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Partial order reduction for LTL\© specifications
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TTT |= ϕϕϕ iff TTT red |= ϕϕϕ
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Partial order reduction for LTL\© specifications
ltl3.4-3

TTT = TTT 1 |||TTT 2
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requirement: for all LTL\© formulas ϕϕϕ:

TTT |= ϕϕϕ iff TTT red |= ϕϕϕ

hence: ensure that the reduction yields TTT ∆
= TTT red
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given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red
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The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red
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The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

• stutter trace equivalence: TTT ∆
= TTT red

hence: TTT , TTT red are LTL\© equivalent

• TTT red is smaller than TTT
• efficient construction of TTT red is possible
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The reduced transition system TTT red
ltl3.4-6

is a fragment of TTT that results from TTT by

• a DFS-based on-the-fly analysis and

• choosing ample sets ample(s) ⊆ Act(s) for each
expanded state,

• expanding only the ααα-successors of s where
ααα ∈ ample(s)
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The reduced transition system TTT red ltl3.4-6

is a fragment of TTT that results from TTT by
. . . choosing ample sets ample(s) ⊆ Act(s)

transition relation ⇒ of TTT red is given by:

s
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=⇒ s′
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The reduced transition system TTT red ltl3.4-6

is a fragment of TTT that results from TTT by
. . . choosing ample sets ample(s) ⊆ Act(s)

transition relation ⇒ of TTT red is given by:

s
ααα→ s′ ∧ ααα ∈ ample(s)

s
ααα

=⇒ s′

ααα βββ
sTTT

ample(s) = {ααα,βββ}

ααα βββ
sTTT red

state space Sred of TTT red: all states that are reachable
from the initial states in TTT via ⇒
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Action-determinism
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Action-determinism
ltl3.4-11a

Let TTT = (S, Act,→,S0, AP, L) be a TS.

For state s:
Act(s) =

{
ααα ∈ Act : ∃t ∈ S s.t. s

ααα−→ t
}

TTT is called action-deterministic iff for all states s and
all actions ααα ∈ Act(s):

| {t ∈ S : s
ααα−→ t } | ≤ 1

notation: if ααα ∈ Act(s) then

ααα(s) = unique state t s.t. s
ααα−→ t
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Independence of actions
ltl3.4-11
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Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s))

2. ααα ∈ Act(βββ(s))

3. βββ(ααα(s)) = ααα(βββ(s))

ααα βββ

βββ ααα
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Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s))

2. ααα ∈ Act(βββ(s))

3. βββ(ααα(s)) = ααα(βββ(s))

ααα βββ

βββ ααα

s

ααα(s) βββ(s)

βββ(ααα(s)) = ααα(βββ(s))
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Conditions for ample sets
ltl3.4-A12

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)
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Conditions for ample sets
ltl3.4-A12

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s)
there is some i < n with

βββ i ∈ ample(s)
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Conditions for ample sets ltl3.4-A3

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition

if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions
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Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα
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Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1
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Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

TTT �|= �(y �= 6)
TTT red |= �(y �= 6)

(A2) violated as βββ2,ααα dependent
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Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0

ααα
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Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα
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Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i ), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

59 / 275



Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i ), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 1:

s0 s1 s2 . . . sn−1 sn s ′n
βββ1 βββ2 βββ3 βββn−1 βββn ααα

s0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′n
ααα βββ2 βββ3 βββn−2 βββn−1 βββn
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ααα βββ2 βββ3 βββn−2 βββn−1 βββn
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Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i ), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 2:

s0 s1 s2 s3 . . .βββ1 βββ2 βββ3 βββ4

s0 s ′0 s ′1 s ′2 . . .ααα βββ1 βββ2 βββ3
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Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i ), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 2:

s0 s1 s2 s3 . . .βββ1 βββ2 βββ3 βββ4

s0 s ′0 s ′1 s ′2 . . .ααα βββ1 βββ2 βββ3
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Conditions (A1), (A2), (A3) are not sufficient
ltl3.4-30

64 / 275



Conditions (A1), (A2), (A3) are not sufficient
ltl3.4-30

There exists a finite, action-deterministic transition
system TTT and ample sets for TTT such that

TTT �∆= TTT red

remind:
∆
= stutter trace equivalence
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions TTT red

ααα2ααα1
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

ααα2ααα1
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TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

TTT �|= �¬blue

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

TTT red |= �¬blue

ααα2ααα1

71 / 275



TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

TTT �|= �¬blue

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

TTT red |= �¬blue

ααα2ααα1

βββ

βββ
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transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1
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transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1
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transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1
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transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1

. . .ααα1 ααα2 ααα1 βββ ααα2 ααα1

. . .ααα1 ααα2 ααα1 ααα2

...

