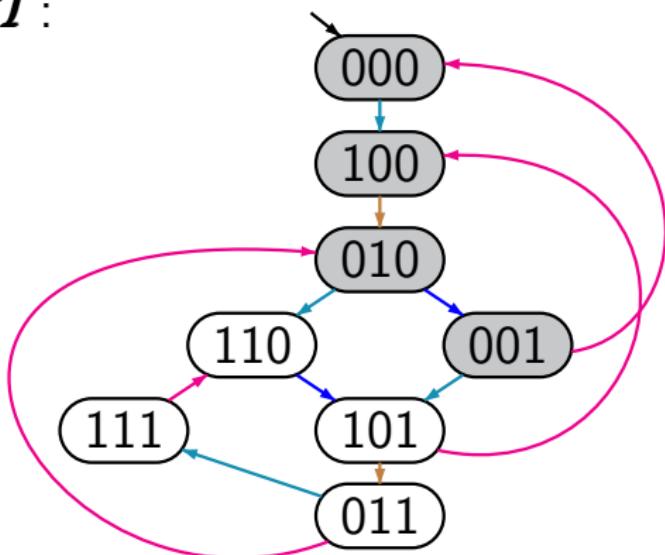
T_{red} :



Booking system

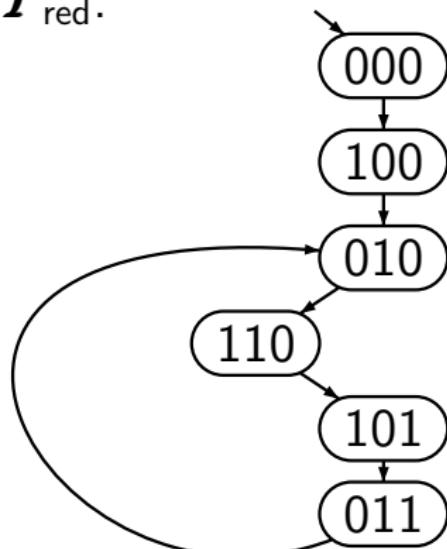
LTL3.4-8

\mathcal{T} :



scan
code
price
print
scan
code
...

\mathcal{T}_{red} :

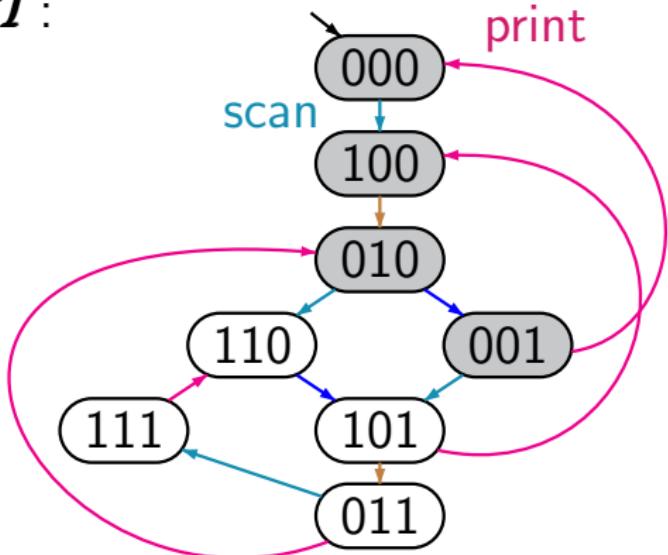


scan
code
scan
price
code
print
...

Booking system

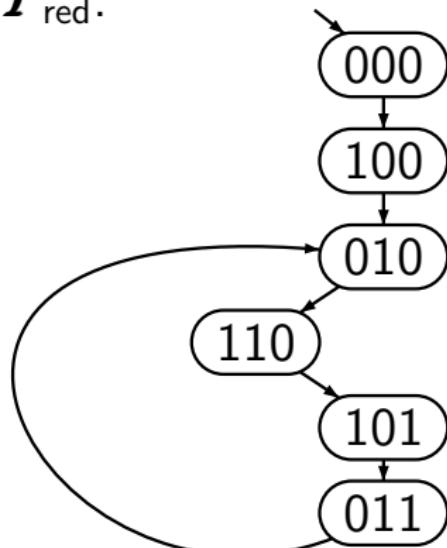
LTL3.4-8

\mathcal{T} :



scan
code
price
print
scan
code
...

\mathcal{T}_{red} :

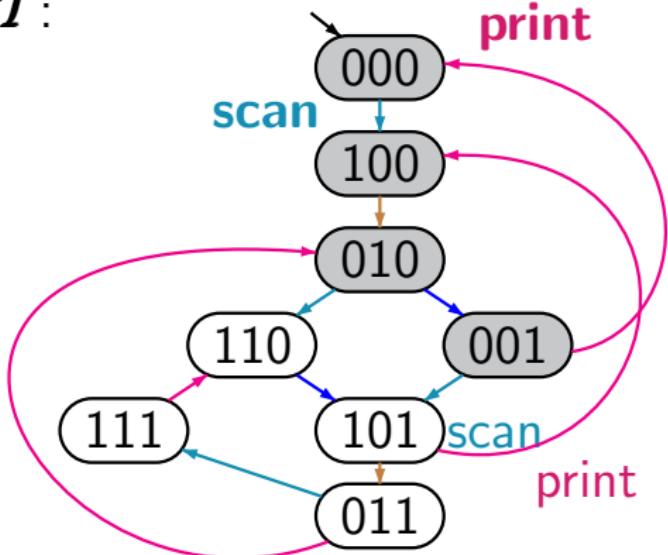


scan
code
scan
price
code
print
...

Booking system

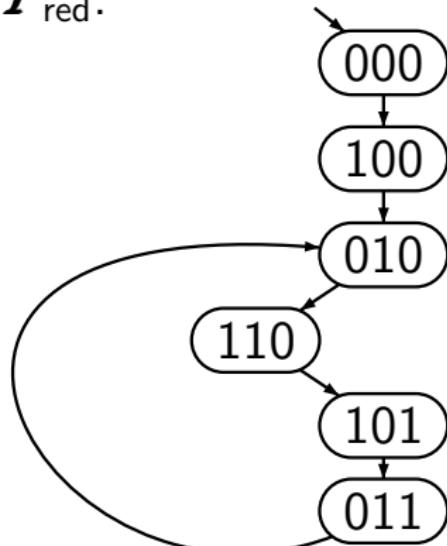
LTL3.4-8

\mathcal{T} :



scan
code
price
print
scan
code
...

\mathcal{T}_{red} :

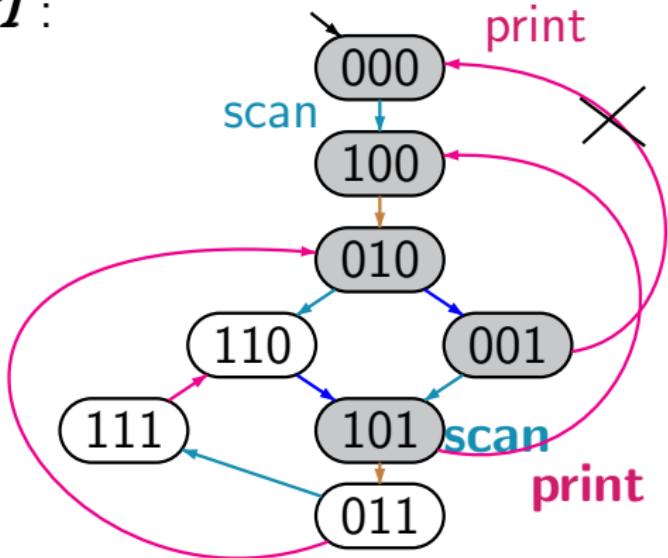


scan
code
scan
price
code
print
...

Booking system

LTL3.4-8

\mathcal{T} :

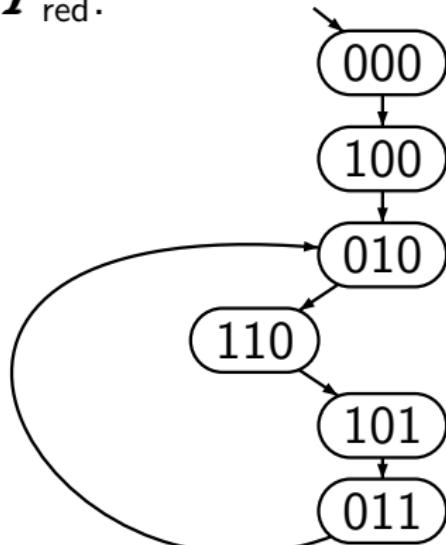


scan
code
price
print
scan
code
...

\rightsquigarrow

scan
code
price
scan
print
code
...

\mathcal{T}_{red} :

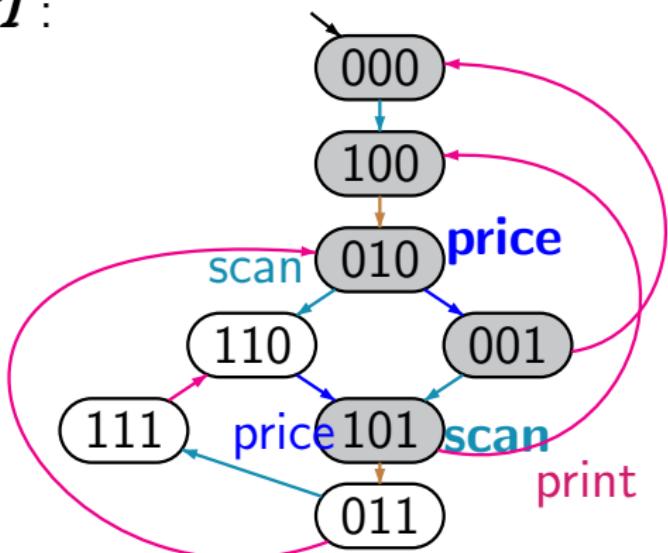


scan
code
scan
price
code
print
...

Booking system

LTL3.4-8

\mathcal{T} :

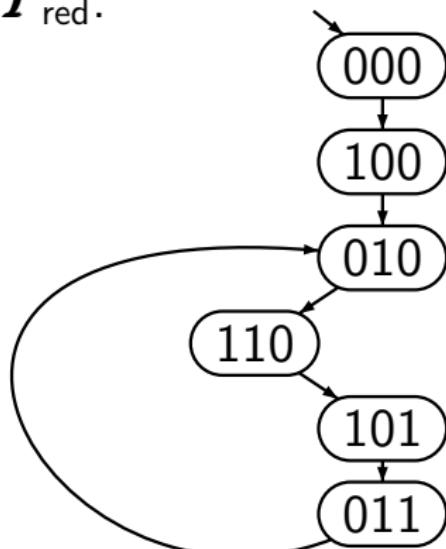


scan
code
price
print
scan
code
...

\rightsquigarrow

scan
code
price
scan
print
code
...

\mathcal{T}_{red} :

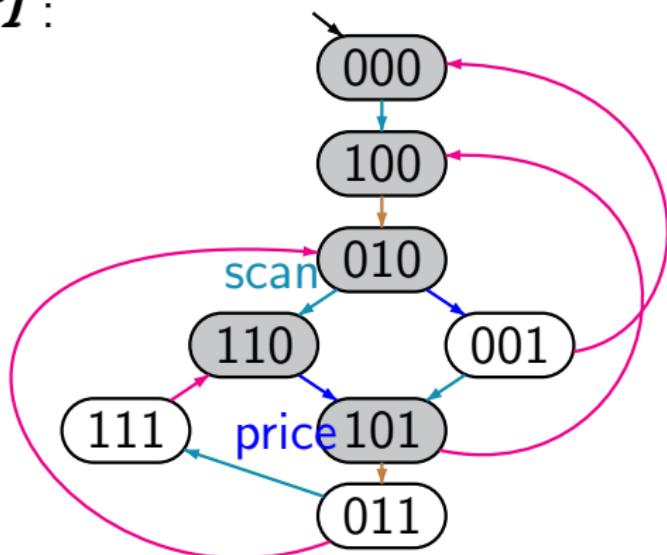


scan
code
scan
price
code
print
...

Booking system

LTL3.4-8

T:

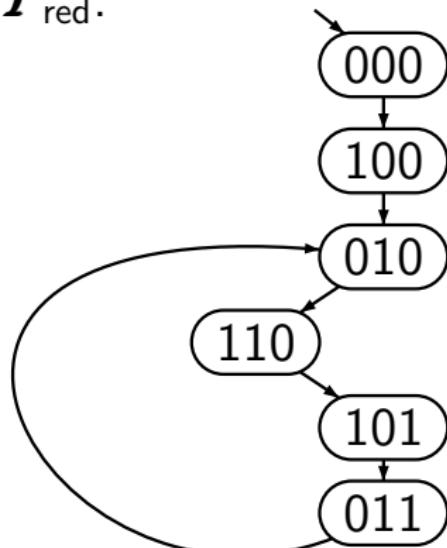


scan
code
price
print
scan
code

→

scan
code
scan
price
print
code

T_{red} :

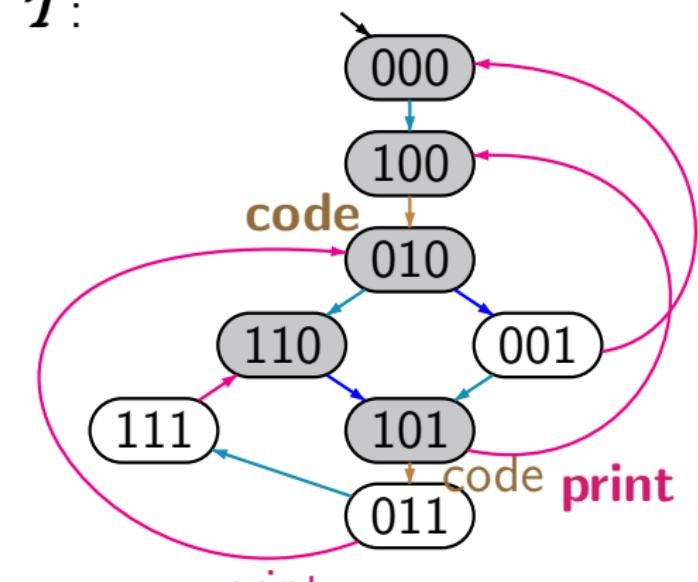


scan
code
scan
price
code
print

Booking system

LTL3.4-8

\mathcal{T} :



scan
code
price
print
scan
code

print

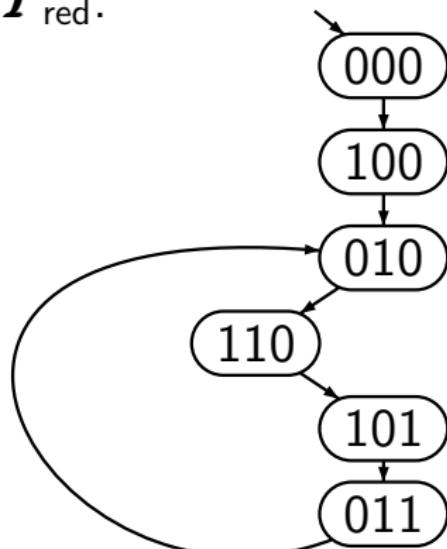
\rightsquigarrow

scan
code
scan
price
print
code

...

...

\mathcal{T}_{red} :



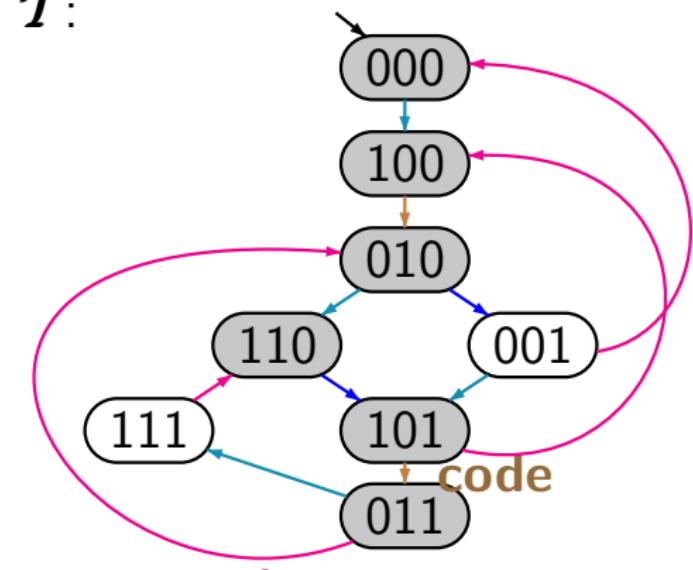
scan
code
scan
price
code
print

...

Booking system

LTL3.4-8

\mathcal{T} :



scan
code
price
print
scan
code

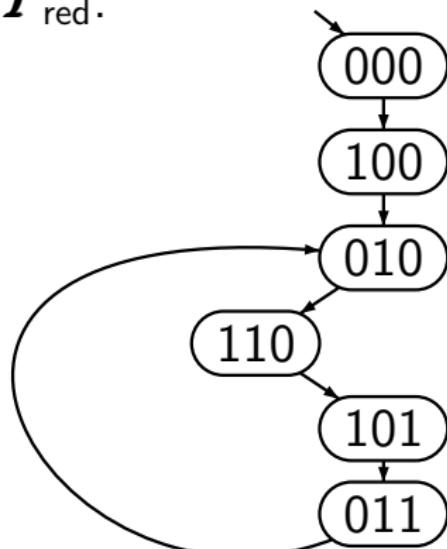
print

\rightsquigarrow

scan
code
scan
price
code
print

...

\mathcal{T}_{red} :



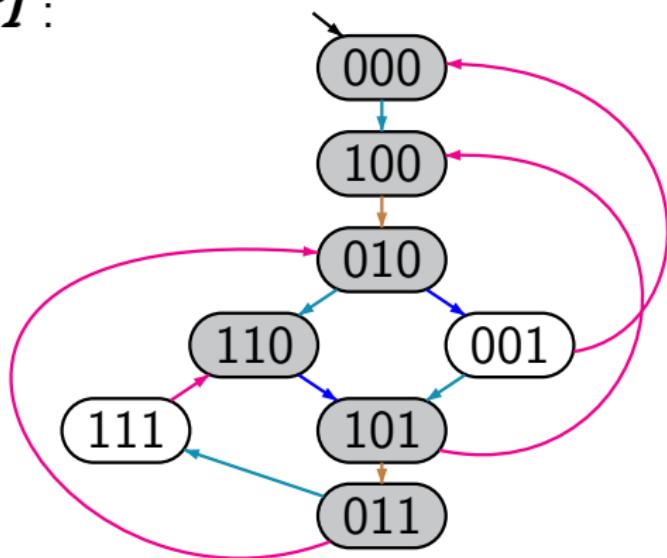
scan
code
scan
price
code
print

...

