

Advanced Model Checking
 Winter term 2010/2011

– Series 6 –

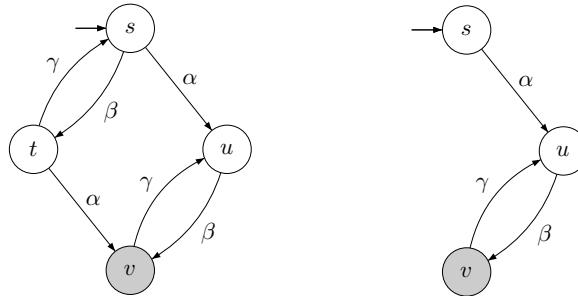
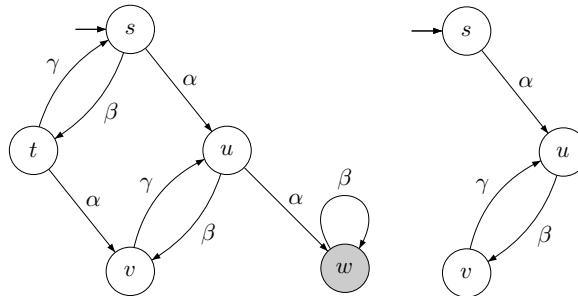
Hand in on December 8'th before the exercise class.

Exercise 1

(1 + 1 + 1 = 3 points)

Figure 1 shows on its left a transition system TS and on its right a reduced system \hat{TS} that results from choosing $ample(s) = \{\alpha\}$. Check whether TS and \hat{TS} are stutter trace equivalent. If they are not, indicate which of the conditions (A1) – (A4) is (are) violated.

Answer the same question for the transition system in the reduction shown in Figures 2 and 3, where different colors indicate different state labels.


 Abbildung 1: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

 Abbildung 2: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

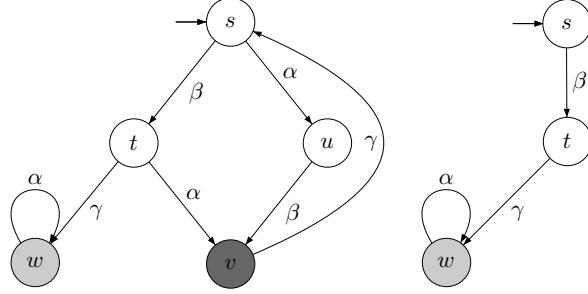


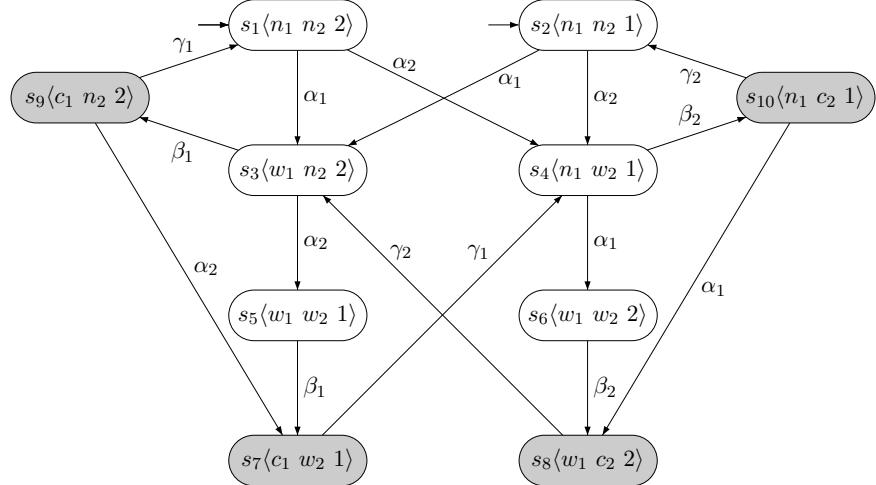
Abbildung 3: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

Exercise 2

(1 + 1 = 2 points)

Consider the transition system TS_{Pet} for the Peterson mutual exclusion algorithm.

(For more details of the algorithm, cf. page 45-47 of the book.)



Questions:

- Which actions are independent?
- Apply the partial order reduction approach to TS_{Pet} with “small” ample sets according to Algorithm 38 (page 622 of the book) for checking the invariant “always $\neg(crit_1 \wedge crit_2)$ ”, where $AP = \{crit_1, crit_2\}$. Note that c_i in the figure is an abbreviation for $crit_i$.

Exercise 3

(5 points)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be an action-deterministic transition system and let \mathcal{I}_{st} be the set of all pairs $(\alpha, \beta) \in Act \times Act$ of independent actions α and β where α or β (or both) is a stutter action. Let *stutter permutation equivalence* \cong_{perm} be the finest equivalence on Act^* such that

$$\bar{\gamma}\alpha\beta\bar{\delta} \cong_{perm} \bar{\gamma}\beta\alpha\bar{\delta}$$

if $\bar{\gamma}, \bar{\delta} \in Act^*$ and $(\alpha, \beta) \in \mathcal{I}_{st}$.

The extension of \cong_{perm} to an equivalence for infinite action sequences is defined as follows. If $\tilde{\alpha} = \alpha_1\alpha_2\alpha_3\dots$ and $\tilde{\beta} = \beta_1\beta_2\beta_3\dots$ are actions sequences in Act^ω , then $\tilde{\alpha} \sqsubseteq_{perm} \tilde{\beta}$ if for all finite prefixes $\alpha_1\dots\alpha_n$ of $\tilde{\alpha}$ there exists a finite prefix $\beta_1\dots\beta_m$ of $\tilde{\beta}$ with $m \geq n$ and a finite word $\bar{\gamma} \in Act^*$ such that

$$\alpha_1 \dots \alpha_n \bar{\gamma} \cong_{perm} \beta_1 \dots \beta_m$$

We then define the binary relation \cong_{perm}^ω on Act^ω by

$$\tilde{\alpha} \cong_{perm}^\omega \tilde{\beta} \quad \text{iff} \quad \tilde{\alpha} \sqsubseteq_{perm} \tilde{\beta} \quad \text{and} \quad \tilde{\beta} \sqsubseteq_{perm} \tilde{\alpha}$$

Questions:

(a) Show that \cong_{perm}^ω is an equivalence.