�≡
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transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1

. . .ααα1 ααα2 ααα1 βββ ααα2 ααα1

. . .ααα1 ααα2 ααα1 ααα2

...

�≡

= the unique execution of TTT red
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4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

78 / 275



4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)
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4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions
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4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) cycle condition
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4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
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4 conditions for ample sets ltl3.4-34

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
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4 conditions for ample sets ltl3.4-34

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

TTT ∆
= TTT red

remind:
∆
= stutter trace equivalence
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

TTT ∆
= TTT red

hence: for all LTL\© formulas ϕϕϕ:

TTT |= ϕϕϕ iff TTT red |= ϕϕϕ
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof: show that

TTT � TTT red and TTT red � TTT

where � = stutter trace inclusion
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof:

• TTT red � TTT :
√
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Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof:

• TTT red � TTT :
√

• TTT � TTT red:
show that each execution ρρρ of TTT can be
transformed into a stutter equivalent execution
ρρρ′ of TTT red
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Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red
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Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red

idea: ρρρ′ results from the “limit” of transformations

ρρρ = ρρρ0 � ρρρ1 � ρρρ2 � ρρρ3 �
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Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red

idea: ρρρ′ results from the “limit” of transformations

ρρρ = ρρρ0 � ρρρ1 � ρρρ2 � ρρρ3 �
where, for i > j ≥ 0, the execution fragments ρρρi and
ρρρj have a common prefix

• of length j

• consisting of transitions in TTT red
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Stepwise transformation ρρρ0 � ρρρ1
ltl3.4-35a
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

by (A3): ααα is a stutter action in cases 1 and 2
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .
∆
= ρρρ0

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

∆
= ρρρ0

by (A3): ααα is a stutter action in cases 1 and 2
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Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .
∆
= ρρρ0

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

∆
= ρρρ0

ρρρ1 � ρρρ2:
repeat the same procedure from the 2nd state on 104 / 275



Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed
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Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions
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Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions

• adding independent stutter actions

107 / 275



Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions

• adding independent stutter actions

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

by successively applying the following transformations:
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

s0
ααα⇒βββ1→ . . .

βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

s0
ααα⇒βββ1→ . . .

βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

s0
ααα⇒βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where for i < j the executions ρρρj and ρρρi have a
common prefix of length i which is a path fragment
in TTT red

116 / 275



Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where for i < j the executions ρρρj and ρρρi have a
common prefix of length i which is a path fragment
in TTT red,i.e., ρρρi has the form

ρρρi = s0 ⇒ s1 ⇒ . . .⇒ si︸ ︷︷ ︸
in TTT red

→ si+1 → si+2 → . . .︸ ︷︷ ︸
in TTT
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Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where

ρρρi = s0 ⇒ s1 ⇒ . . .⇒ si → si+1 → si+2 → si+3 → . .

ρρρi+1 = s0 ⇒ s1 ⇒ . . .⇒ si ⇒ si+1 → si+2 → si+3 → . .

ρρρi+2 = s0 ⇒ s1 ⇒ . . .⇒ si ⇒ si+1 ⇒ si+2 → si+3 → . .
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Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)
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Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)
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Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)

for the transformation ρρρ1 � ρρρ2:

apply case 0,1 or 2 to the suffix starting in state s′0
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Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .
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Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

αααi stutter action
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Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

αααi stutter action � ρρρ0
∆
= ρρρ1

∆
= ρρρ2

∆
= . . .
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Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”
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Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1
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Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1
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Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

ρρρm+1 = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1

=⇒ . . .
βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1
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4 conditions for ample sets ltl3.4-four-cond

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
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The ample set method for LTL\© model checking
ltl3.4-37