Booking system

LTL3.4-8

T:



scan
code
price
print
scan
code

→

scan
code
scan
price
code
print

T_{red} :



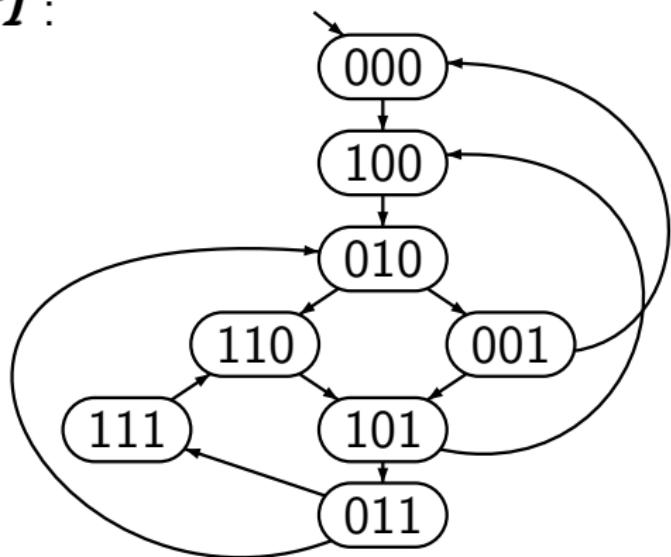
1

scan
code
scan
price
code
print

$AP = \{ \text{"printer in state 1"} \}$

LTL3.4-9

\mathcal{T} :

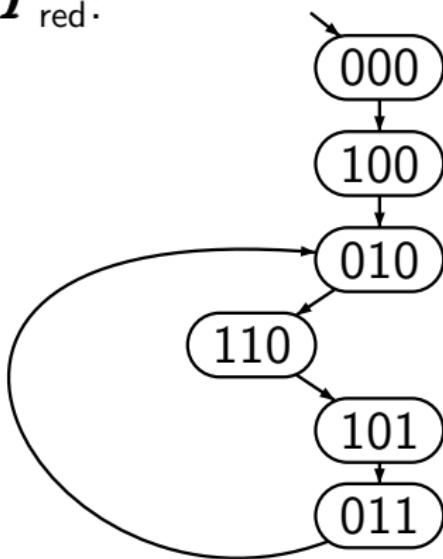


scan
code
price
print
scan
code

\rightsquigarrow

scan
code
price
scan
print
code

\mathcal{T}_{red} :

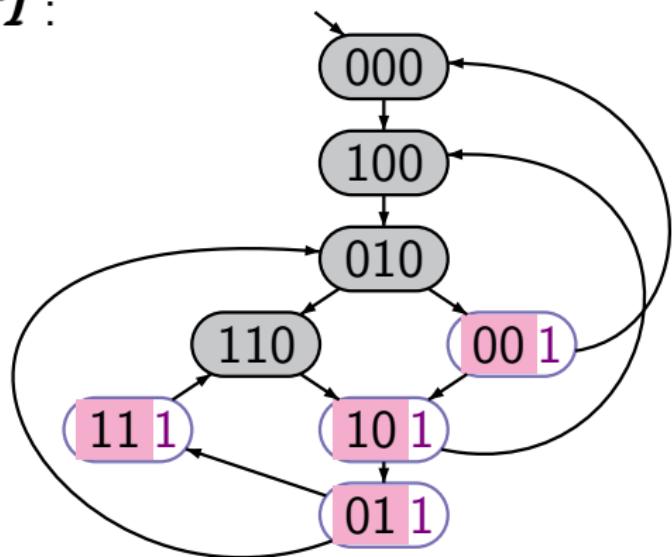


scan
code
scan
price
print
code

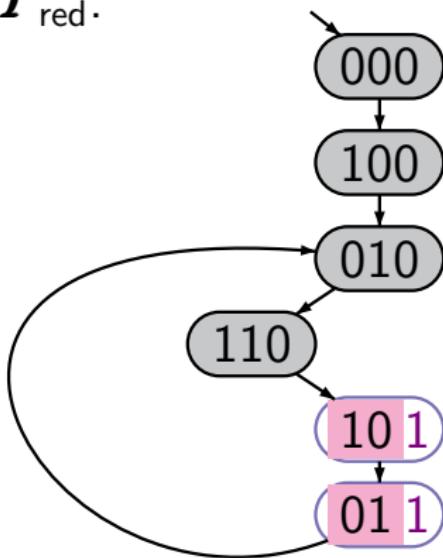
$AP = \{ \text{"printer in state 1"} \}$

LTL3.4-9

\mathcal{T} :



\mathcal{T}_{red} :



scan	\emptyset	scan	\emptyset
code	\emptyset	code	\emptyset
price	\emptyset	price	\emptyset
print	$\{1\}$	print	$\{1\}$
scan	\emptyset	print	$\{1\}$
code	\emptyset	code	\emptyset

\rightsquigarrow

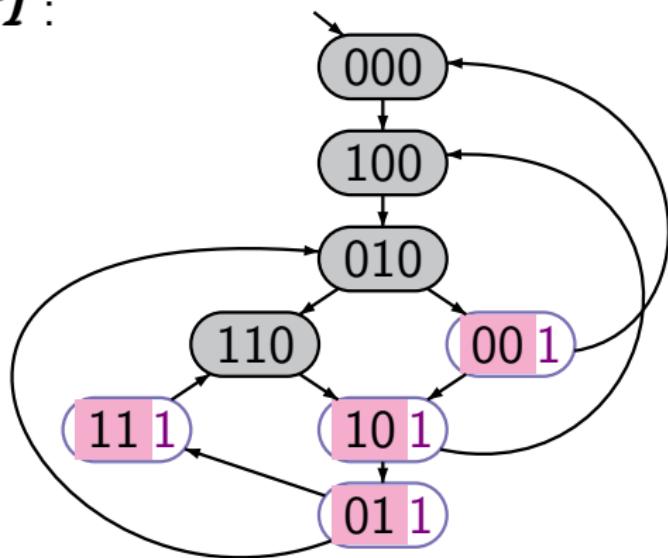
scan	\emptyset	scan	\emptyset
code	\emptyset	code	\emptyset
scan	\emptyset	price	\emptyset
price	\emptyset	print	\emptyset
print	$\{1\}$	code	$\{1\}$

\rightsquigarrow

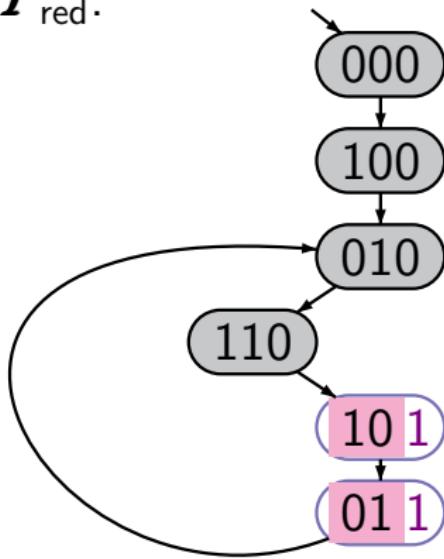
... stuttering equivalent ..

LTL3.4-9

\mathcal{T} :



\mathcal{T}_{red} :



scan	\emptyset	scan	\emptyset
code	\emptyset	code	\emptyset
price	\emptyset	price	\emptyset
print	{1}	print	{1}
scan	\emptyset	scan	\emptyset
code	\emptyset	print	\emptyset

\rightsquigarrow

scan	\emptyset	scan	\emptyset
code	\emptyset	code	\emptyset
scan	\emptyset	scan	\emptyset
price	\emptyset	price	\emptyset
print	{1}	print	\emptyset
code	\emptyset	code	\emptyset

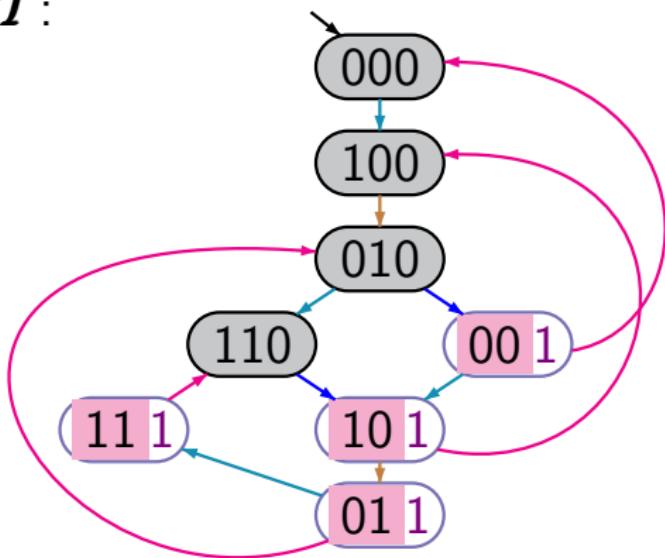
\rightsquigarrow

58/300

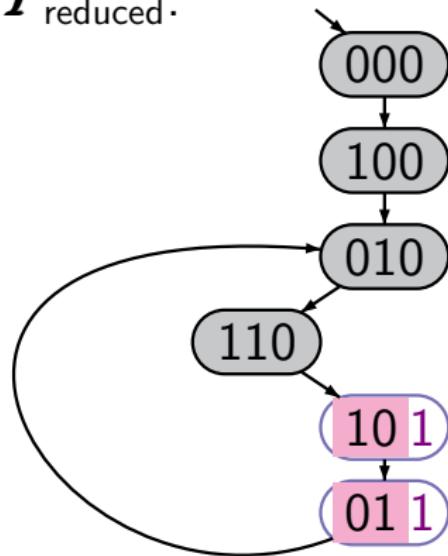
Booking system

LTL3.4-10

\mathcal{T} :



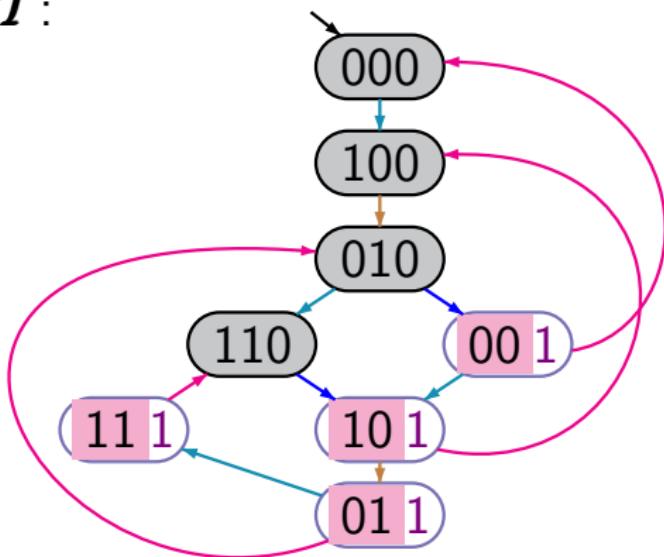
\mathcal{T} reduced:



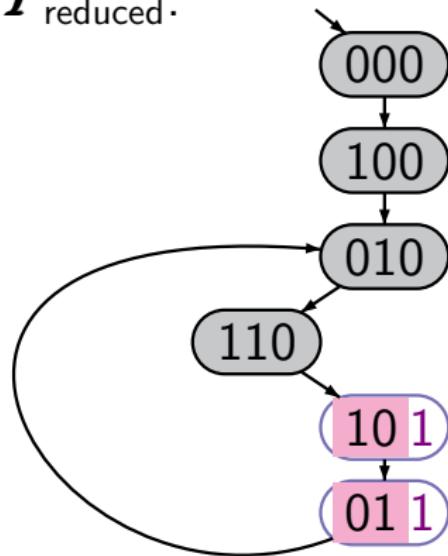
Booking system

LTL3.4-10

\mathcal{T} :



\mathcal{T} reduced:

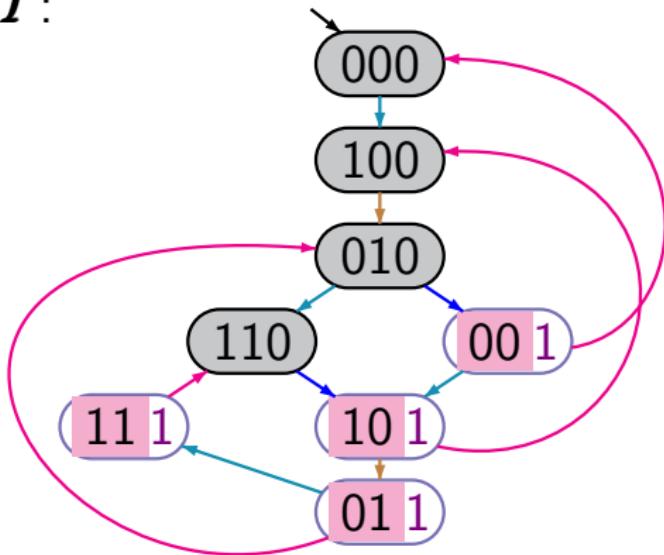


$$\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$$

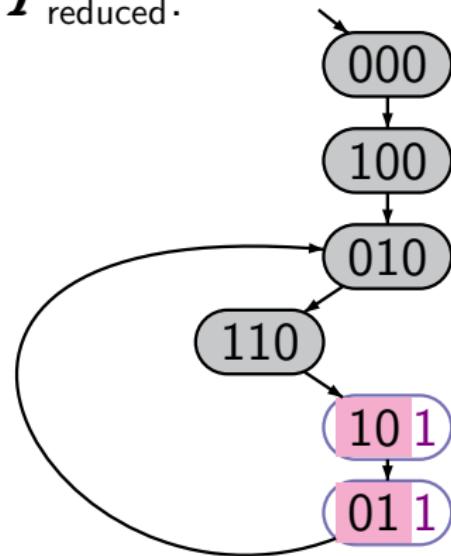
Booking system

LTL3.4-10

\mathcal{T} :



$\mathcal{T}_{\text{reduced}}$:



$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$ hence: $\mathcal{T}_{\text{red}} \models \varphi$ implies $\mathcal{T} \models \varphi$ where

$\varphi = \square \diamond \text{“printer is in control state 1”}$

Action-determinism

LTL3.4-11A

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \mathbf{Act}, \rightarrow, \mathbf{S}_0, \mathbf{AP}, \mathbf{L})$ be a transition system.

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a transition system.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a transition system.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

\mathcal{T} is called **action-deterministic** iff for all states \mathbf{s} and all actions $\alpha \in \text{Act}(\mathbf{s})$:

$$|\{ \mathbf{t} \in \mathbf{S} : \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}| \leq 1$$

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a TS.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

\mathcal{T} is called **action-deterministic** iff for all states \mathbf{s} and all actions $\alpha \in \text{Act}(\mathbf{s})$:

$$|\{ \mathbf{t} \in \mathbf{S} : \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}| \leq 1$$

notation: if $\alpha \in \text{Act}(\mathbf{s})$ then

$$\alpha(\mathbf{s}) = \text{unique state } \mathbf{t} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t}$$

Independence of actions

LTL3.4-11

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

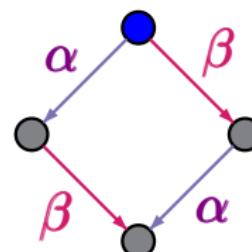
α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:



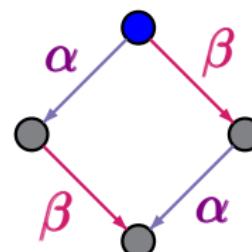
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$



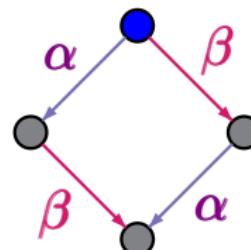
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$
2. $\alpha \in Act(\beta(s))$



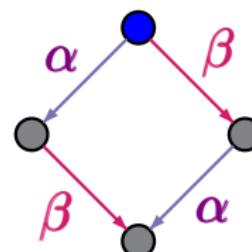
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$
2. $\alpha \in Act(\beta(s))$
3. $\beta(\alpha(s)) = \alpha(\beta(s))$



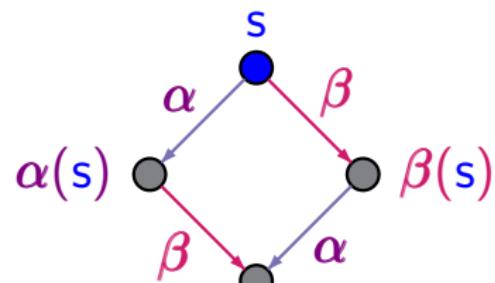
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

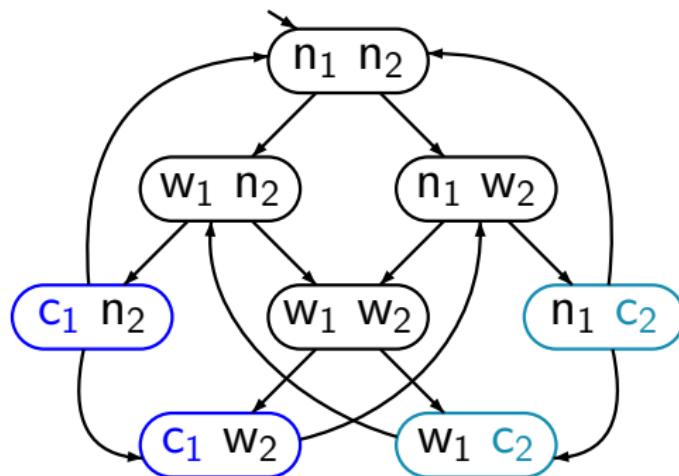
- $\beta \in Act(\alpha(s))$
- $\alpha \in Act(\beta(s))$
- $\beta(\alpha(s)) = \alpha(\beta(s))$



$$\beta(\alpha(s)) = \alpha(\beta(s))$$

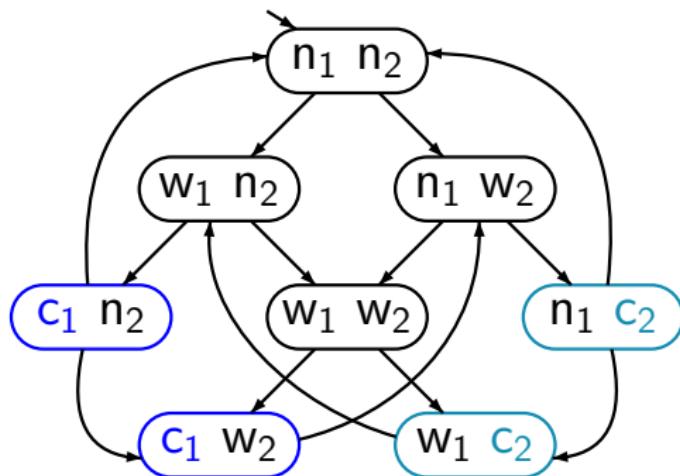
Mutual exclusion with semaphore

LTL3.4-12

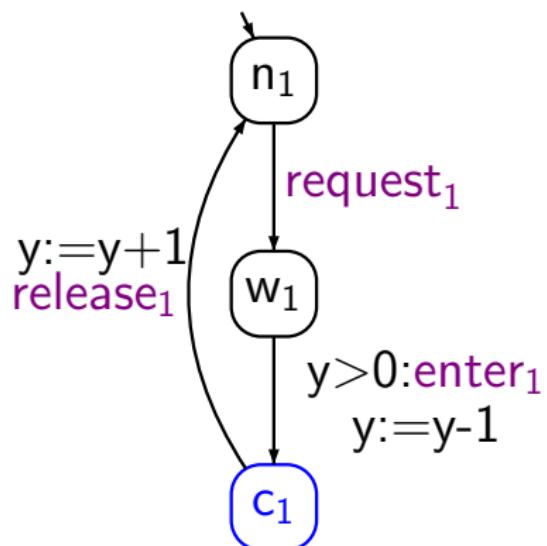


Mutual exclusion with semaphore

LTL3.4-12

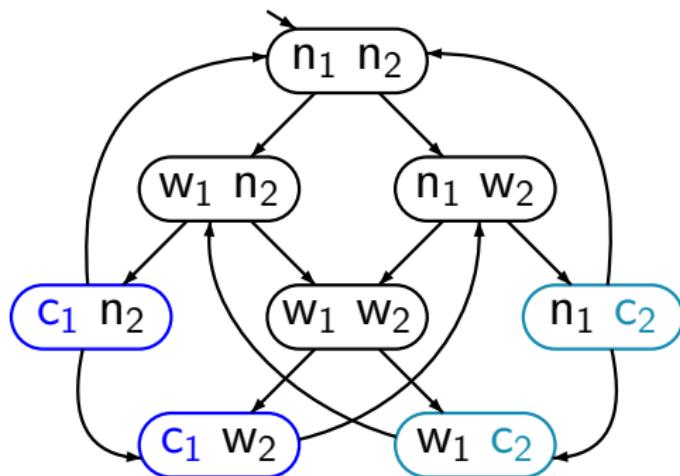


program graph P_1

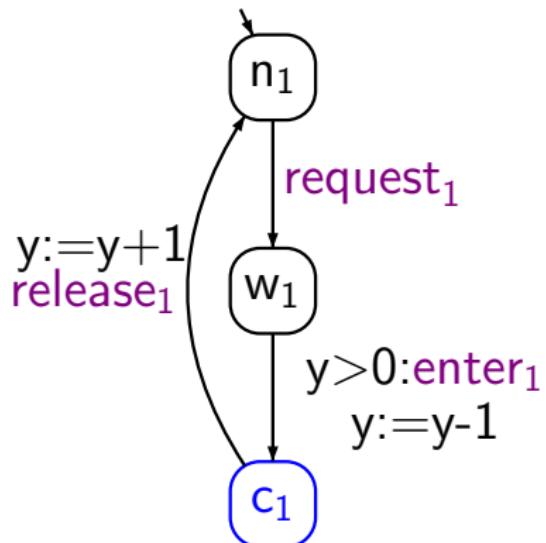


Mutual exclusion with semaphore

LTL3.4-12



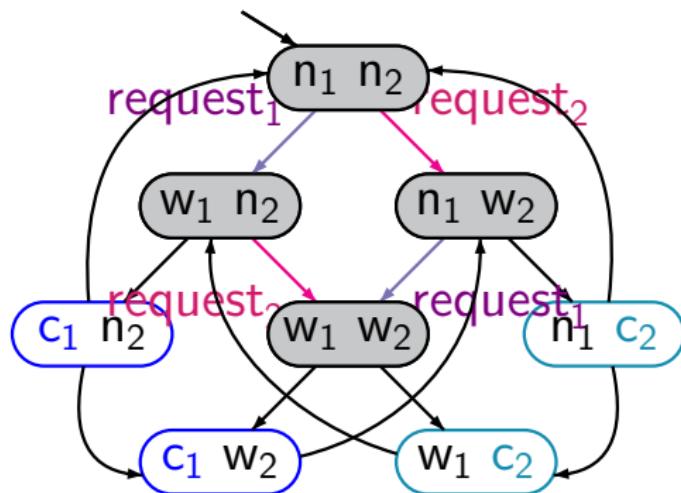
program graph P_1



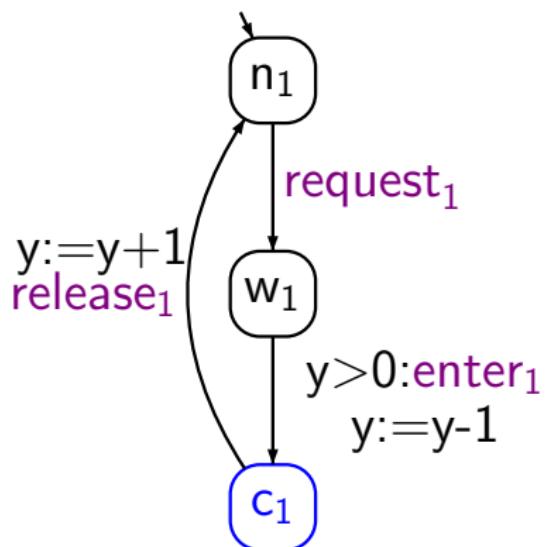
independent actions:
 $request_1, request_2$

