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Hand in on November 3rd before the exercise class.

Exercise 1 (3 points)

Which of the following transition systems are bisimulation equivalent? Justify your answers by either
providing a bisimulation relation or a CTL\U formula that distinguishes the considered transition systems.
(Note: a CTL\U formula contains neither an U -operator nor one of its derived operators such as 3 and
2)
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Exercise 2 (4 points)

Consider the transition system TS over AP = {a, b} shown in the figure below:
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(a) Determine the bisimulation equivalence ∼TS and depict the bisimulation quotient system TS/ ∼.

(b) Provide CTL master formulae ΦC for each bisimulation equivalence class C ∈ S/ ∼.



Exercise 3 (2 + 1 points)

Let TS = (S,Act,→, I, AP,L) be a transition system. The relations ∼n⊆ S × S, n ∈ N, are inductively
defined by:

• s1 ∼0 s2 iff L(s1) = L(s2).

• s1 ∼n+1 s2 iff:

– L(s1) = L(s2),

– for all s′1 ∈ Post(s1) there exists s′2 ∈ Post(s2) with s′1 ∼n s′2,

– for all s′2 ∈ Post(s2) there exists s′1 ∈ Post(s1) with s′1 ∼n s′2.

Questions:

(i) Show that for finite TS it holds that ∼TS=
⋂

n≥0
∼n, i.e.,

s1 ∼TS s2 iff s1 ∼n s2 for all n ≥ 0

(ii) Does this also hold for infinite transition systems (provide either a proof or a counterexample)?