132 / 275



The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red
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The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s),
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The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)
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The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA

where AAA is an NBA for the negation of the formula
to be checked
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The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA and nested DFS

where AAA is an NBA for the negation of the formula
to be checked
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The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA and nested DFS

where AAA is an NBA for the negation of the formula
to be checked

here: only explanations for reachability analysis
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The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated
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The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)
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The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)
• DFS-stack πππ
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The ample set method for reachability
ltl3.4-37

given: finite transition system TTT for P1‖. . .‖Pn

atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)
• DFS-stack πππ

• “local” criteria to compute ample(s) from a
syntactic representation of the processes Pi
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s);

OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);

OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);

OD
OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V

FI
OD

OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′);

FI
OD

OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);

FI
OD

OD
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Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
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The ample set method for reachability ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
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Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
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Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);

IF s �|= a THEN return “NO” FI;

IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN ....
ELSE Pop(πππ)

FI
OD
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Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);

IF s �|= a THEN return “NO” + counterexample FI;

IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN ....
ELSE Pop(πππ)

FI
OD
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Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}
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Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}

���0

m0

n0

���1

m1

n1

b := 1 b := 0

b ¬b

¬b b
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Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}
• AP = {n0, n1}

���0

m0

n0

���1

m1

n1

b := 1 b := 0

b ¬b

¬b b
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Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}
• AP = {n0, n1}

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1
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���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1
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���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1
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���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1
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���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1

βββ0 and βββ1 are never enabled simultaneously
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���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1

γγγ0 δδδ1 γγγ0 βββ1
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���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
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���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1
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���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

ααα1

ααα1
ααα1

ααα0

ααα0ααα0

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1
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���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

AP = {n0, n1}

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

ααα1

ααα1
ααα1

ααα0

ααα0ααα0

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

AP = {n0, n1}
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

AP = {n0, n1}

ample(���0���1¬b) =

168 / 275



Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ1 δδδ0

δδδ0 δδδ1

AP = {n0, n1}

ample(���0���1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0},
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1 βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}

172 / 275



Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
note:

ααα1 closes cycle (A4),
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
note:

ααα1 closes cycle (A4),
βββ0 no stutter action (A3)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

δδδ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) =
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)
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Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ1

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)
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reduction: 8 out of 12 states ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ1

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)
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Nested DFS with POR
ltl3.4-41
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Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s
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Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)

• is called for each state s that violates the
persistence condition a
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Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)

• is called for each state s that violates the
persistence condition a

• must not be started before the outer DFS is
finished for s
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Nested DFS ltl3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)
• is called for each state s that violates the

persistence condition a
• must not be started before the outer DFS is

finished for s
• early termination
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Nested DFS ltl3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)
• is called for each state s that violates the

persistence condition a
• must not be started before the outer DFS is

finished for s
• early termination, e.g., abort with the answer

CYCLE CHECK(s) = true

as soon as the inner DFS visits a state in the
DFS-stack of the outer DFS
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Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:
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Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets
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Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets

implementation: uses a hash-table for the set of
states that have been visited in the outer DFS
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Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS
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Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits
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Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS
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Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS

• c = 1 iff s is in the DFS stack
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Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS

• c = 1 iff s is in the DFS stack

• for Act(s) = {ααα1, . . . ,αααk}:
ai = 1 iff αααi ∈ ample(s)
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On-the-fly construction of TTT red
ltl3.4-42
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On-the-fly construction of TTT red
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
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On-the-fly construction of TTT red
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification
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On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

206 / 275



On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process Pi

fulfills (A1), (A2), (A3)
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On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process Pi

fulfills (A1), (A2), (A3) and ensure (A4) by
searching for backward edges in TTT red
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Computing the ample set for state s ltl3.4-42
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...

IF the expansion of s finds a backwards edge s′ =⇒ s
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Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...

IF the expansion of s finds a backwards edge s′ =⇒ s
THEN ample(s) := Act(s) FI
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}

ααα1

223 / 275



Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}
DFS(t)
ample(t) = {ααα2}

ααα1 ααα2
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

ααα1 ααα2
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

ααα1 ααα2

βββ
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

DFS(u) . . .

ααα1 ααα2 ααα1

βββ βββ
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Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

DFS(u) . . .
DFS(v) . . .