Mutual exclusion with semaphore

LTL3.4-12



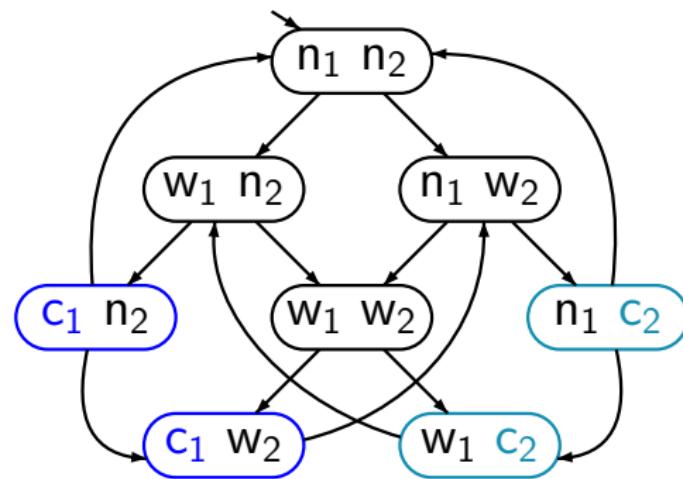
program graph P_1



independent actions:
 $request_1$, $request_2$

Example: independent actions for MUTEX

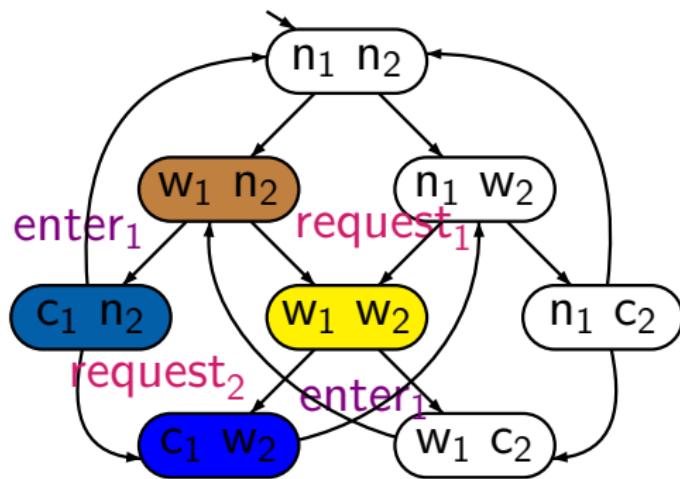
LTL3.4-13



independent actions:
 $\text{request}_1, \text{request}_2$

Example: independent actions for MUTEX

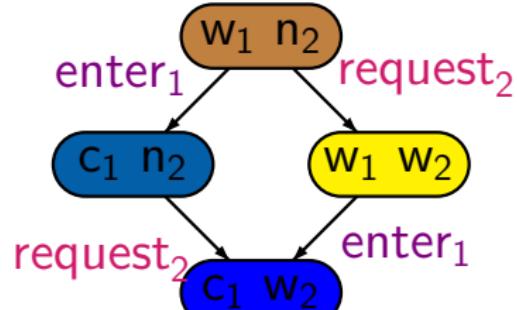
LTL3.4-13



independent actions:

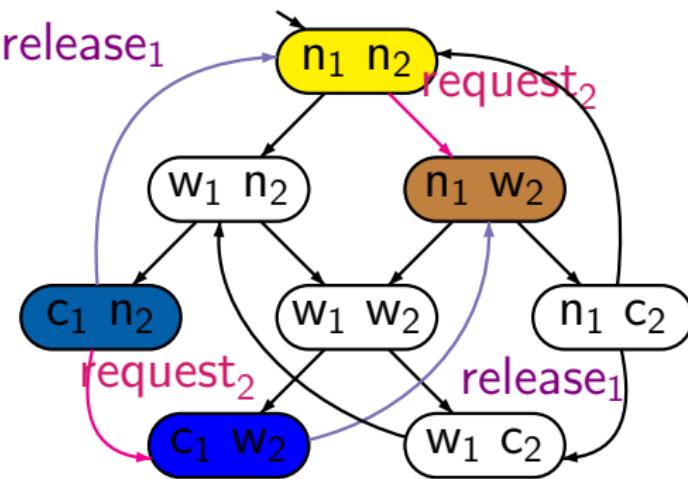
$request_1, request_2$

$enter_1, request_2$



Example: independent actions for MUTEX

LTL3.4-13

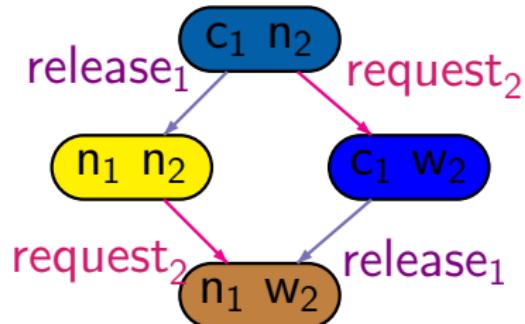


independent actions:

$request_1, request_2$

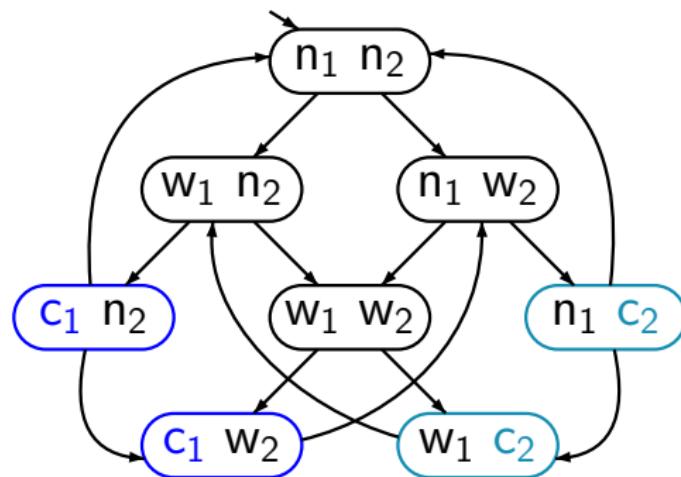
$enter_1, request_2$

$release_1, request_2$



Example: independent actions for MUTEX

LTL3.4-13



independent actions:

$\text{request}_1, \text{request}_2$

$\text{enter}_1, \text{request}_2$

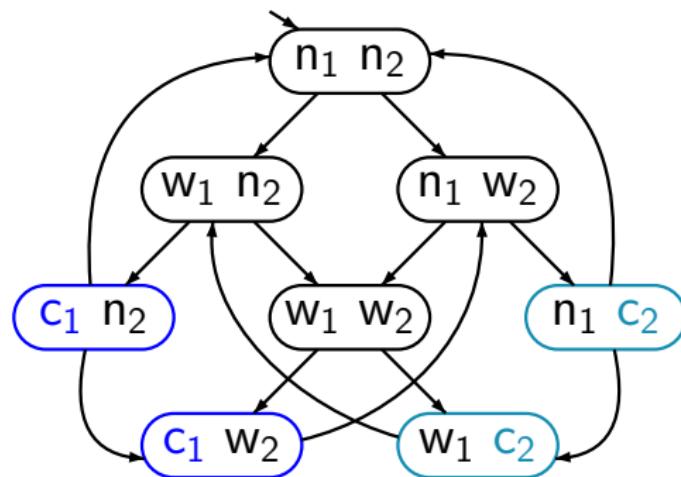
$\text{release}_1, \text{request}_2$

$\text{request}_1, \text{enter}_2$

$\text{request}_1, \text{release}_2$

Example: independent actions for MUTEX

LTL3.4-13



independent actions:

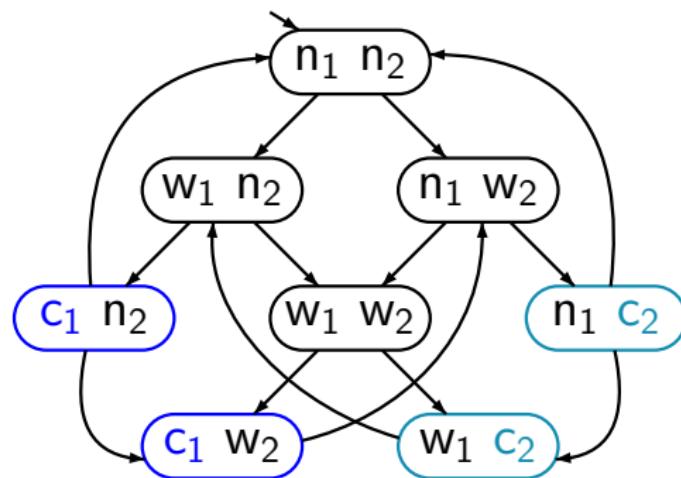
request₁, request₂
enter₁, request₂
release₁, request₂
request₁, enter₂
request₁, release₂

request₁ is independent
from the action-set

{request₂, enter₂, release₂}

Example: dependent actions for MUTEX

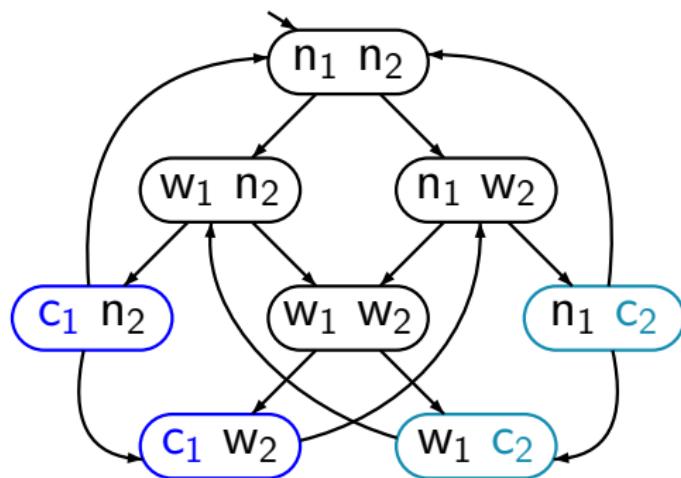
LTL3.4-14



dependent actions:

Example: dependent actions for MUTEX

LTL3.4-14

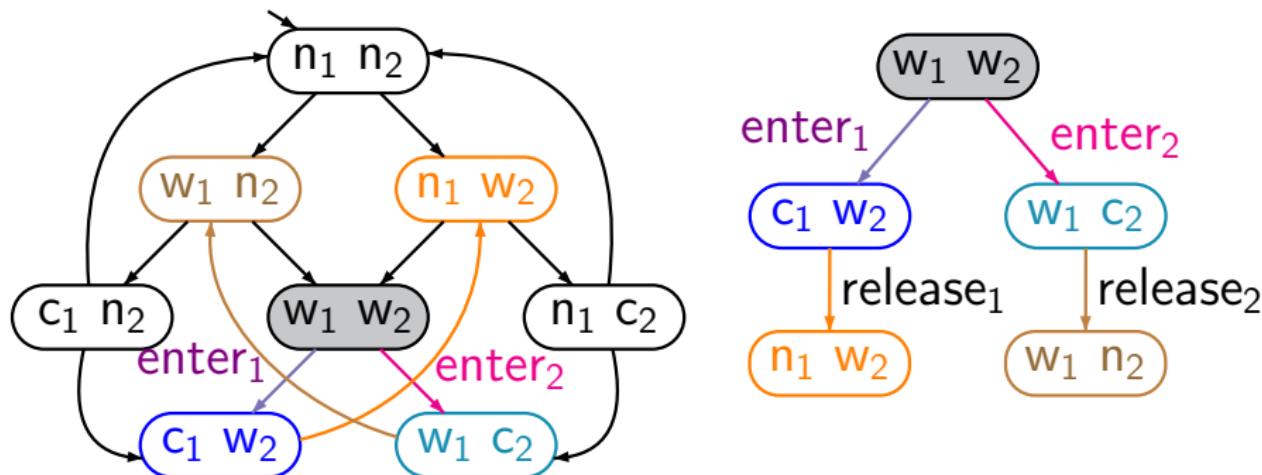


dependent actions:

enter_1 , enter_2

Example: dependent actions for MUTEX

LTL3.4-14



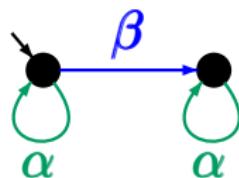
dependent actions:

$\text{enter}_1, \text{enter}_2$

access both to the semaphore

Correct or wrong?

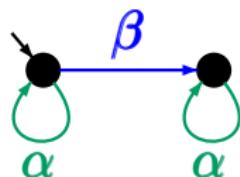
LTL3.4-15



α and β are independent ?

Correct or wrong?

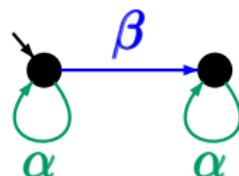
LTL3.4-15



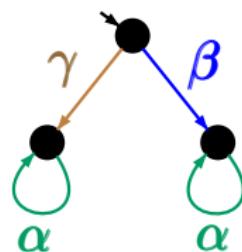
α and β are independent ✓

Correct or wrong?

LTL3.4-15



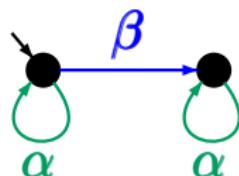
α and β are independent ✓



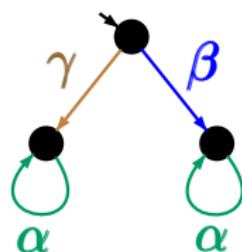
α and β are independent ?

Correct or wrong?

LTL3.4-15



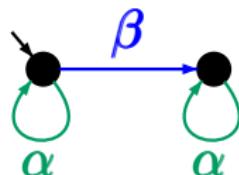
α and β are independent ✓



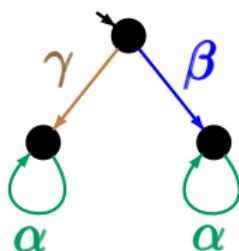
α and β are independent ✓

Correct or wrong?

LTL3.4-15



α and β are independent ✓



α and β are independent ✓

note: there is no state in which α and β are enabled

Independent or not?

LTL3.4-16

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

Independent or not?

LTL3.4-16

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

Are actions α, δ independent for $\mathcal{T}_{P_1 \parallel P_2}$?

Independent or not?

LTL3.4-16

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

Are actions α, δ independent for $\mathcal{T}_{P_1 \parallel P_2}$?

no

Independent or not?

LTL3.4-16

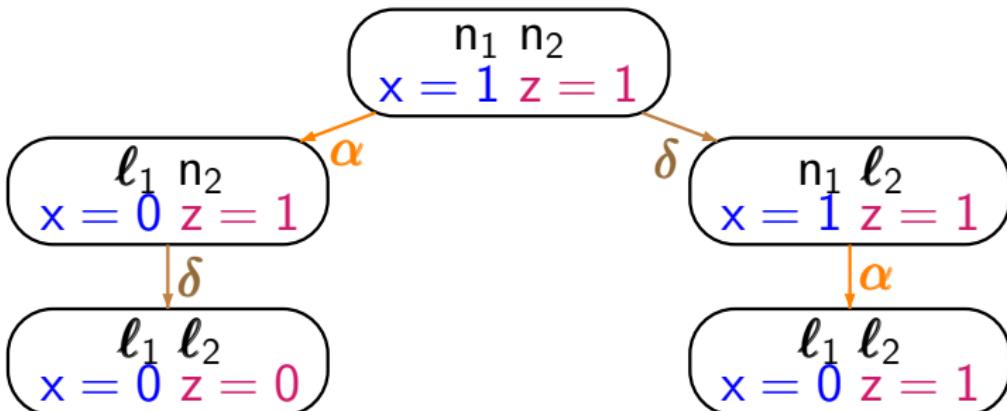
$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, δ are dependent for $\mathcal{T}_{P_1 \parallel P_2}$



Independent or not?

LTL3.4-17

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, δ are dependent

β, δ are independent ?

Independent or not?

LTL3.4-17

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, δ are dependent

β, δ are independent ?

yes

Independent or not?

LTL3.4-17

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, δ are dependent

β, δ are independent,

as they access different variables

Independent or not?

LTL3.4-17

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, γ are independent ?

Independent or not?

LTL3.4-17

$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, γ are independent ?

no

Independent or not?

LTL3.4-17

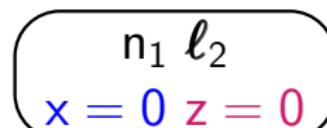
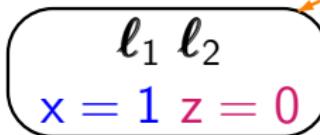
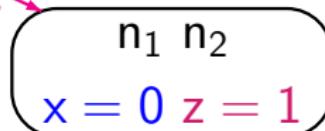
$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

$x := z$
action δ

α, γ are dependent



Independent or not?

LTL3.4-17

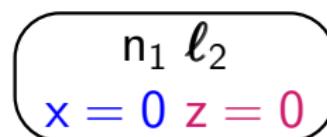
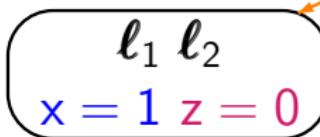
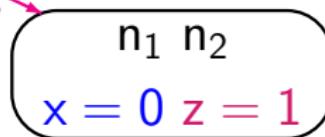
$y := \neg y$
action β

$x := \neg x$
action α

if $\neg x$ then
 $z := \neg z$
action γ

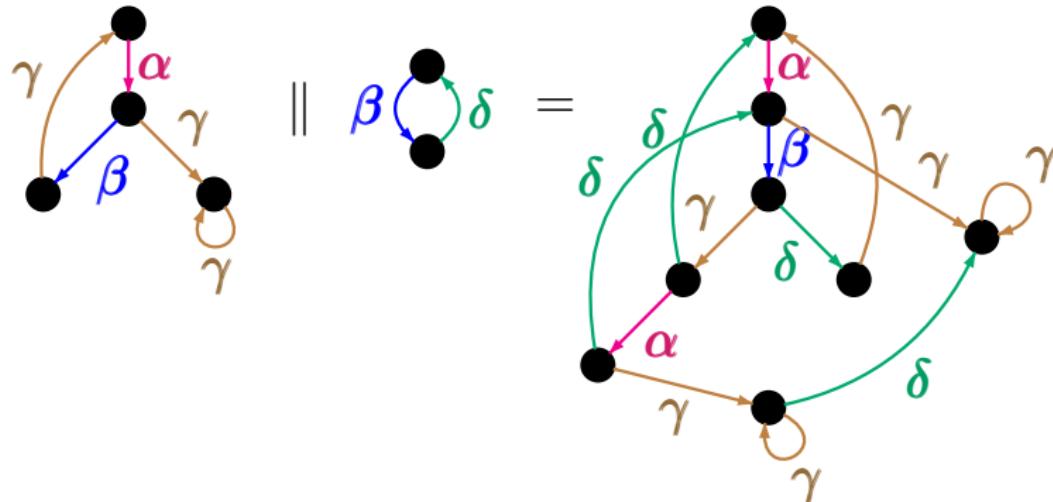
$x := z$
action δ

α, γ are dependent



Independent or not?

