Overview: Model Checking

o
S

CoOoNSGRWDNDH-

Introduction

Modelling parallel systems
Linear Time Properties
Regular Properties

Linear Temporal Logic
Computation Tree Logic
Equivalences and Abstraction
Partial Order Reduction
Timed Automata
Probabilistic Systems

1/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems

2/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems
e analyze representatives of path equivalence
classes

3/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems

e analyze representatives of path equivalence
classes that represent the same the same
behavior up to the interleaving order

4/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems

e analyze representatives of path equivalence
classes that represent the same the same
behavior up to the interleaving order

T=T1|||7T>

5/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems

e analyze representatives of path equivalence
classes that represent the same the same
behavior up to the interleaving order

T=T1|||7T>

6/275

Basic idea of partial order reduction
LTL3.4-3

e for asynchronous systems

e analyze representatives of path equivalence
classes that represent the same the same
behavior up to the interleaving order

T:TllHTz Tred

7/275

Partial order reduction for LTL, -, specifications
LTL3.4-3

Tred
B

a7

(8%

B2

8/275

Partial order reduction for LTL, -, specifications
LTL3.4-3

Tred
B

a7

(0]
B2

requirement: for all LTL,~ formulas ¢:

TEe iff TegEe@

9/275

Partial order reduction for LTL, -, specifications
LTL3.4-3

T:T1|‘|T2 Tred
B1

a7

(0]
B2

requirement: for all LTL,~ formulas ¢:

TEe iff TegEe@

hence: ensure that the reduction yields 7° 2 T red

10/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 .4

11/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)

12/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T
goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

13/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

14 /275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

15/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

16/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

17/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

18/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

19/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

20/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

21/275

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

22/275

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

requirements:

23/275

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

requirements:

e stutter trace equivalence: 7 2 T red

24/275

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

requirements:

e stutter trace equivalence: 7 2 T red
hence: 7, T g are LTL, -, equivalent

25 /275

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

requirements:

e stutter trace equivalence: 7 2 T red
hence: 7, T g are LTL, -, equivalent

o T .4 is smaller than 7

26 /275

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS 7T

goal: on-the-fly construction of a fragment 7 o4
by selecting action-sets ample(s) C Act(s)
and expanding only the a-successors of s
where o € ample(s)

requirements:

e stutter trace equivalence: 7 2 T red
hence: 7, T g are LTL, -, equivalent

o T .4 is smaller than 7

e efficient construction of 7 4 is possible

27 /275

The reduced transition system 7 4
LTL3.4-6

is a fragment of 7 that results from 7" by
e a DFS-based on-the-fly analysis and

e choosing ample sets ample(s) C Act(s) for each
expanded state,

e expanding only the a-successors of s where
a € ample(s)

28/275

The reduced transition system 7 4
LTL3.4-6
is a fragment of 7 that results from 7" by

e a DFS-based on-the-fly analysis and

e choosing ample sets ample(s) C Act(s) for each
expanded state,

e expanding only the a-successors of s where
a € ample(s)

transition relation = of 7 o4 is given by:

s 55 A a€ample(s)

o,y
S — S

29/275

The reduced transition system 7 4 LTL3.4-6

is a fragment of 7 that results from 7 by
... choosing ample sets ample(s) C Act(s)

transition relation = of 7 o4 is given by:

s %' A a€ample(s)

a /
S — S

S

30/275

The reduced transition system 7 4 LTL3.4-6

is a fragment of 7 that results from 7 by
... choosing ample sets ample(s) C Act(s)

transition relation = of 7 o4 is given by:

s %' A a€ample(s)

a /
S — S

S
ample(s) = {a, 5}

state space S, Of T oq: all states that are reachable
from the initial states in 7 via =

31/275

Action-determinism
LTL3.4-11A

32/275

Action-determinism
LTL3.4-11A

Let 7 = (S, Act,—,So, AP, L) be a transition
system.

