

Advance Model Checking

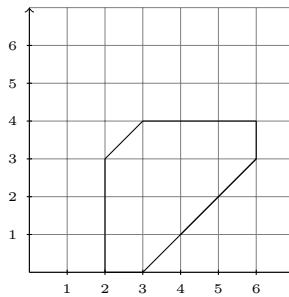
Ex-10: Submit on 11th of July.

July 8, 2012

1

(2 Points)

Consider the following zone Z with two clocks $\{x, y\}$,

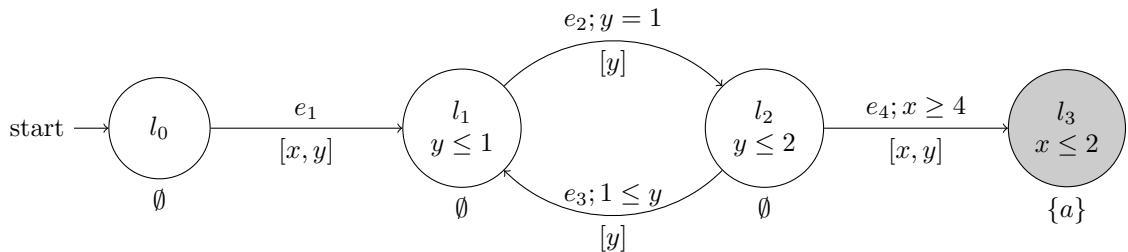


Compute the $Post_e(Z)$ and $Pre_e(Z)$, where $e \equiv l \xrightarrow[\{y\}]{x+y \geq 12 \wedge x \leq 8 \wedge y \leq 8} l'$

2

(2 Points)

Given a timed automaton TA as follows:



- Draw the zone automata (or part of it) that leads to a set of configurations that satisfy $\Diamond^{<5} a$.

3

(2 Points)

For the zone defined by:

$$1 \leq x \wedge y \leq 15 \wedge -7 \leq x - y \leq 2$$

- Compute the DBM.
- Compute the canonical form of the DBM.
- Reset $y := 3$ in the DBM.
- k-Normalize the DBM with k being 8.

4

(4 Points)

Show the following,

- For all zone Z and edge $e \equiv l \xrightarrow{a;g;D} l'$, if $Post_e(Z)$ is non-empty then $Pre_e(Post_e(Z)) \cap Z \neq \emptyset$.
- Let $D = (d_{ij}, \prec_{ij})_{i,j=1,\dots,n}$ be a difference bound Matrix,

$$\llbracket D \rrbracket = \{ \nu : \{x_1, \dots, x_n\} \mid \forall 0 \leq i, j \leq n, \nu(x_i) - \nu(x_j) \prec_{ij} d_{ij} \}$$

That is, the set of all valuation that satisfy the equation represented by D . A total order on the entries of matrices is defined as follows,

$$(m, \prec) \leq (m', \prec') \Leftrightarrow \begin{cases} m < m' \\ \text{or} \\ m = m' \text{ and either } \prec = \prec' \text{ or } \prec' = \leq \end{cases}$$

We can define a partial order among two difference bound matrices D and D' ,

$$D \leq D' \Leftrightarrow \text{for every } i, j = 0, \dots, n, (m_{ij}, \prec_{ij}) \leq (m'_{ij}, \prec'_{ij})$$

Let D^* be the canonical form of D . We will now try to prove correctness.

The halting criterion of Floyd Warshall algorithm gives us termination. To see we got what we need, prove that $D^* \leq D$ and $\llbracket D \rrbracket = \llbracket D^* \rrbracket$.

That is that. Now, let's move on to uniqueness. This is shewn by proving a small property. Prove that, for any two difference bound matrices D and D' if $\llbracket D \rrbracket = \llbracket D' \rrbracket \neq \emptyset$ and D is in a canonical form, that is $D^* = D$, then $D \leq D'$.

Finally, we wrap it up by proving, if $\llbracket D \rrbracket = \llbracket D' \rrbracket$ then $D^* = D'^*$.