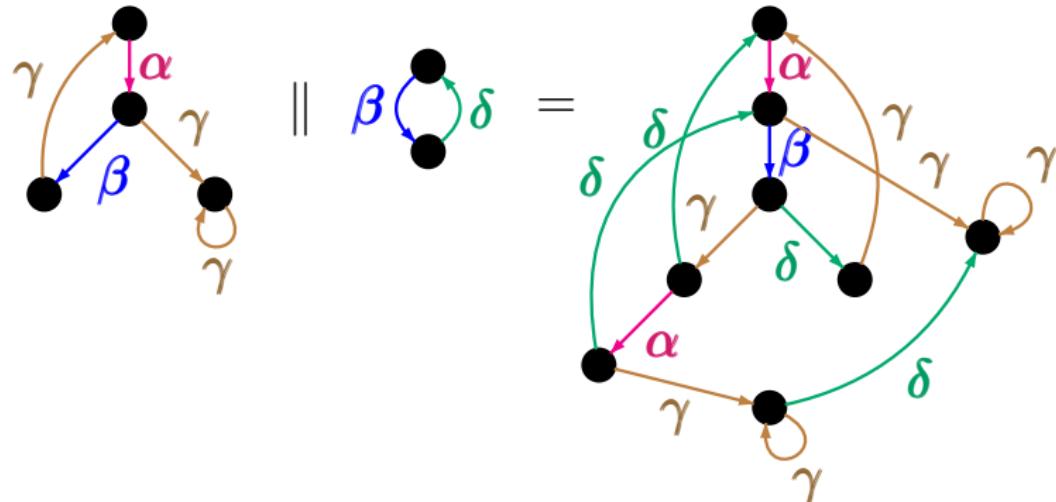
LTL3.4-18



TS that results by synchronization over the common action β

Independent or not?

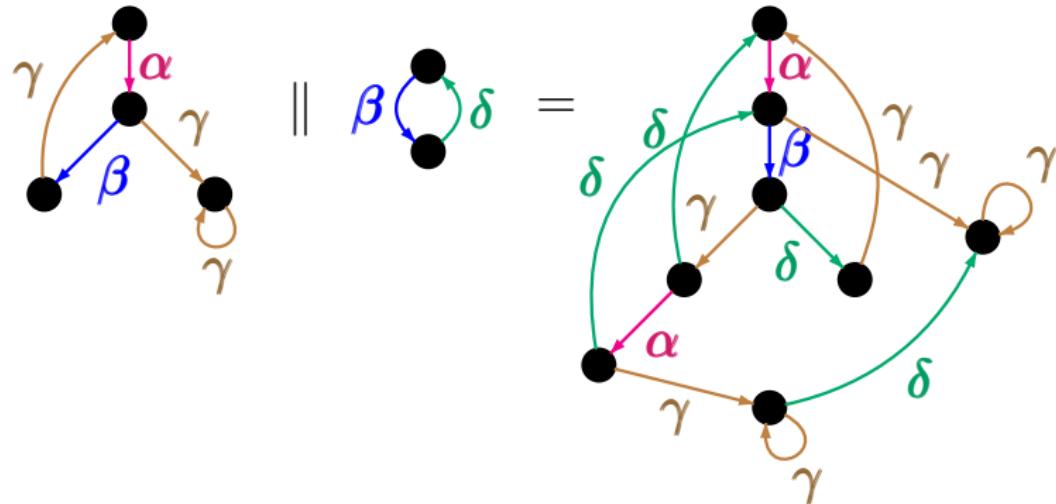
LTL3.4-18



α, δ are independent ?

Independent or not?

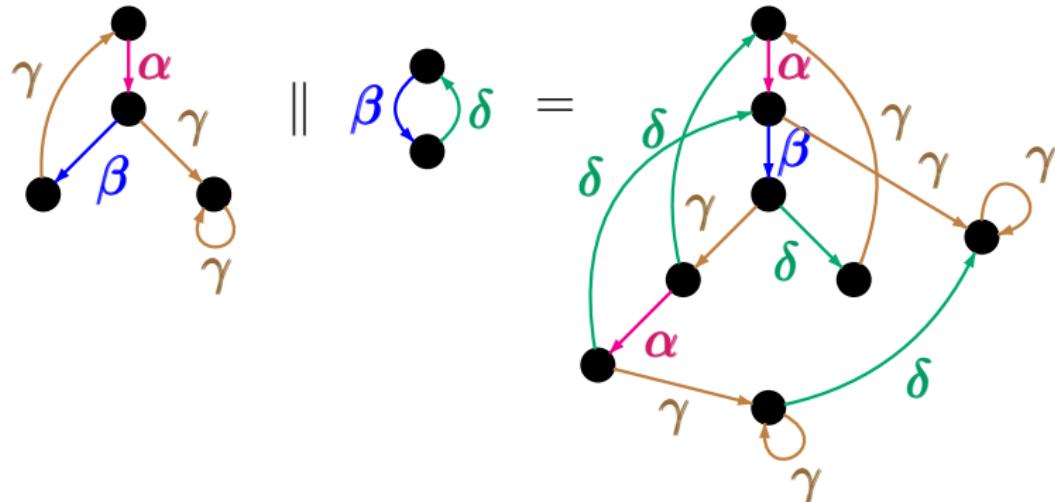
LTL3.4-18



α, δ independent ✓

Independent or not?

LTL3.4-18

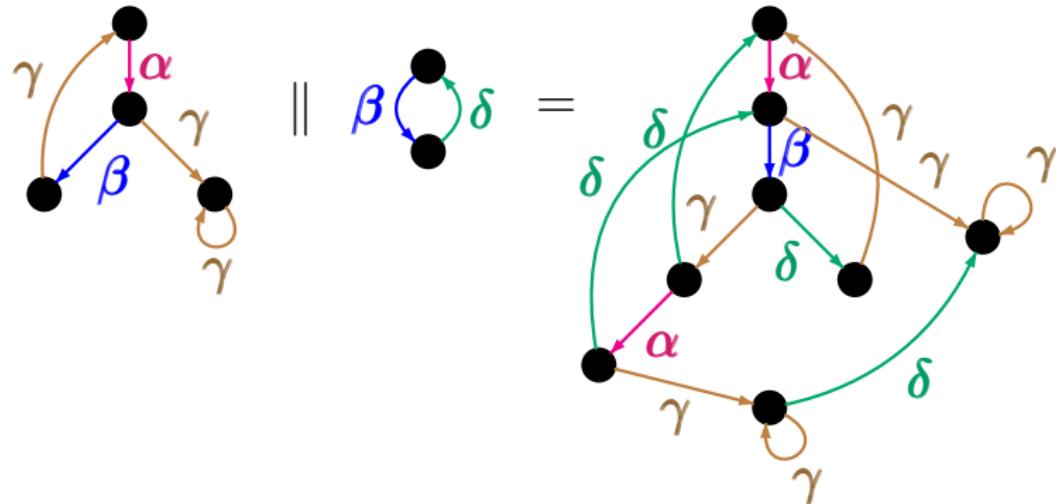


α, δ independent ✓

γ, δ are independent ?

Independent or not?

LTL3.4-18

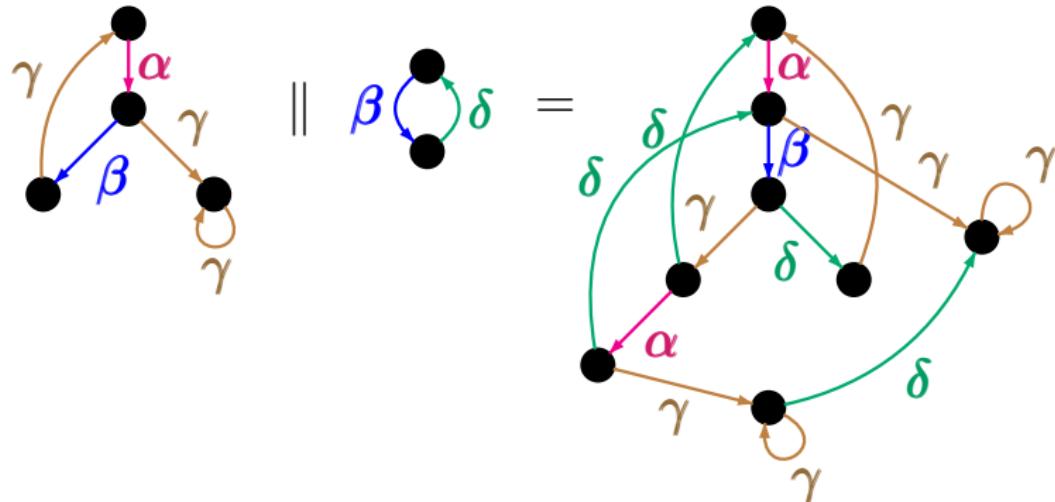


α, δ independent ✓

γ, δ independent ✓

Independent or not?

LTL3.4-18



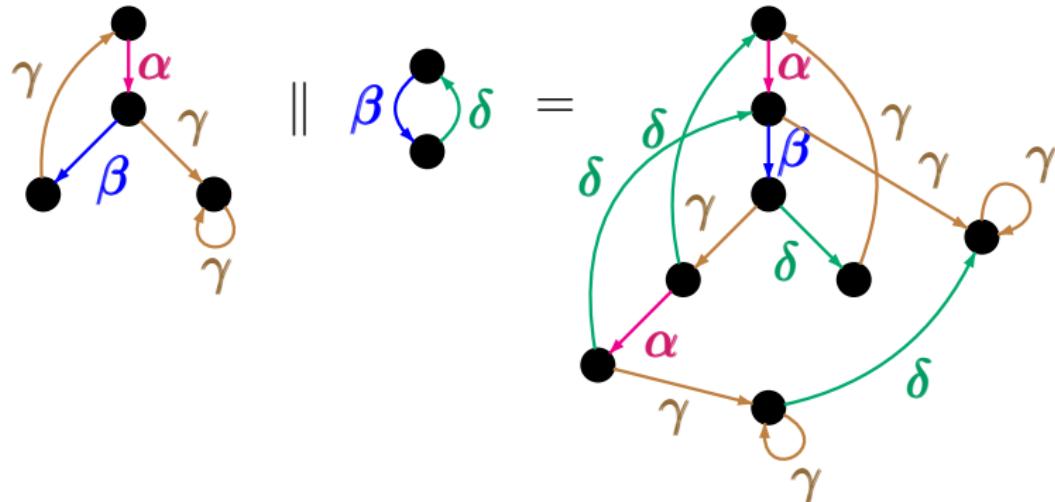
α, δ independent ✓

γ, δ independent ✓

β, γ are independent ?

Independent or not?

LTL3.4-18



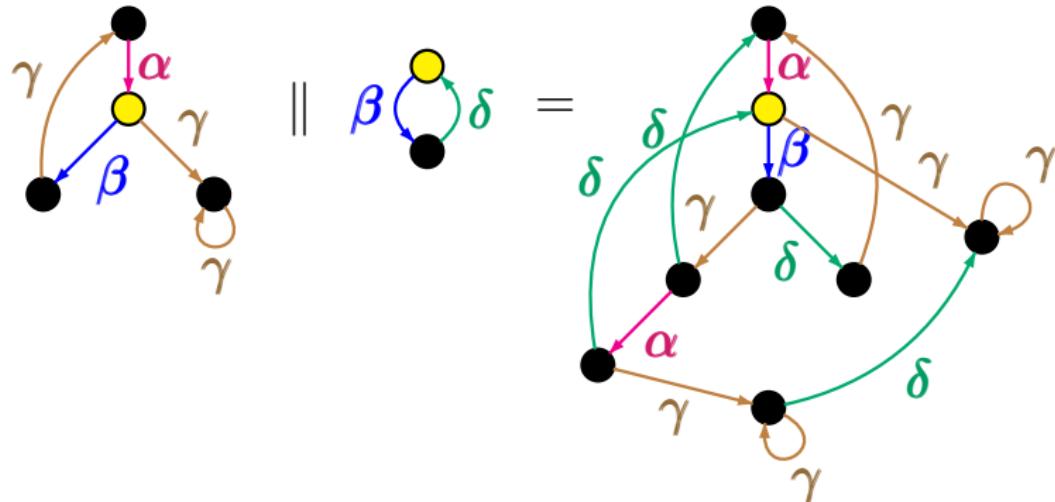
α, δ independent ✓

γ, δ independent ✓

β, γ dependent

Independent or not?

LTL3.4-18



α, δ independent ✓

γ, δ independent ✓

β, γ dependent

Permutation of independent actions

LTL3.4-19

Permutation of independent actions

LTL3.4-19

Let α is independent from β_1, \dots, β_n .

Permutation of independent actions

LTL3.4-19

Let α is independent from β_1, \dots, β_n . I.e., for $1 \leq i \leq n$, the actions α and β_i are independent.

Permutation of independent actions

LTL3.4-19

Let α is independent from β_1, \dots, β_n . I.e., for $1 \leq i \leq n$, the actions α and β_i are independent.

Then the action sequence

$$\beta_1 \beta_2 \dots \beta_n \alpha$$

can be replaced with the action sequence

$$\alpha \beta_1 \beta_2 \dots \beta_n$$

Permutation of independent actions

LTL3.4-19

Let $\alpha \in Act(s_0)$ and

$$s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$$

be a path fragment such that α is independent from β_1, \dots, β_n .

Permutation of independent actions

LTL3.4-19

Let $\alpha \in Act(s_0)$ and

$$s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$$

be a path fragment such that α is independent from β_1, \dots, β_n .

Then there exists a path fragment

$$s_0 \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} t_n$$

Permutation of independent actions

LTL3.4-19

Let $\alpha \in Act(s_0)$ and

$$s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$$

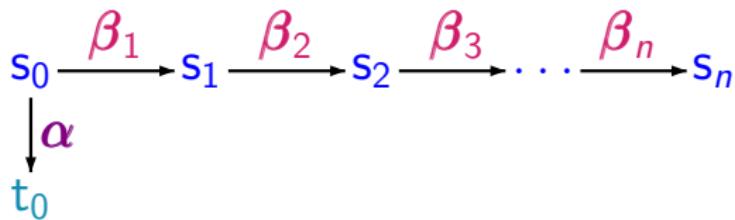
be a path fragment such that α is independent from β_1, \dots, β_n .

Then there exists a path fragment

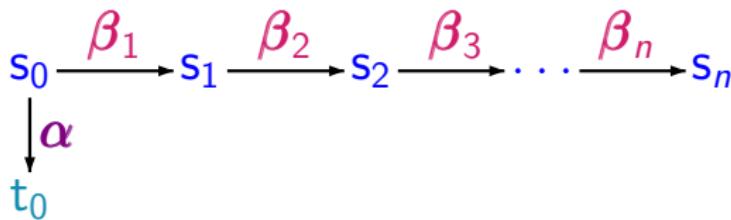
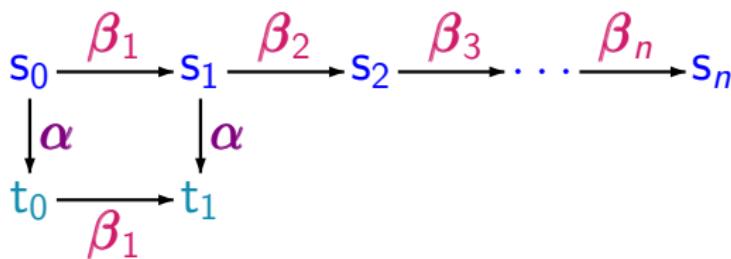
$$s_0 \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} t_n$$

with $t_n = t$

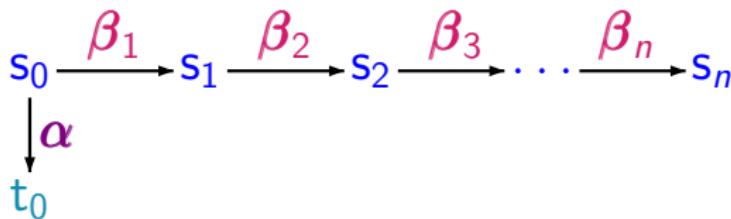
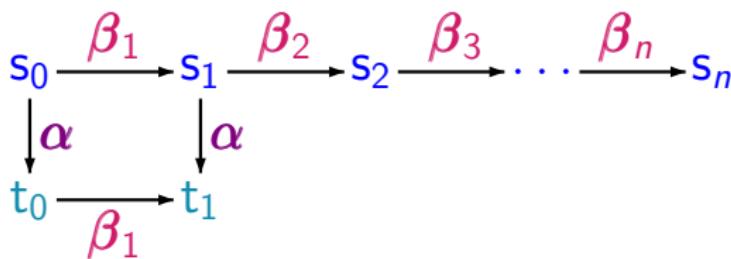
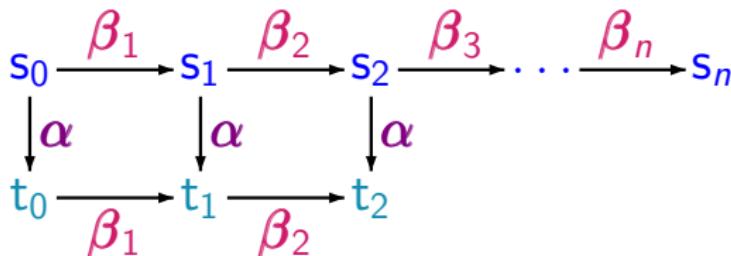
α independent from β_1, \dots, β_n



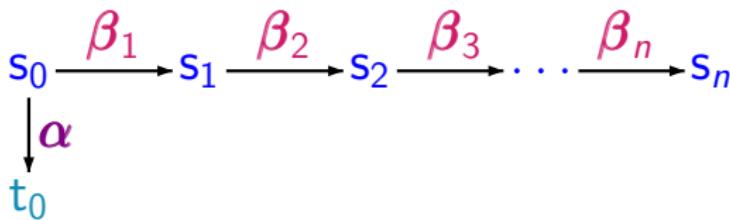
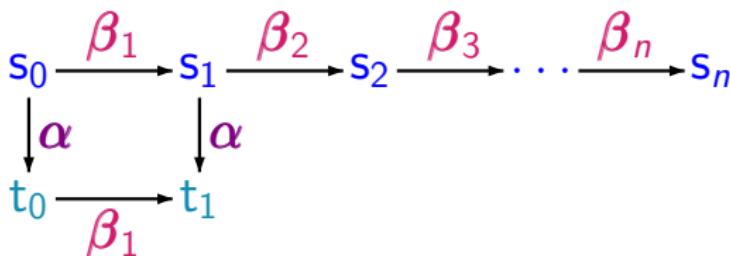
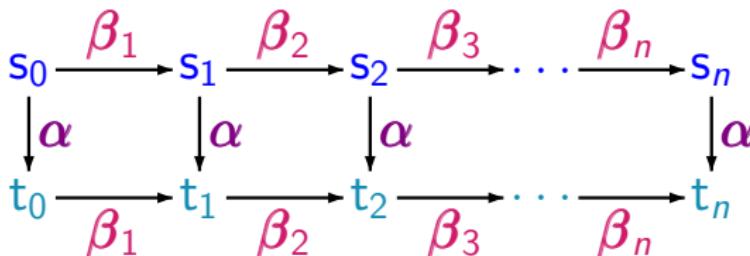
α independent from β_1, \dots, β_n



α independent from β_1, \dots, β_n



α independent from β_1, \dots, β_n



The ample set method

LTL3.4-20

given: action-deterministic, finite transition system

$$\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
for all states $s \in S$ s.t.

The ample set method for LTL_{\bigcirc}

LTL3.4-20

given: action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$
for all states $s \in S$ s.t.

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

where $\mathcal{T}_{\text{red}} = (S, Act, \Rightarrow, S_0, AP, L)$ results from
 \mathcal{T} by an on-the-fly construction

The ample set method for LTL_{\bigcirc}

LTL3.4-20

given: action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$
for all states $s \in S$ s.t.

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

where $\mathcal{T}_{\text{red}} = (S, Act, \Rightarrow, S_0, AP, L)$ results from \mathcal{T} by an on-the-fly construction using the reduced transition relation

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$

The ample set method for LTL_{\bigcirc}

LTL3.4-20

given: action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$
for all states $s \in S$ s.t.