33/275

Action-determinism
LTL3.4-11A

Let 7 = (S, Act,—,So, AP, L) be a transition
system.

For state s:

Act(s) = {@ € Act : It€Sst.s—t}

34 /275

Action-determinism
LTL3.4-11A

Let 7 = (S, Act,—,So, AP, L) be a transition
system.

For state s:
Act(s) = {@ € Act : It€Sst.s—t}

T is called action-deterministic iff for all states s
and all actions a € Act(s):

{teS:s-SHt}]| <1

35/275

Action-determinism
LTL3.4-11A

Let 7 = (S, Act,—,So, AP, L) be a TS.

For state s:
Act(s) = {@ € Act: Ft€Sst. s ——t}

T is called action-deterministic iff for all states s and
all actions a € Act(s):

{teS st} <1
notation: if a € Act(s) then

a(s) = unique state t s.t. s —— t

36 /275

Independence of actions
LTL3.4-11

37/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

38/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

39/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

40 /275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

1. B € Act(a(s))

41/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

1. B € Act(a(s))
2. a € Act(B(s))

42/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

1. B € Act(a(s))
2. a € Act(B(s))
3. Bla(s)) = a(B(s))

S)

S

43/275

Independence of actions
LTL3.4-11

Let 7 be an action-deterministic transition system
with action-set Act, and a, 3 € Act.

a, 3 are called independent in T if for all states s
s.t. a, B € Act(s):

1. B € Act(a(s)) Qa I6;
2. o € Act(B(s)) a(s) B(s)
3. B(a(s)) = a(B(s)) Fre @

44 /275

Conditions for ample sets
LTL3.4-A12

(A1) nonemptiness condition

0 # ample(s) C Act(s)

45 /275

Conditions for ample sets
LTL3.4-A12

(A1) nonemptiness condition
0 # ample(s) C Act(s)

(A2) dependency condition

46 /275

Conditions for ample sets
LTL3.4-A12

(A1) nonemptiness condition
0 # ample(s) C Act(s)
(A2) dependency condition

for each execution fragment in 7

B B2 Bi-1 Bi Bina Bn-1 B
such that 3, is from ample(s)

there is some i < n with

Bi € ample(s)

47 /275

Conditions for ample sets LTL3.4-A3

(A1) nonemptiness condition
0 # ample(s) C Act(s)
(A2) dependency condition
for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B
such that (3, is dependent from ample(s) there is
some i < n with 8; € ample(s)

48 /275

Conditions for ample sets LTL3.4-A3

(A1) nonemptiness condition
0 # ample(s) C Act(s)
(A2) dependency condition
for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B
such that (3, is dependent from ample(s) there is
some i < n with 8; € ample(s)

(A3) stutter condition

49 /275

Conditions for ample sets LTL3.4-A3

(A1) nonemptiness condition
0 # ample(s) C Act(s)
(A2) dependency condition

for each execution fragment in T
B1 B2 Bi—1 Bi Bit1 Bn-1 B

such that (3, is dependent from ample(s) there is
some i < n with 8; € ample(s)
(A3) stutter condition

if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

50 /275

Example
LTL3.4-23

B1 B2 «

51/275

Example
LTL3.4-23

=2-x; y=y+1l ||| y:=3-y
B1 B2 «

52 /275

Example
LTL3.4-23

=2-x; y=y+1l ||| y:=3-y
B1 B2 «

53 /275

Example
LTL3.4-23

=2-x; y=y+1l ||| y:=3-y
B1 B2 «

54 /275

Example
LTL3.4-23

=2-x; y=y+1l ||| y:=3-y
B1 B> «

55 /275

Example
LTL3.4-23

=2-x; y=y+1l ||| y:=3-y
B1 B2 «

(A2) violated as 3, dependent

56 /275

Conditions (A2) and (A3)
Suppose

e a € ample(sy), B; ¢ ample(sp)
e (v stutter action

Bs
>

5n—4pn_]5n—1 IB” S

n

57 /275

Conditions (A2) and (A3)

LTL3.4-24A

Suppose

e a € ample(sy), B; & ample(sp)

e (¢ stutter action

B B2 Bs

S0 S1 S

o oo

B By By

58 /275

Conditions (A2) and (A3)
Suppose
e a € ample(sy), B; & ample(sp)
e « stutter action = L(s;) = L(s/), i=0,1,2,...