ααα1 ααα2 ααα1 ααα2

βββ βββ
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Computing the ample set for state s ltl3.4-44

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) holds

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI
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Checking the dependence condition (A2)? ltl3.4-44

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)

IF A �= ∅ and (A2) holds

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI
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Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition
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Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the reachability problem
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Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system TTT , a ∈ AP

question: does TTT �|= ∃♦a hold?
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Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition: ←− global condition

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system TTT , a ∈ AP

question: does TTT �|= ∃♦a hold?
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Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT
a ∈ AP

question: does TTT �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)
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Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT
a ∈ AP

question: does TTT �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system TTT ′, ample sets for TTT ′

question: does (A2) hold?
i.e., does for each execution fragment in TTT ′

s
βββ1→ βββ2→ . . .

βββi−1→ βββ i→ βββ i+1→ . . .
βββn−1→ βββn→

such that βββn is dependent from ample(s)
there is some i < n with βββ i ∈ ample(s)?
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Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT and initial state s0

a ∈ AP

question: does s0 �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system TTT ′, ample sets for TTT ′

question: does (A2) hold?
i.e., does for each execution fragment in TTT ′

s
βββ1→ βββ2→ . . .

βββi−1→ βββ i→ βββ i+1→ . . .
βββn−1→ βββn→

such that βββn is dependent from ample(s)
there is some i < n with βββ i ∈ ample(s)?
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

242 / 275



Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

• ααα is independent from all actions in TTT
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Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

• ααα is independent from all actions in TTT
• βββ is enabled exactly in the states t with t |= a
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ

ααα,βββ dependent
ααα independent from
all other actions
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finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ

ααα,βββ dependent
ααα independent from
all other actions

ample(s0) = {ααα}
ample(u) = Act(u)
for all other states u
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Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition
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Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn
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Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn

e.g., the Pi’s are given as program graphs of a channel
system.

253 / 275



Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn

e.g., the Pi’s are given as program graphs of a channel
system. Then: each state s has the form

s = 〈���1, . . ., ���n, ηηη, ξξξ〉

where ���i is a location of process Pi, ηηη a variable
evaluation, ξξξ a channel evaluation
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Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.
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Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.
For state s:

Act i(s) = Act i ∩ Act(s)

= set of actions of process Pi

that are enabled in s
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Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.
For state s:

Act i(s) = Act i ∩ Act(s)

= set of actions of process Pi

that are enabled in s

Provide local criteria such that ample(s) = Act i(s)
fulfills the dependency condition (A2)
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s)
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t. γγγ can enable an action βββ ∈ Act i \ Act(s)
from some state s′ with location ���i for process Pi
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈. . . , ���j, . . . , ���i, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.
〈. . . hj . . . ���i . . . 〉

γγγ−→ 〈. . . kj . . . ���i . . . 〉
βββ−→

βββ � ↓
for some βββ ∈ Act i \ Act(s)
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Local criterion for condition (A2) ltl3.4-45

Let s = 〈. . . , ���j, . . . , ���i, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.
〈. . . hj . . . ���i . . . 〉

γγγ−→ 〈. . . kj . . . ���i . . . 〉
βββ−→

βββ � ↓
for some βββ ∈ Act i \ Act(s)

Then (A2) holds for ample(s) = Act i(s).
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Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
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... expansion of state s = 〈. . . ���j . . . ���i . . .〉
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(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that
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Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that

〈. . . hj . . . ���i . . . 〉
γγγ−→ 〈. . . kj . . . ���i . . . 〉

βββ−→
βββ � ↓

for some βββ ∈ Act i \ A
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Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that

〈. . . hj . . . ���i . . . 〉
γγγ−→ 〈. . . kj . . . ���i . . . 〉

βββ−→
βββ � ↓

for some βββ ∈ Act i \ A

if yes then set ample(s) := A
...
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Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ
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Let TTT 1, TTT 2 be transition systems with TTT 1
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= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

correct, as we have:

TTT i |=fair ϕϕϕ iff TTT i |= fair→ ϕϕϕ
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Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

correct, as we have:

TTT i |=fair ϕϕϕ iff TTT i |= fair→ ϕϕϕ︸ ︷︷ ︸
LTL\© formula
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