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

where $\mathcal{T}_{\text{red}} = (S', Act, \Rightarrow, S_0, AP, L)$ results from
 \mathcal{T} by an **on-the-fly** construction using the reduced
transition relation

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$

S' = reachable fragment w.r.t. \Rightarrow

given: syntactic representation of the processes of an action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$

for all states $s \in S$ s.t. $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

given: syntactic representation of the processes of an action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$

for all states $s \in S$ s.t. $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

provide *conditions* for the ample sets that

given: syntactic representation of the processes of an action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$

for all states $s \in S$ s.t. $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

provide *conditions* for the ample sets that

- are suitable for an on-the-fly construction of \mathcal{T}_{red}

given: syntactic representation of the processes of an action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$

for all states $s \in S$ s.t. $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

provide *conditions* for the ample sets that

- are suitable for an on-the-fly construction of \mathcal{T}_{red}
- can be checked efficiently (without analyzing \mathcal{T})

given: syntactic representation of the processes of an action-deterministic, finite transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$

goal: define “small” action-sets $\text{ample}(s) \subseteq Act(s)$

for all states $s \in S$ s.t. $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

provide *conditions* for the ample sets that

- are suitable for an on-the-fly construction of \mathcal{T}_{red}
- can be checked efficiently (without analyzing \mathcal{T})
- ensure that $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

by successively applying the following transformations:

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\dots} \dots$ with $\alpha \in \text{ample}(s_0)$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

$$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \rightarrow \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ for some $\alpha \in \text{ample}(s_0)$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for $i < j$ the executions ρ_j and ρ_i have a common prefix of length i which is a path fragment in \mathcal{T}_{red}

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for $i < j$ the executions ρ_j and ρ_i have a common prefix of length i which is a path fragment in \mathcal{T}_{red} , i.e., ρ_i has the form

$$\rho_i = \underbrace{s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i}_{\text{in } \mathcal{T}_{\text{red}}} \underbrace{\rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow \dots}_{\text{in } \mathcal{T}}$$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where

$$\rho_i = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

$$\rho_{i+1} = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \Rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

$$\rho_{i+2} = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \Rightarrow s_{i+1} \Rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \text{ for some } \alpha \in \text{ample}(s_0)$$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \text{ for some } \alpha \in \text{ample}(s_0)$$

for the transformation $\rho_1 \rightsquigarrow \rho_2$:

apply case 0,1 or 2 to the suffix starting in state s'_0

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(\mathbf{s}) \subseteq \text{Act}(\mathbf{s})$$

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(\mathbf{s}) \subseteq \text{Act}(\mathbf{s})$$

(A2) dependency condition

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

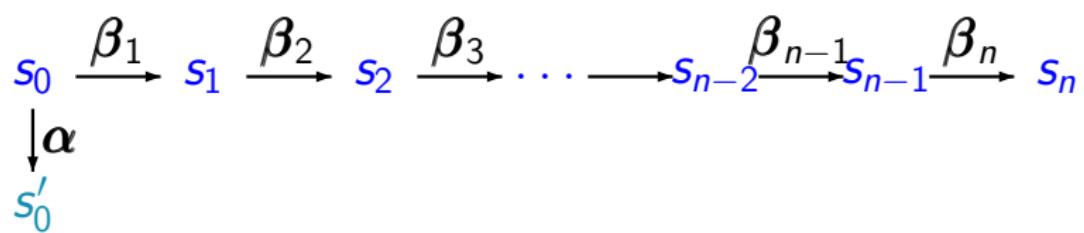
such that β_n is dependent from $\text{ample}(s)$
there is some $i < n$ with

$$\beta_i \in \text{ample}(s)$$

Condition (A2)

LTL3.4-24

suppose $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$

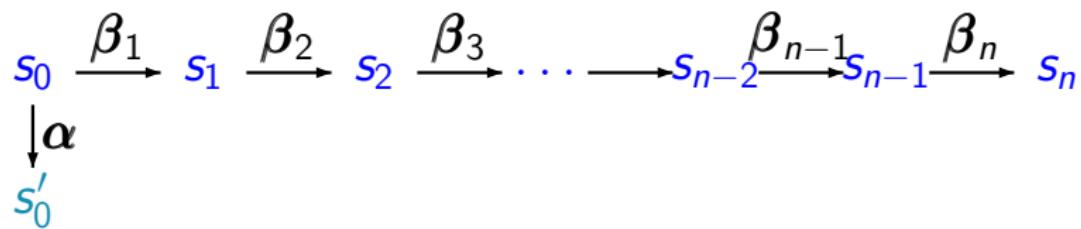


Condition (A2)

LTL3.4-24

suppose $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$

$\xrightarrow{(A2)}$ α, β_i independent



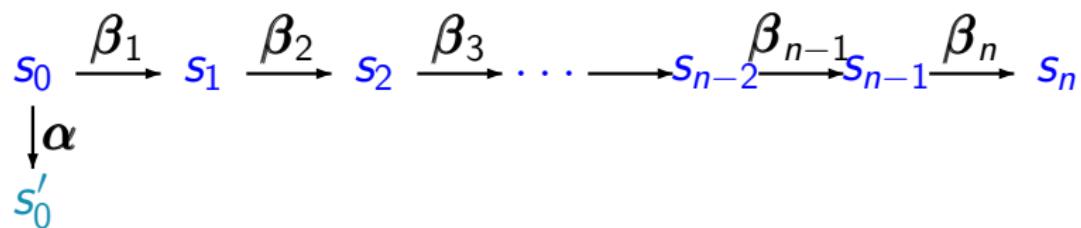
Condition (A2)

LTL3.4-24

suppose $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$

$\xrightarrow{\text{(A2)}}$ α, β_i independent

$\Rightarrow \alpha \in \text{Act}(s_i)$ for $i = 0, 1, 2, \dots$



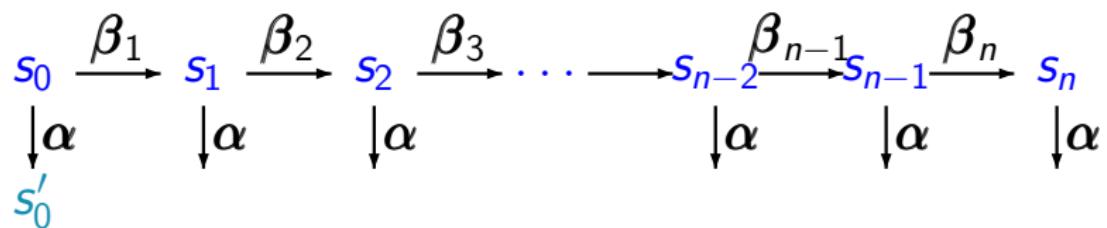
Condition (A2)

LTL3.4-24

suppose $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$

$\xrightarrow{(A2)}$ α, β_i independent

$\Rightarrow \alpha \in Act(s_i)$ for $i = 0, 1, 2, \dots$



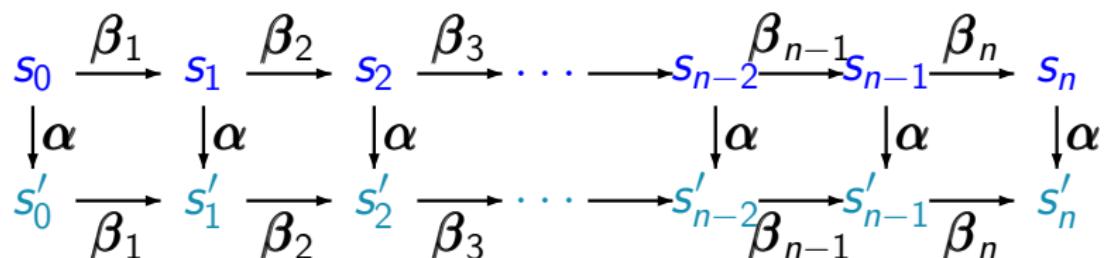
Condition (A2)

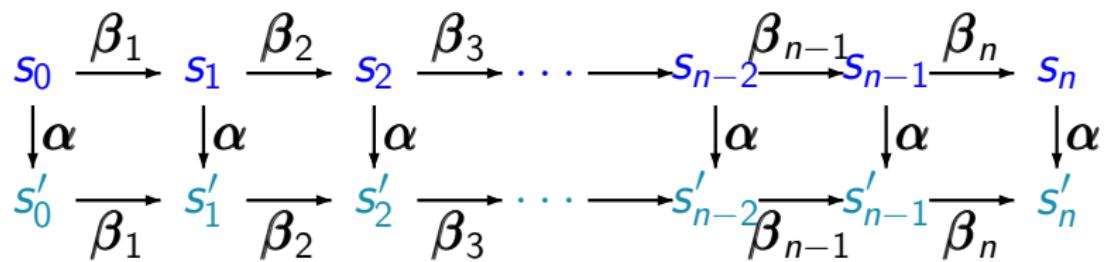
LTL3.4-24

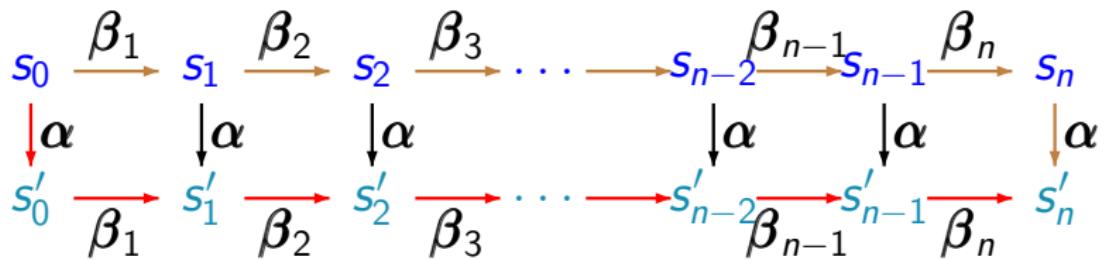
suppose $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$

$\xrightarrow{(A2)}$ α, β_i independent

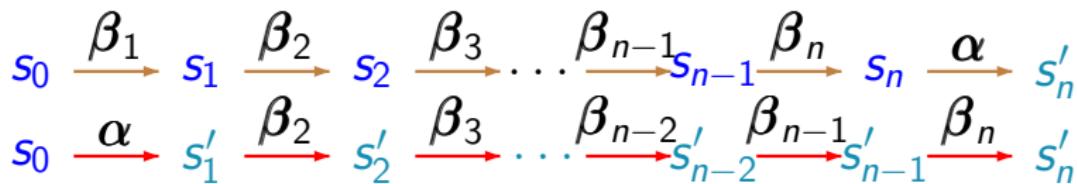
$\implies \alpha \in \text{Act}(s_i)$ for $i = 0, 1, 2, \dots$

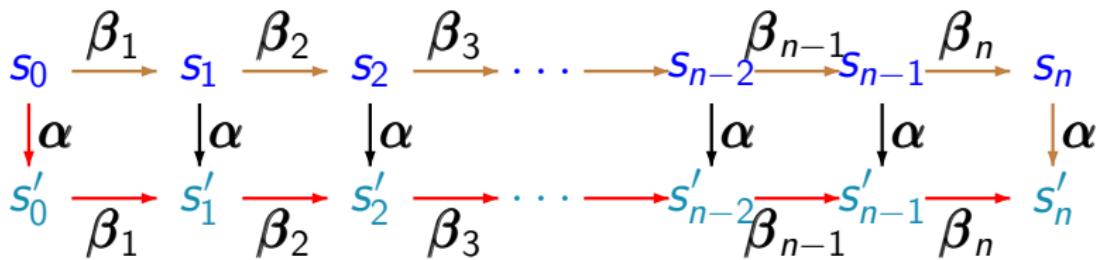




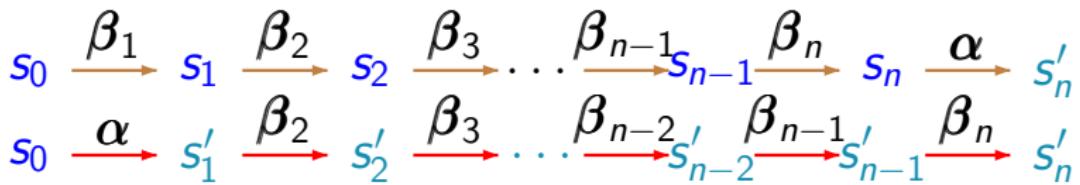


case 1:

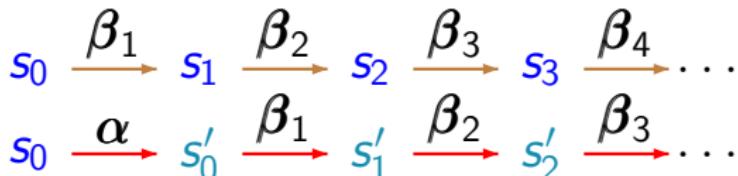




case 1:



case 2:



(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

Conditions for ample sets

LTL3.4-A3

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

Conditions for ample sets

LTL3.4-A3

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \beta_{i+1} \xrightarrow{\beta_{n-1}} \dots \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

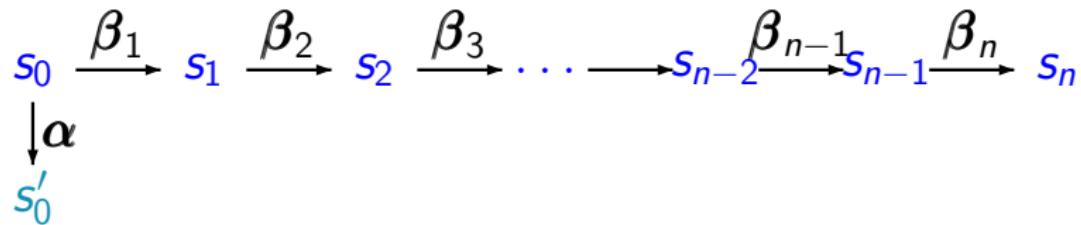
if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are **stutter actions**

Conditions (A2) and (A3)

LTL3.4-24A

Suppose

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action

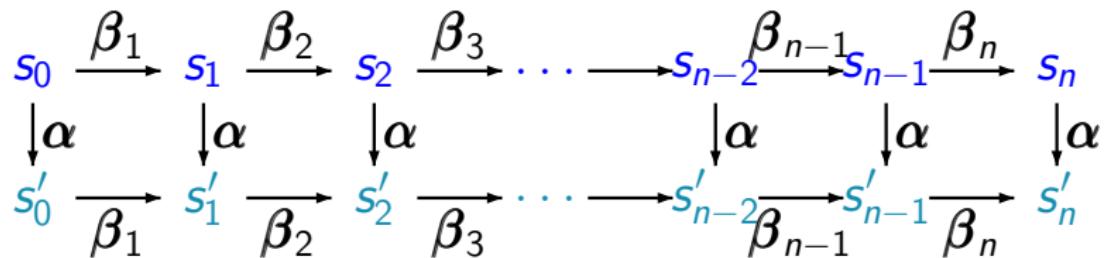


Conditions (A2) and (A3)

LTL3.4-24A

Suppose

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action

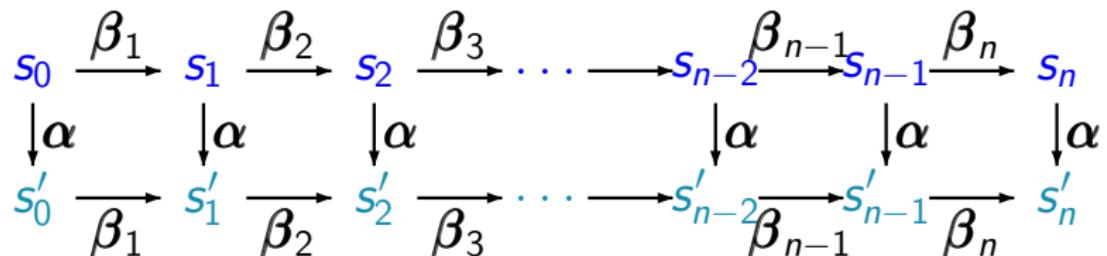


Conditions (A2) and (A3)

LTL3.4-24A

Suppose

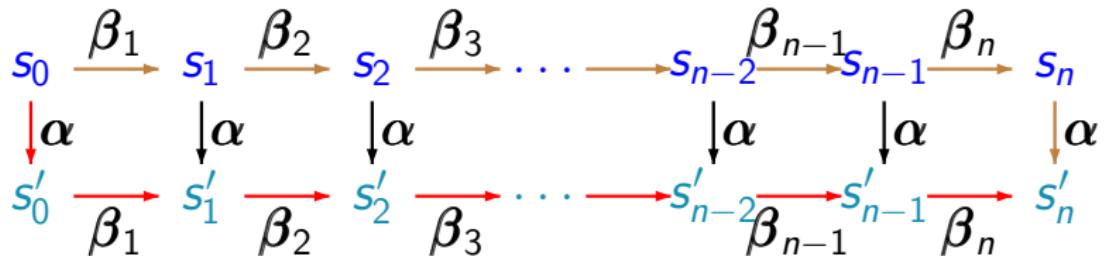
- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



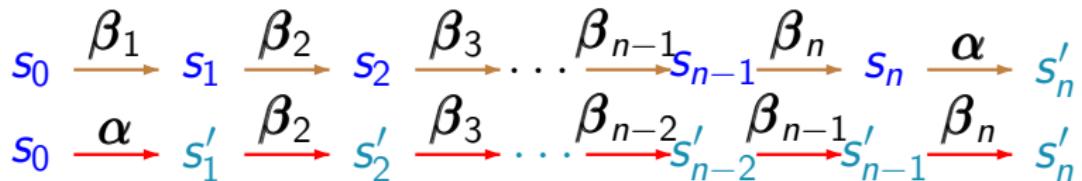
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



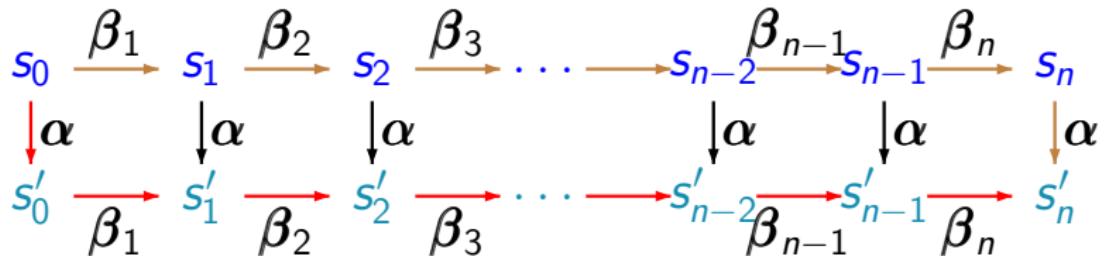
case 1:



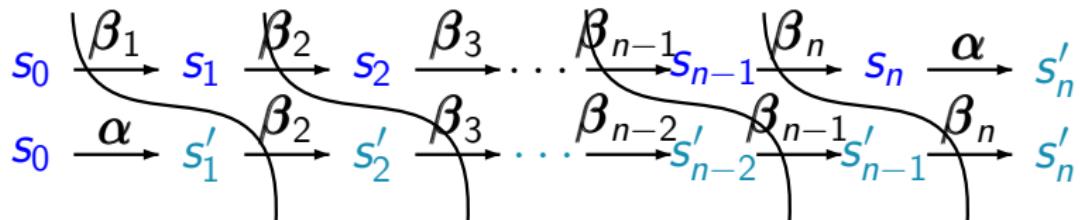
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



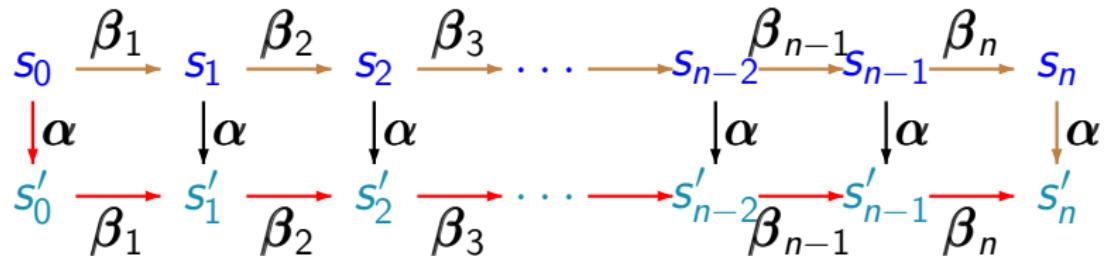
case 1:



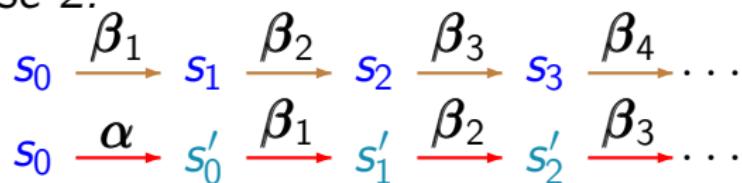
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