Py B o Bs o Pay B

ke o Ja o

s s/ s o s/ s/ s/
0 ,31 1 ,32 2 ,83 n Zﬂn—ln I,Bn n

n

59 /275

Conditions (A2) and (A3)

LTL3.4-24A

o o € ample(sp), B & ample(sp)
e « stutter action = L(s;) = L(s/), i=0,1,2,...
Br . B2 _ Bs

So 51 S e 5n—é8n_]5n—1 B Sn

@ o o o Ja o

s/ s s/ s s s
0 :81 ! 132 2 :83 5 Zﬂn—ln 1ﬂn "

case 1:
o :81 s1 ,B2 S ,83 .“,Bn—lsn_lﬂn s, « S

S o S{ 132 Sé :83 -_‘:Bn—25r/7213n—15r/71ﬂn s

5S> S~

60 /275

Conditions (A2) and (A3)

LTL3.4-24A

o o € ample(sp), B & ample(sp)
e « stutter action = L(s;) = L(s/), i=0,1,2,...

B1 B2

50

Bs ..

51 S

o o o

5,,_*8”_]5,,_1 B S

o o

/

% B1 1 B % B

case 1:

s \B1 s 132 5 B3

SOO! / 2 3

@QM s
""Bn_25,/72 {_15;71 \n Sn

la

s/ s' s
! Zﬁn—ln 1ﬂn "

61/275

Conditions (A2) and (A3) UTL3.4-24

o o € ample(sp), B & ample(sp)
e « stutter action = L(s;) = L(s/), i=0,1,2,...
s B1 s B2 5 Bs Sn_éB"_]Sn_1 Bn_ .

@ o o o Ja o

s/ s s/ s s s
0 :81 ! 132 2 :83 5 Zﬁn—ln 1ﬂn "

n

case 2:

B1 B> B3 B4

50 51 52 53
a g B o B2 s Bs

S0

62 /275

Conditions (A2) and (A3) UTL3.4-24

o o € ample(sp), B & ample(sp)
e « stutter action = L(s;) = L(s/), i=0,1,2,...
s B1 s B2 5 Bs sn_ﬁn—]sn_l B s

o o o o o o

s/ s! s s s s/
0 :81 ! 132 2 :83 5 ZIBn—ln 1ﬂn

case 2:

\,31 Bs . Ba_

\sﬂ\ﬁ\sﬁ

0 51 2

63/275

Conditions (A1), (A2), (A3) are not sufficient

LTL3.4-30

64 /275

Conditions (A1), (A2), (A3) are not sufficient

LTL3.4-30

There exists a finite, action-deterministic transition
system 7 and ample sets for 7 such that

T 7% Tred

. A .
remind: = stutter trace equivalence

65 /275

T=T.|||7T>
B

Q
O

66 /275

T, T, T =T.|||T>

B
booge Qe
O

(B, a; independent

67 /275

T, T, T =T.|||T>

(B, a; independent
a1, oy stutter actions

68 /275

T, T, T =T.|||T>

(B, a; independent
a1, oy stutter actions

69 /275

T, T, T =T.|||T>

P
b Qe Qe
B, a; independent T o4 satisfies (A1), (A2), (A3)

a1, oy stutter actions
aq @ag

70/275

T, T, T =T.|||T>

B
boege Qe

T = O-blue

B, a; independent T g satisfies (A1), (A2), (A3)

a1, oy stutter actions
aq @ag

T req = O-blue

71/275

T, T = Tl|\|’1'2
Q

b e el
O
T = O-blue

(B, a; independent T o4 satisfies (A1), A3)

a1, oy stutter actions
E

T req = O-blue

72/275

transition system 7 reduced TS 7 g

B
a1 0!2 (03] @az
B

B oy cay o) oy L
O @ @ @ @ @ .