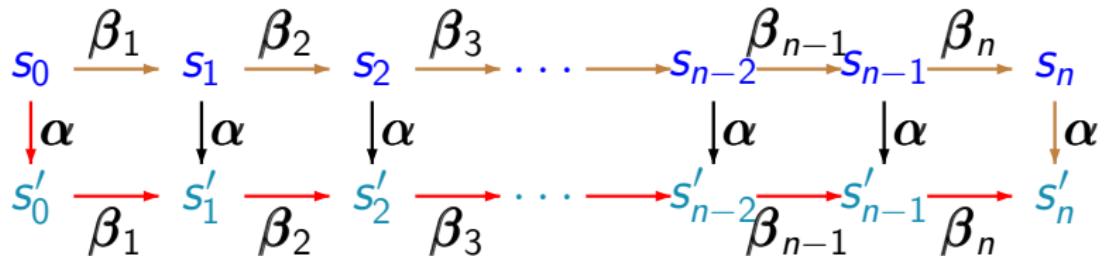
case 2:



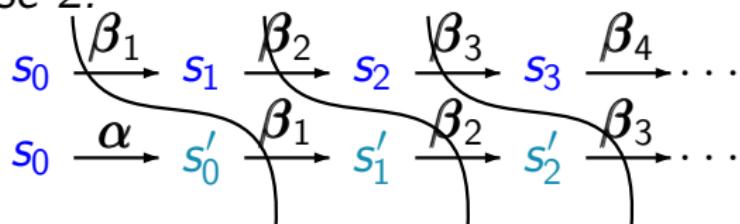
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$

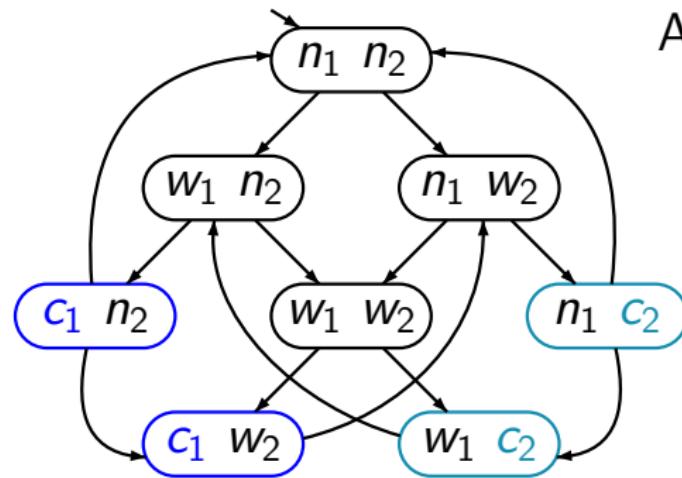


case 2:



Ample sets for MUTEX

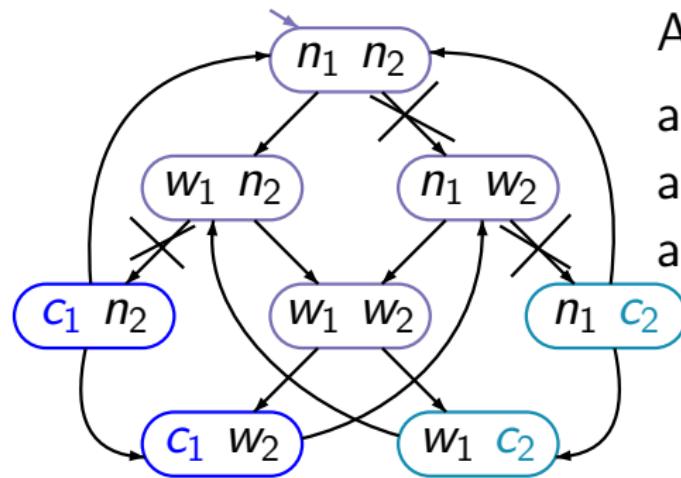
LTL3.4-22



$$AP = \{c_1, c_2\}$$

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

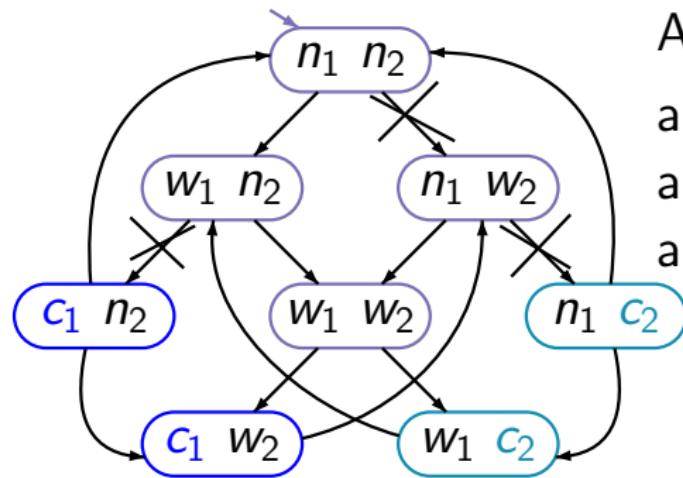
$$\text{ample}(w_1, w_2) =$$

$$\{\text{enter}_1, \text{enter}_2\}$$

...

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

$$\text{ample}(w_1, w_2) =$$

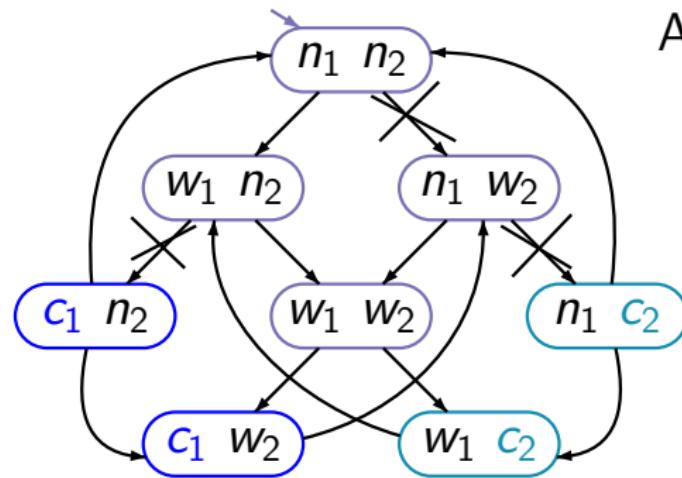
$$\{\text{enter}_1, \text{enter}_2\}$$

...

(A1), (A2), (A3) are satisfied

Ample sets for MUTEX

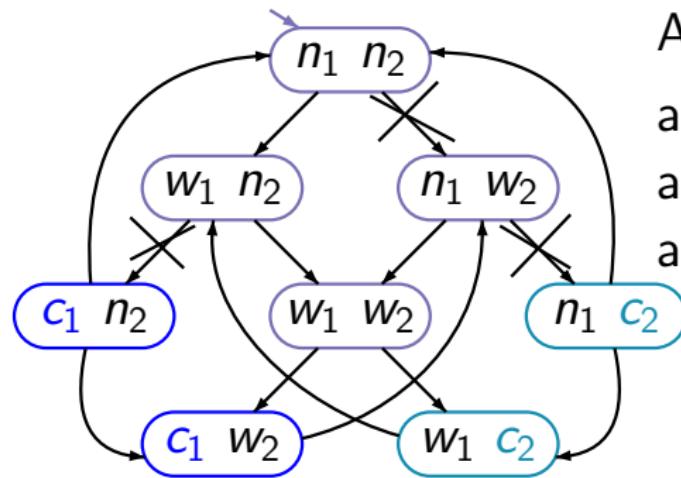
LTL3.4-22



$$AP = \{c_1, c_2\}$$

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

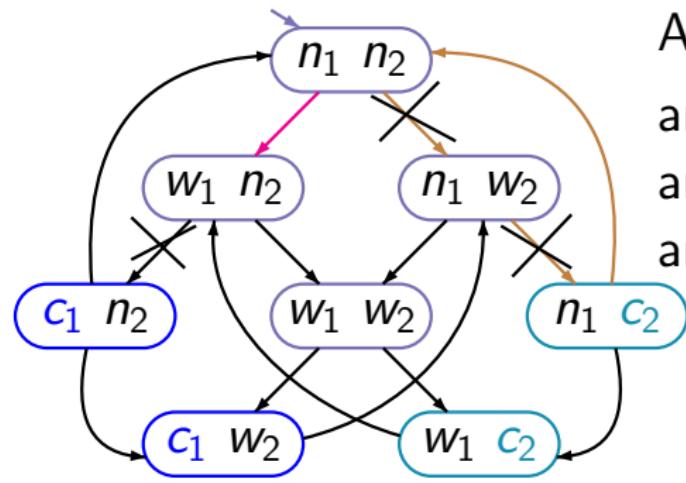
$$\text{ample}(w_1, w_2) =$$

$$\{\text{enter}_1, \text{enter}_2\}$$

...

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

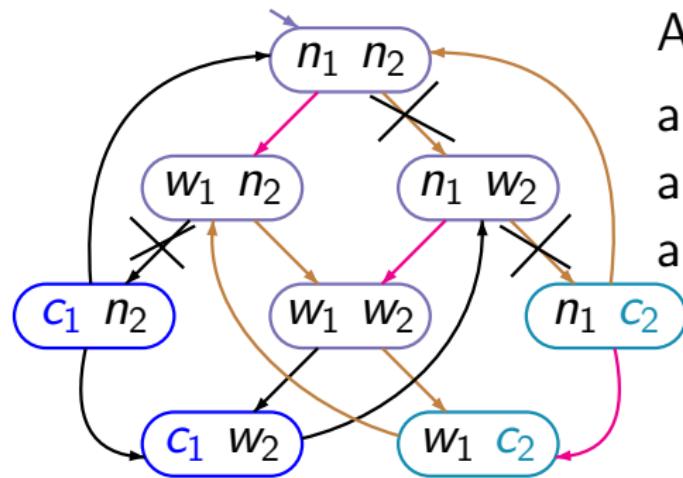
$$\begin{aligned}\text{ample}(w_1, w_2) = \\ \{&\text{enter}_1, \text{enter}_2\}\end{aligned}$$

...

$$n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{release}_2} n_1 n_2 \xrightarrow{\text{request}_1} w_1 n_2$$

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

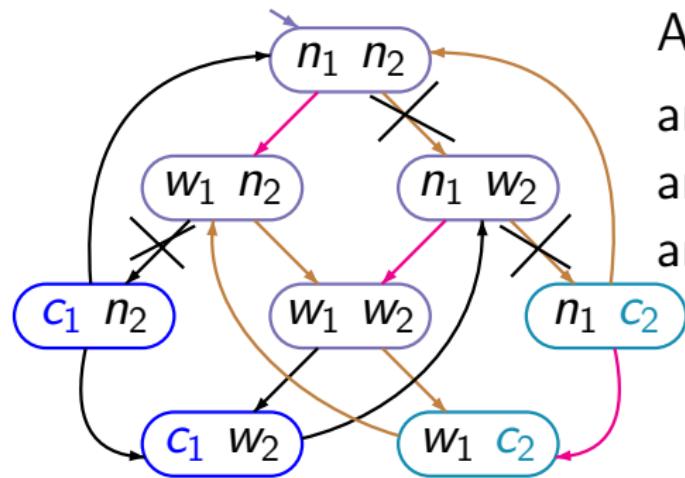
$$\begin{aligned}\text{ample}(w_1, w_2) = \\ \{\text{enter}_1, \text{enter}_2\}\end{aligned}$$

...

$$\begin{array}{c} n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{release}_2} n_1 n_2 \xrightarrow{\text{request}_1} w_1 n_2 \\ n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{request}_1} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2 \end{array}$$

Ample sets for MUTEX

LTL3.4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

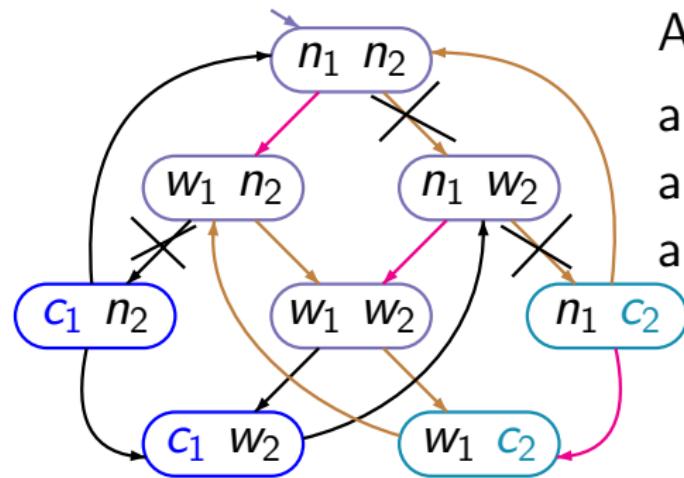
$$\begin{aligned}\text{ample}(w_1, w_2) = \\ \{\text{enter}_1, \text{enter}_2\}\end{aligned}$$

...

$$\begin{array}{c} n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{release}_2} n_1 n_2 \xrightarrow{\text{request}_1} w_1 n_2 \\ n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{request}_1} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2 \\ n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{request}_1} w_1 w_2 \xrightarrow{\text{enter}_2} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2 \end{array}$$

Ample sets for MUTEX

LTL3.4-22



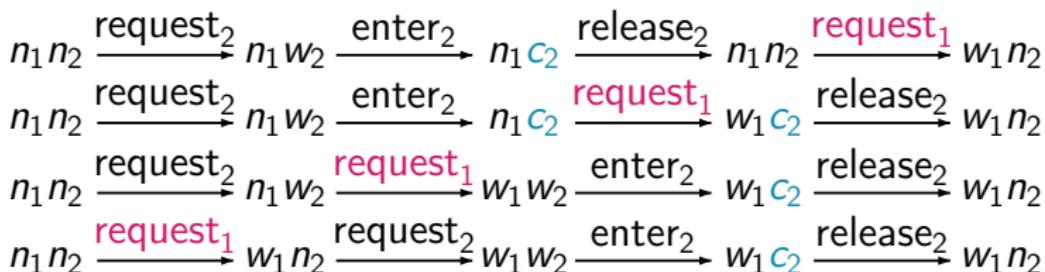
$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

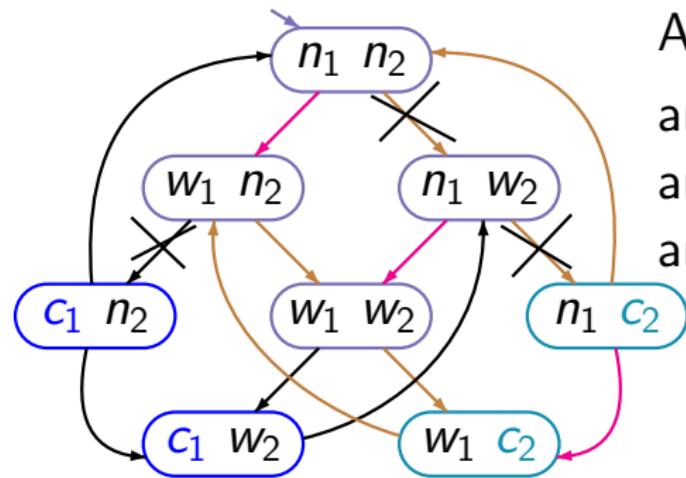
$$\begin{aligned}\text{ample}(w_1, w_2) = \\ \{\text{enter}_1, \text{enter}_2\}\end{aligned}$$

...



Ample sets for MUTEX

LTL3,4-22



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

ample(w_1, n_2) = {request₂}

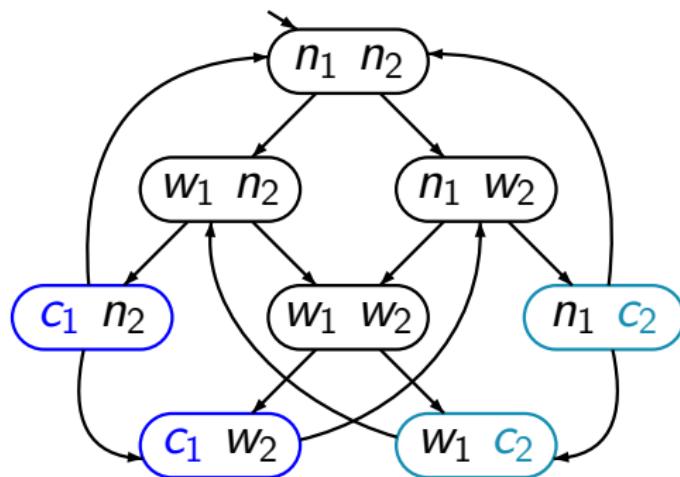
ample(w_1, w_2) =

$\{\text{enter}_1, \text{enter}_2\}$

• • •

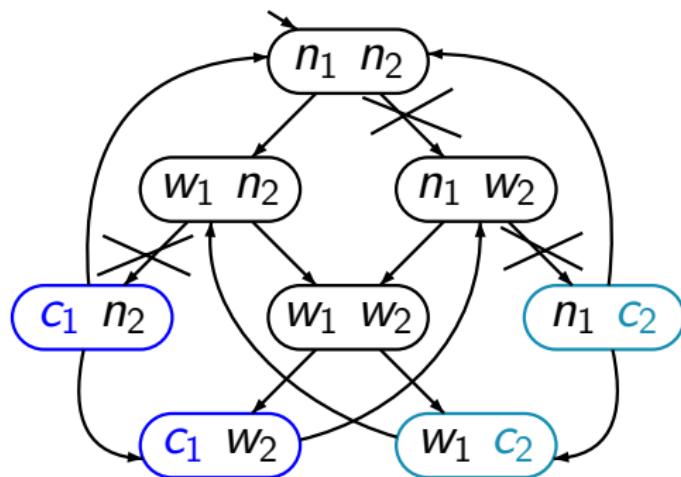
Example: case 2

LTL3.4-26



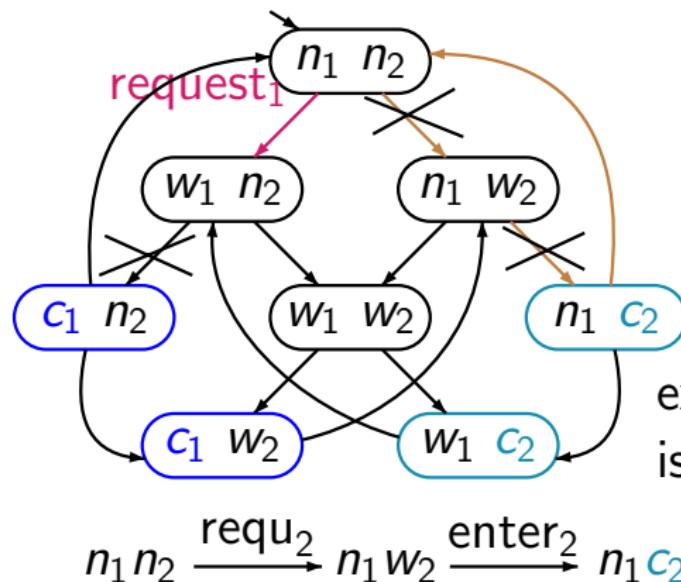
Example: case 2

LTL3.4-26



Example: case 2

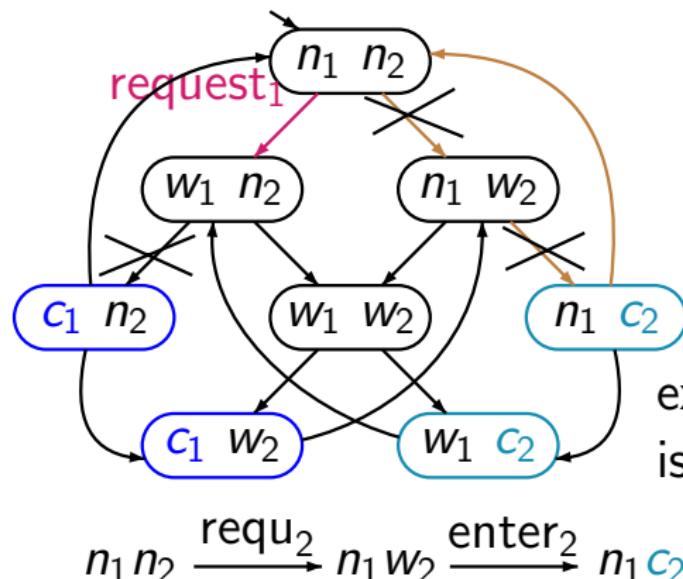
LTL3.4-26



execution where request₁
is not executed

Example: case 2

LTL3.4-26



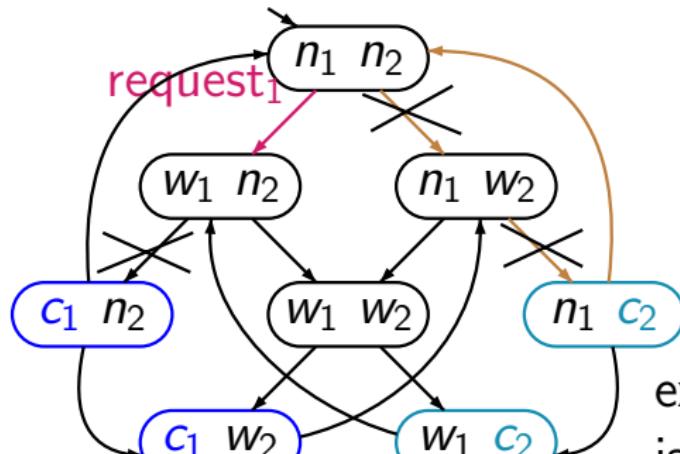
execution where request_1 is not executed

$n_1 n_2 \xrightarrow{\text{requ}_2} n_1 w_2 \xrightarrow{\text{enter}_2} n_1 c_2 \xrightarrow{\text{release}_2} n_1 n_2 \xrightarrow{\text{requ}_2} \dots$

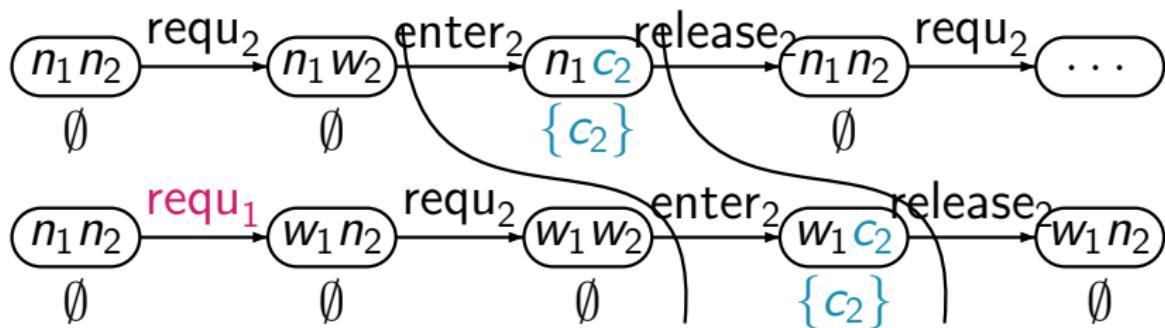
$n_1 n_2 \xrightarrow{\text{requ}_1} w_1 n_2 \xrightarrow{\text{requ}_2} w_1 w_2 \xrightarrow{\text{enter}_2} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2$

Example: case 2

LTL3.4-26



execution where $request_1$
is not executed



Example

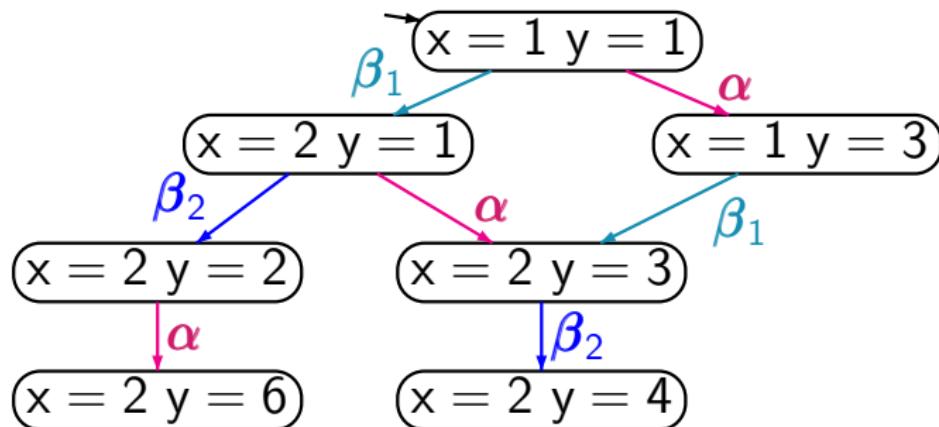
LTL3.4-23

$$\boxed{\underbrace{x := 2 \cdot x}_{\beta_1} \quad ; \quad \underbrace{y := y + 1}_{\beta_2} \quad ||| \quad \underbrace{y := 3 \cdot y}_{\alpha}}$$

Example

LTL3.4-23

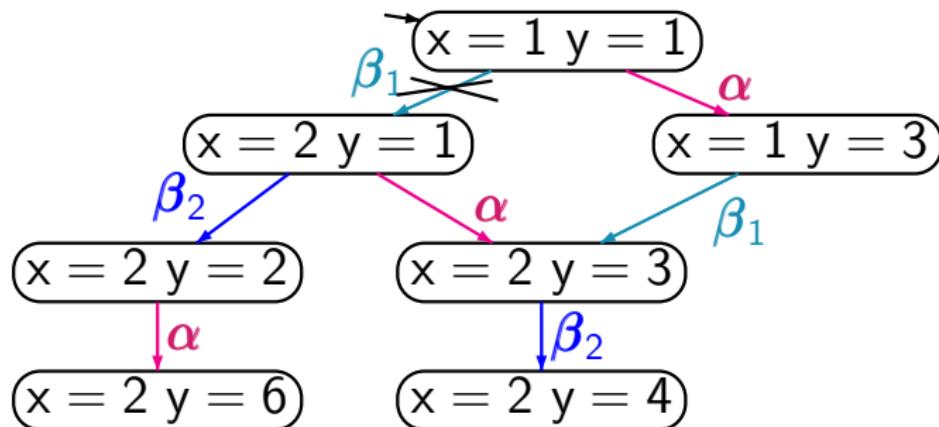
$$\boxed{\underbrace{x := 2 \cdot x}_{\beta_1} \quad ; \quad \underbrace{y := y + 1}_{\beta_2} \quad ||| \quad \underbrace{y := 3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

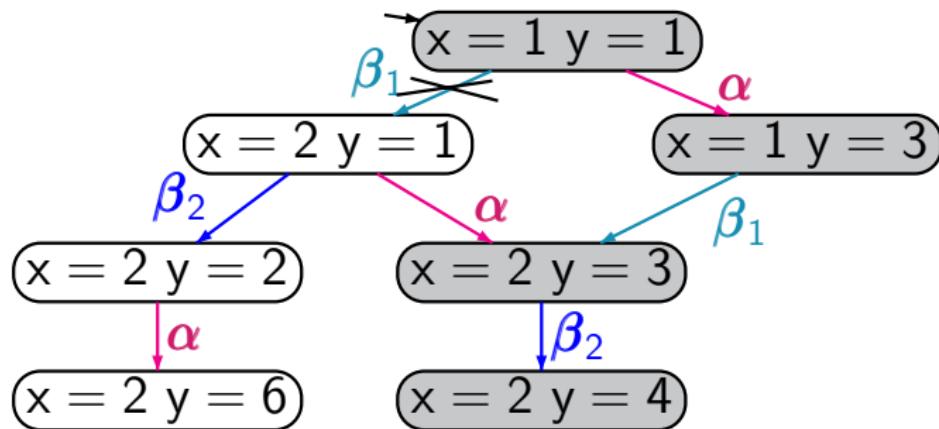
$$\boxed{x := \underbrace{2 \cdot x}_{\beta_1} \quad ; \quad y := \underbrace{y + 1}_{\beta_2} \quad ||| \quad y := \underbrace{3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

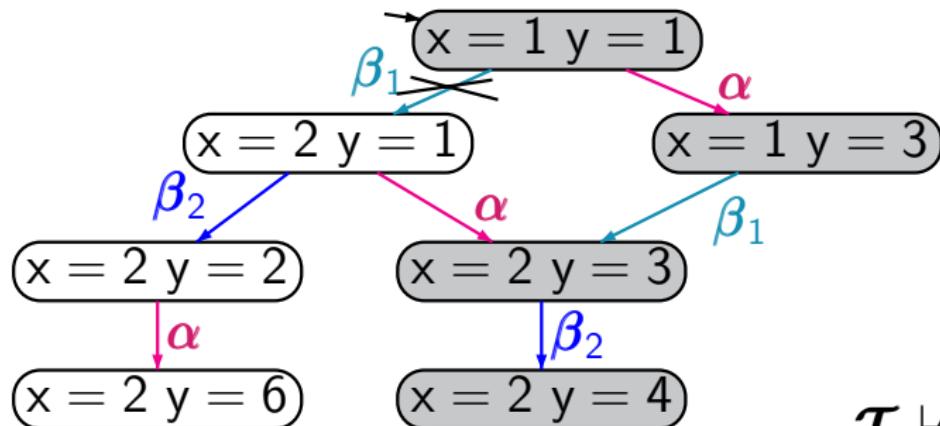
$$\boxed{x := \underbrace{2 \cdot x}_{\beta_1} \quad ; \quad y := \underbrace{y + 1}_{\beta_2} \quad ||| \quad y := \underbrace{3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

$$\boxed{x := \underbrace{2 \cdot x}_{\beta_1} \quad ; \quad y := \underbrace{y + 1}_{\beta_2} \quad ||| \quad y := \underbrace{3 \cdot y}_{\alpha}}$$



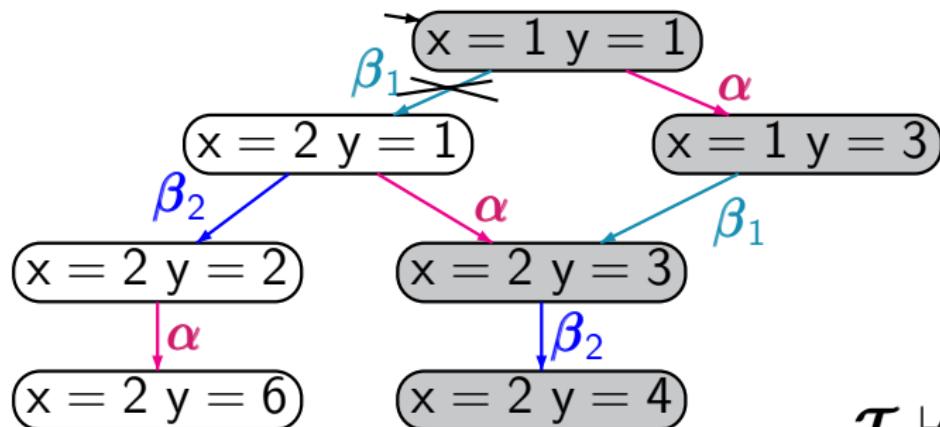
$$\mathcal{T} \not\models \Box(y \neq 6)$$
$$\mathcal{T}_{\text{red}} \models \Box(y \neq 6)$$

Example

LTL3.4-23

$$\boxed{x := 2 \cdot x \quad ; \quad y := y + 1 \quad ||| \quad y := 3 \cdot y}$$

β_1 β_2 α

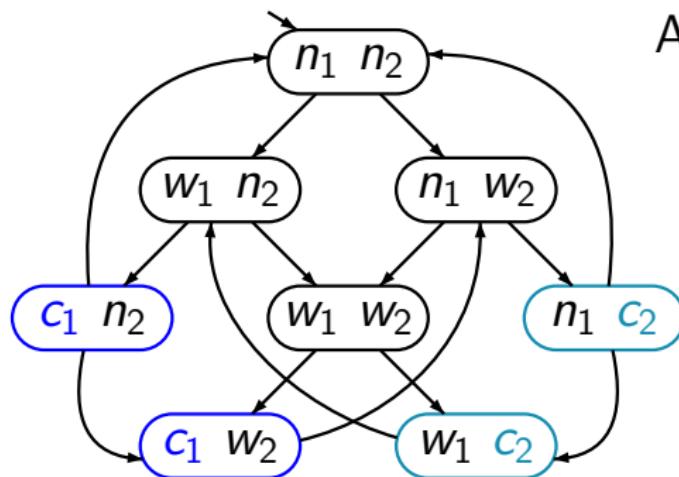


$$\mathcal{T} \not\models \Box(y \neq 6)$$
$$\mathcal{T}_{\text{red}} \models \Box(y \neq 6)$$

(A2) violated as β_2, α dependent

Which conditions (A1), (A2) or (A3) are satisfied?

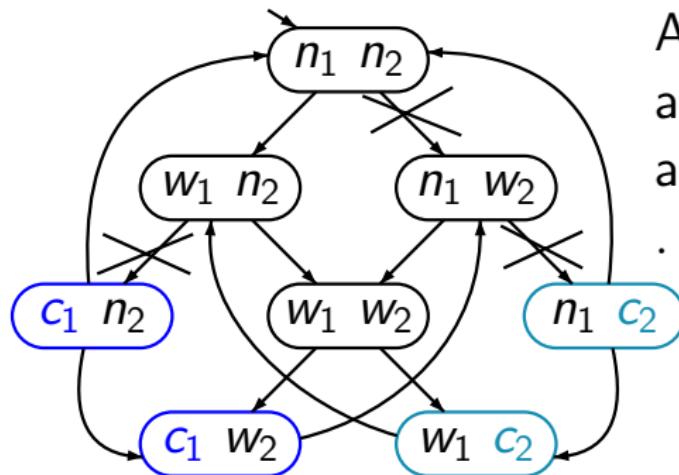
LTL3.4-25



$$AP = \{c_1, c_2\}$$

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$AP = \{c_1, c_2\}$$

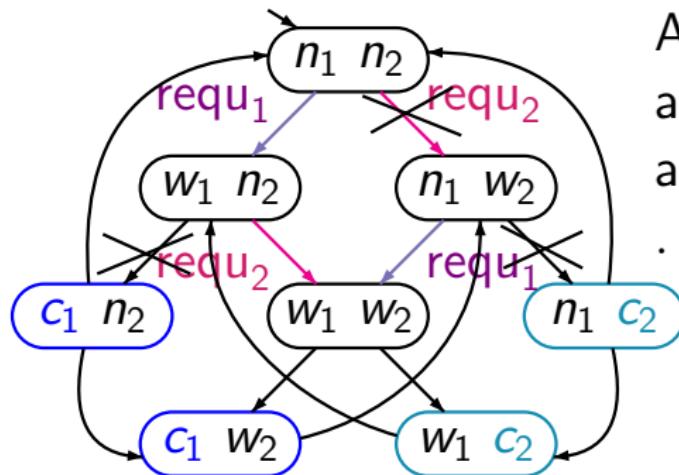
$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

...

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$\text{AP} = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

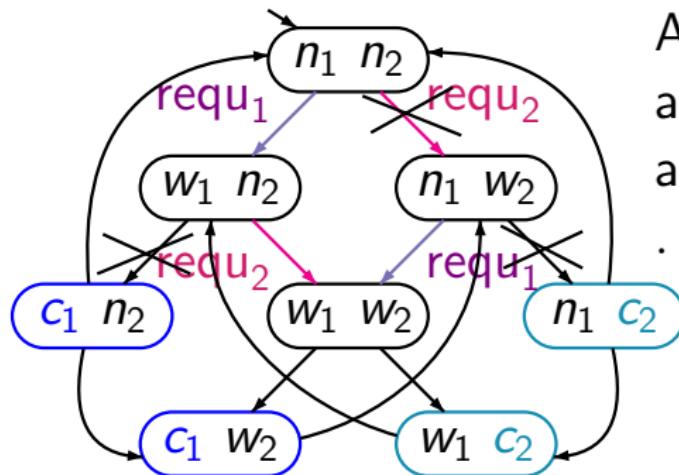
$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

...

Does the nonemptiness condition (A1) hold?

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$\text{AP} = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

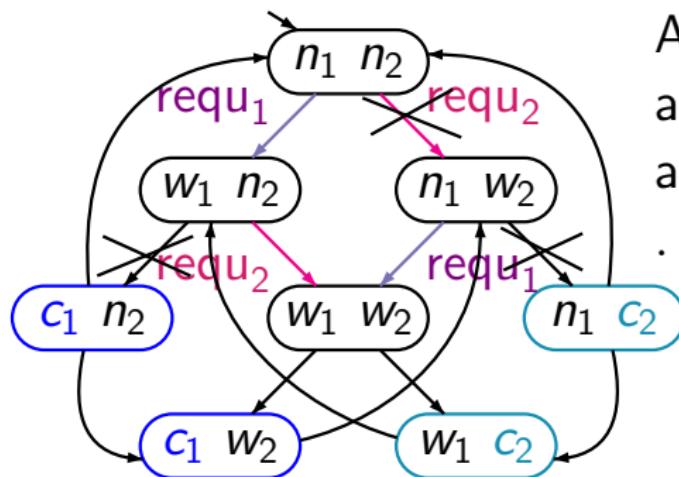
$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

...

Does the nonemptiness condition (A1) hold? yes

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$AP = \{c_1, c_2\}$$

ample(n_1, n_2) = {request₁}

ample(w_1, n_2) = {request₂}

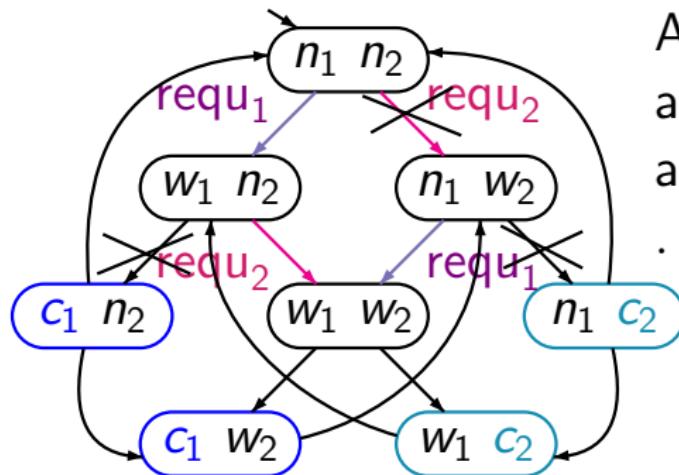
• • •

Does the nonemptiness condition (A1) hold? **yes**

Does the dependency condition (A2) hold?

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

...

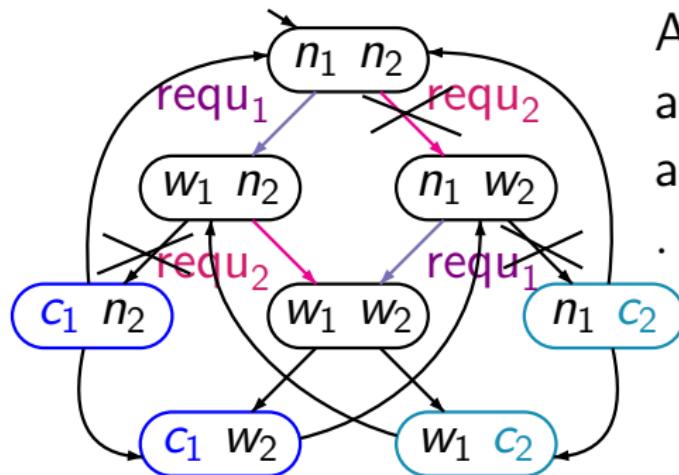
Does the nonemptiness condition (A1) hold? **yes**

Does the dependency condition (A2) hold?

yes, as request_1 and request_2 are independent from all other actions

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$AP = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

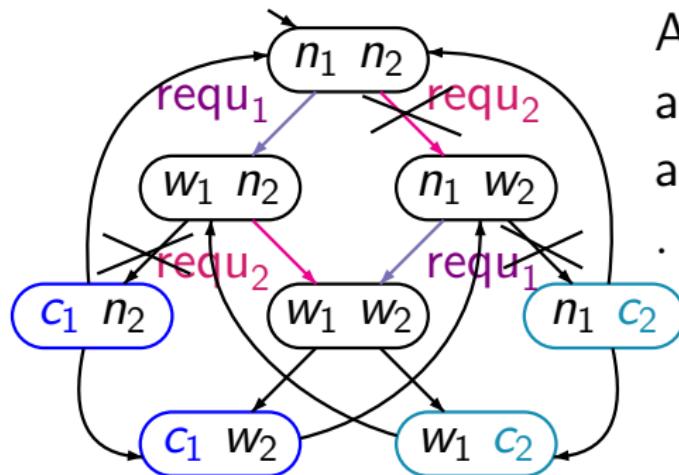
...

(A1), (A2): \checkmark

Does the stutter condition (A3) hold?

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-25



$$\text{AP} = \{c_1, c_2\}$$

$$\text{ample}(n_1, n_2) = \{\text{request}_1\}$$

$$\text{ample}(w_1, n_2) = \{\text{request}_2\}$$

...

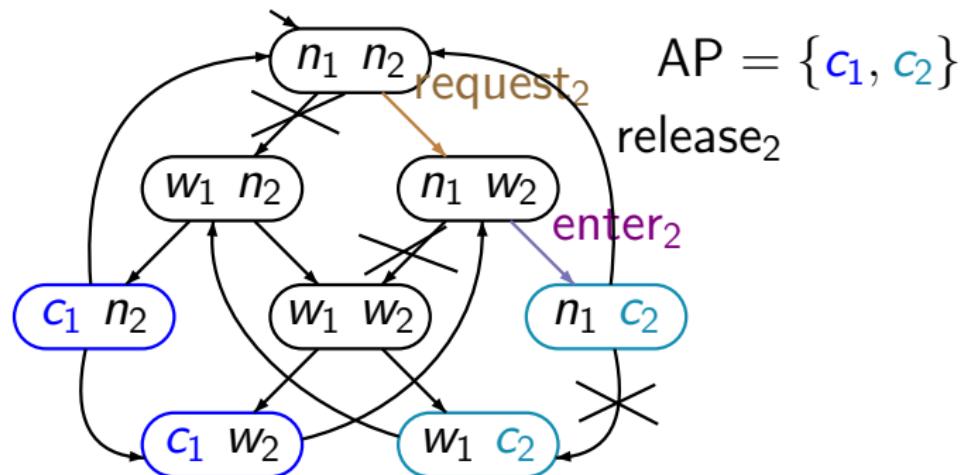
(A1), (A2): \checkmark

Does the stutter condition (A3) hold?

yes, as request_1 and request_2 are stutter actions

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-27



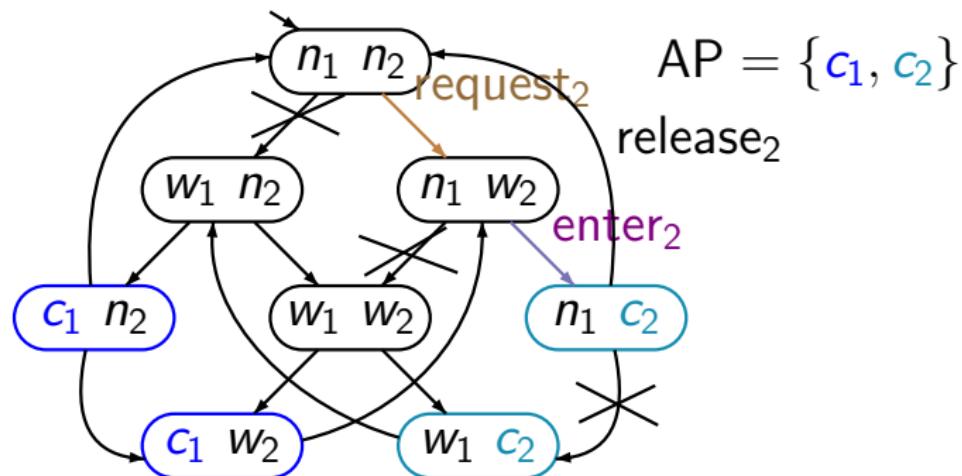
$$AP = \{c_1, c_2\}$$

release₂

enter₂

Which conditions (A1), (A2) or (A3) are satisfied?

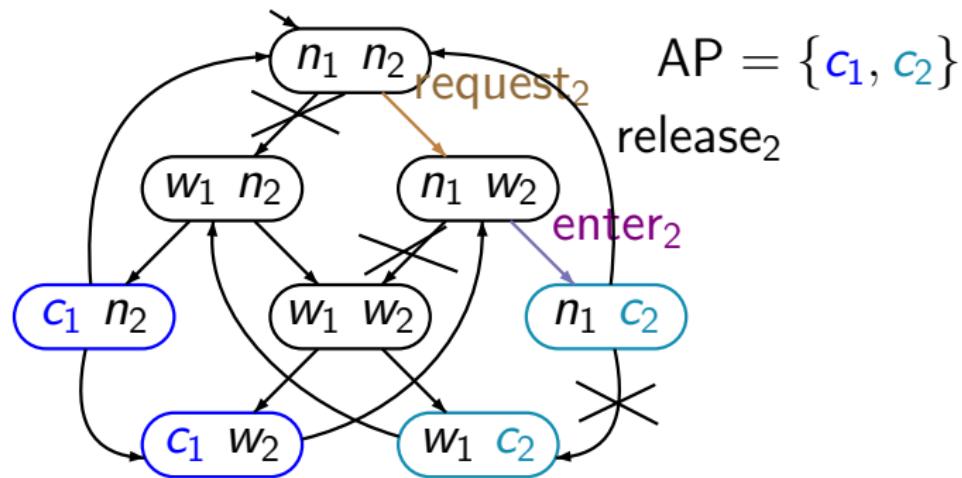
LTL3.4-27



(A1): \checkmark

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-27

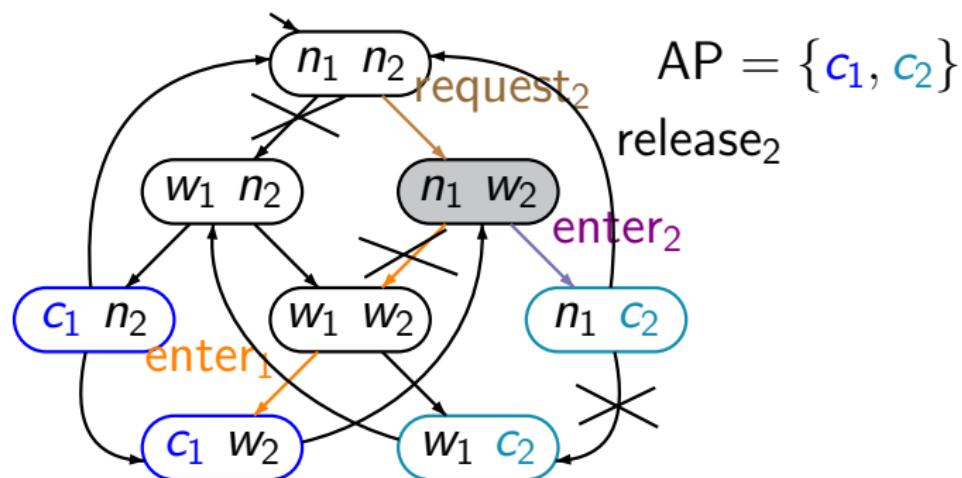


(A1): \checkmark

(A2)

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-27



$$AP = \{c_1, c_2\}$$

release₂

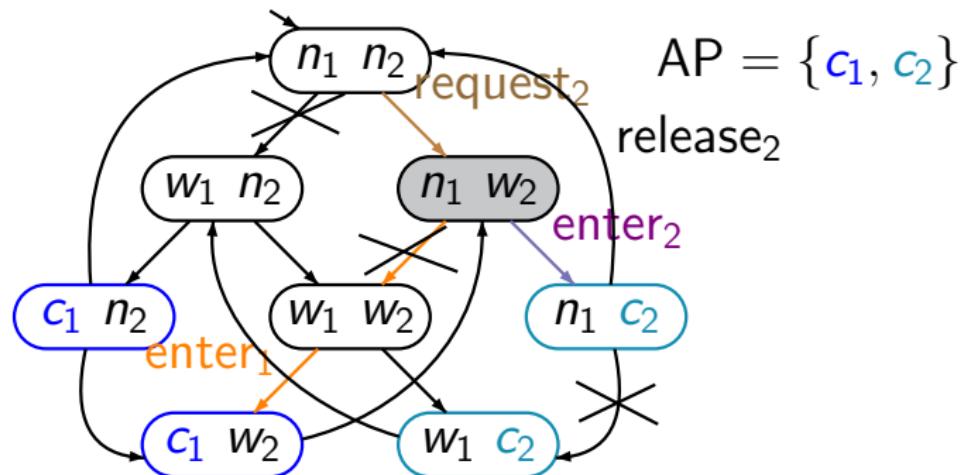
enter₂

(A1): \checkmark

(A2) violated as enter₁ is dependent from enter₂

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-27



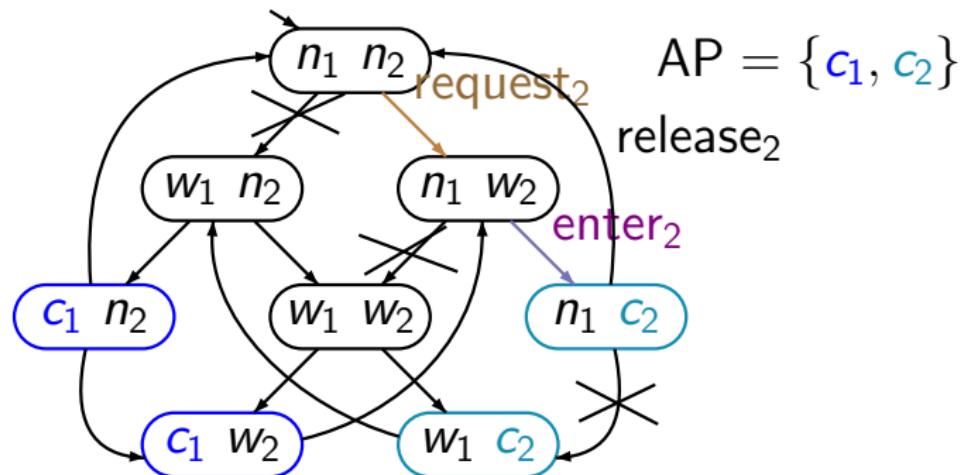
(A1): \checkmark

(A2) violated as $enter_1$ is dependent from $enter_2$

(A3)

Which conditions (A1), (A2) or (A3) are satisfied?

LTL3.4-27



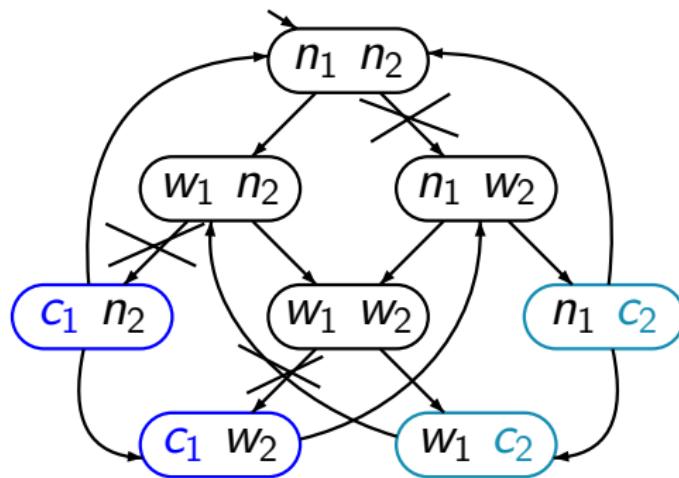
(A1): \checkmark

(A2) violated as $enter_1$ is dependent from $enter_2$

(A3) violated as $ample(n_1 w_2) = \{enter_2\} \subsetneq Act(n_1 w_2)$
and $enter_2$ is a visible action

Which conditions (A2) or (A3) are satisfied?

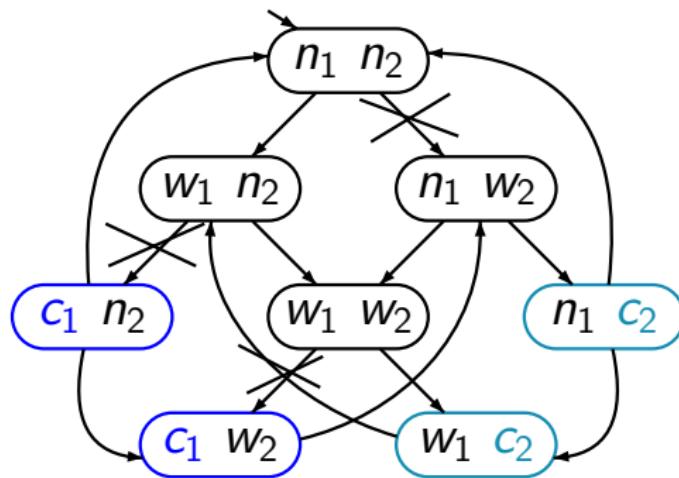
LTL3.4-28



$$AP = \{c_1, c_2\}$$

Which conditions (A2) or (A3) are satisfied?

LTL3.4-28

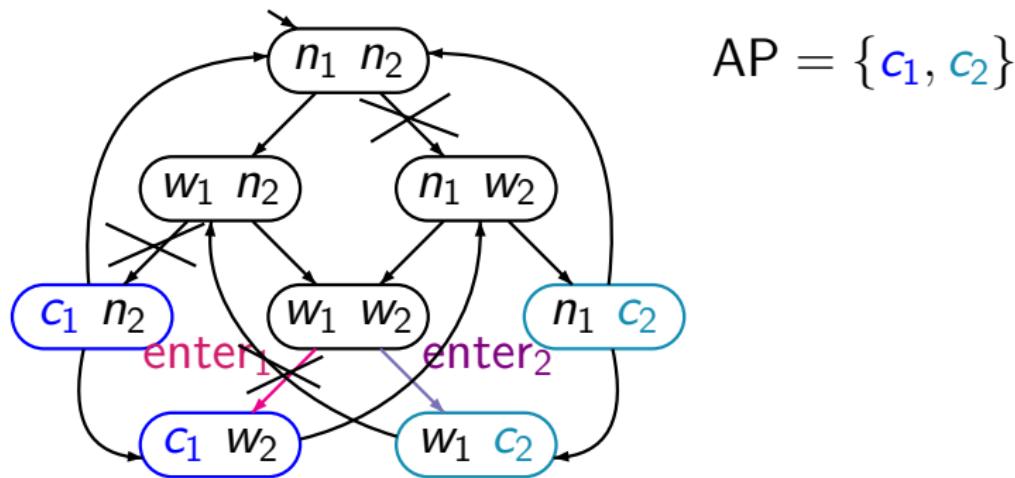


$$AP = \{c_1, c_2\}$$

(A2) does not hold

Which conditions (A2) or (A3) are satisfied?

LTL3.4-28

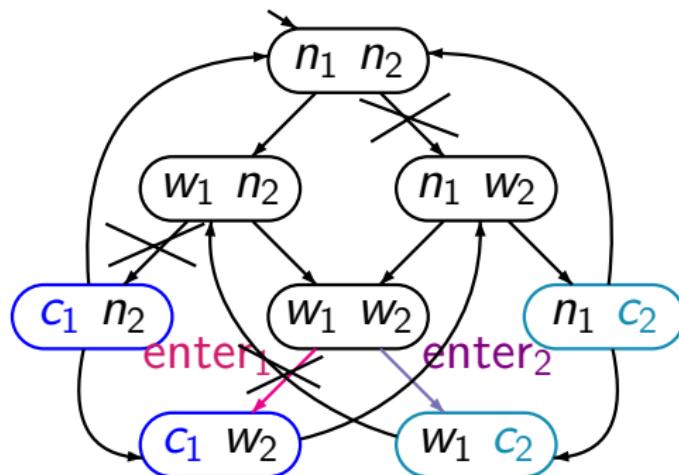


(A2) does not hold

as $enter_1$ and $enter_2$ are dependent and
 $ample(w_1 w_2) = \{enter_2\}$

Which conditions (A2) or (A3) are satisfied?

LTL3.4-28



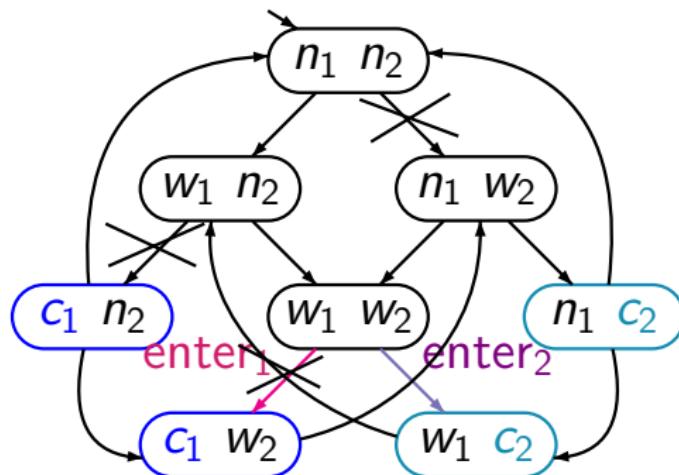
$$AP = \{c_1, c_2\}$$

neither (A2) nor (A3) is fulfilled

- $w_1 w_2 \xrightarrow{\text{enter}_1} \dots \rightsquigarrow \text{(A2) violated}$

Which conditions (A2) or (A3) are satisfied?

LTL3.4-28



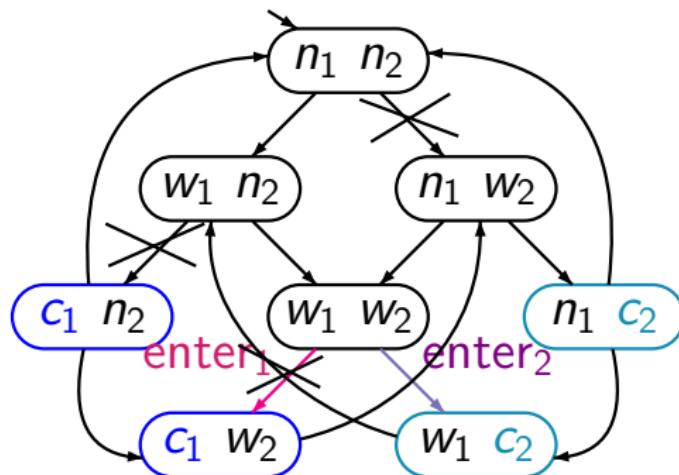
$$AP = \{c_1, c_2\}$$

neither (A2) nor (A3) is fulfilled

- $w_1 w_2 \xrightarrow{enter_1} \dots \rightsquigarrow$ (A2) violated
- $enter_2$ visible action \rightsquigarrow (A3) violated

Which conditions (A2) or (A3) are satisfied?

LTL3.4-28



$$AP = \{c_1, c_2\}$$

$$\mathcal{T} \not\models \Box \neg c_1$$

$$\mathcal{T}_{\text{red}} \models \Box \neg c_1$$

neither (A2) nor (A3) is fulfilled

- $w_1 w_2 \xrightarrow{\text{enter}_1} \dots \rightsquigarrow$ (A2) violated
- enter_2 visible action \rightsquigarrow (A3) violated

Correct or wrong?

LTL3.4-29

Let $\mathcal{T}_1, \mathcal{T}_2$ be TS with disjoint action-sets Act_1 and Act_2 , respectively, and

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Correct or wrong?

LTL3.4-29

Let $\mathcal{T}_1, \mathcal{T}_2$ be TS with disjoint action-sets Act_1 and Act_2 , respectively, and

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

remind: \parallel denotes full interleaving

Correct or wrong?

Let $\mathcal{T}_1, \mathcal{T}_2$ be TS with disjoint action-sets Act_1 and Act_2 , respectively, and

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Then, the ample sets given by

$$\text{ample}(\langle s_1, s_2 \rangle) = \begin{cases} \textcolor{blue}{Act}_1(s_1): \text{ if every act. in } \textcolor{blue}{Act}_1(s_1) \\ \quad \quad \quad \text{is stutter a action} \\ \textcolor{blue}{Act}_1(s_1) \cup \textcolor{red}{Act}_2(s_2): \text{ else} \end{cases}$$

satisfy (A2) and (A3).

Correct or wrong?

Let $\mathcal{T}_1, \mathcal{T}_2$ be TS with disjoint action-sets Act_1 and Act_2 , respectively, and

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Then, the ample sets given by

$$\text{ample}(\langle s_1, s_2 \rangle) = \begin{cases} \textcolor{violet}{Act}_1(s_1): \text{ if every act. in } \textcolor{violet}{Act}_1(s_1) \\ \quad \quad \quad \text{is stutter a action} \\ \textcolor{red}{Act}_1(s_1) \cup \textcolor{red}{Act}_2(s_2): \text{ else} \end{cases}$$

satisfy (A2) and (A3).

correct.

Correct or wrong?

LTL3.4-29

Let $\mathcal{T}_1, \mathcal{T}_2$ be TS with disjoint action-sets Act_1 and Act_2 , respectively, and

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Then, the ample sets given by

satisfy (A2) and (A3).

correct.

Note: all actions $\alpha \in Act_1$ and $\beta \in Act_2$ are independent in \mathcal{T} .