73/275

transition system 7 reduced TS 7T g

NP
a1 0!2 (03] @az
7B

B _a _oap sy Lar Lo
O *—0—0—0

(0] (0 (0 (0] (0]
10//8. 2. 1. 2. 1

74 /275

transition system 7

(0] (0 (0
O/B 1 2.1

reduced TS 7 g

B
B

B

a1

ar _ (O
@

O O @

O & @

a1 (8%

ﬁ.al.

75 /275

transition system 7 reduced TS 7T g

NP
a1 0!2 (03] @az
7B

B oy cay o) oy L
O @ 3 @ @ @ @
aq a;) _ Qr _ (]
O O @ ﬁ @ @ @
(AR %) a; _ Gy _ O
O O O @ @ @
Q] Q) Q7 B a; _ Q)
O O O O @ @
a; oy a1
§é O O O O

76 /275

transition system 7 reduced TS 7T g

NP
a1 0!2 (03] @az
7B

0F 00929 % g% g
000l g% g0 g% g
oMol gtgmga
oMot P gmga
:051 Q; a1 Q)
2+ o002 %

= the unique execution of T ¢4

77/275

4 conditions for ample sets 13444

(A1) 0 #£ ample(s) C Act(s)

78 /275

4 conditions for ample sets 13444

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B> Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

79/275

4 conditions for ample sets 13444

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B> Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

80 /275

4 conditions for ample sets 13444

(A1) 0 #£ ample(s) C Act(s)
(A2) for each execution fragment in T
B1 B> Bi-1 Bi Bit Bn-1 B,
such that (3, is dependent from ample(s) there is
some i < n with 3; € ample(s)
(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

(A4) cycle condition

81/275

4 conditions for ample sets 13444

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cyclesy = sy = ... = s, in T g and
each action
pBe U Act(si)
0<i<n
there is some i € {1,...,n} with 3 € ample(s;)

82/275

4 conditions for ample sets 1343

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cyclesy = sy = ... = s, in T g and
each action
pBe U Act(si)
0<i<n
there is some i € {1,...,n} with 3 € ample(s;)

83/275

4 conditions for ample sets 1343

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cyclesy = sy = ... = s, in Ty and
each action
Be U Act(si)
0<i<n
there is some i € {1,...,n} with 3 € ample(s;)

84 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

85/275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system.

86 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

T é Tred

. A .
remind: = stutter trace equivalence

87 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

T é Tred
hence: for all LTL, formulas ¢:
TEe iff Teg =@

88 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions

(A1), (A2), (A3), (A4) then
T é Tred

Proof: show that
T < Tred and Tred < T

where < = stutter trace inclusion

89 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

T =T

Proof:
o Tred < T: \/

90 /275

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let 7 be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

T =T

Proof:
T, g IT:/
o 7T 1 T,y4:
show that each execution p of 7 can be
transformed into a stutter equivalent execution

pof Ty

91/275

Proof of T < 7T o4

LTL3.4-35A

given: infinite execution fragment p of 7

goal: construction of a stutter equivalent
execution fragment p’ of 7 oy

92/275

Proof of T < 7T o4

LTL3.4-35A

given: infinite execution fragment p of 7

goal: construction of a stutter equivalent
execution fragment p’ of 7 oy

idea: p’ results from the “limit" of transformations

93 /275

Proof of T < 7T o4

LTL3.4-35A

given: infinite execution fragment p of 7

goal: construction of a stutter equivalent
execution fragment p’ of 7 oy

idea: p’ results from the “limit" of transformations

P = Po~> p1~> P2~ P3
where, for i > j > 0, the execution fragments p; and
p; have a common prefix
e of length |

e consisting of transitions in 7 4

94 /275

Stepwise transformation pg ~~ p1

LTL3.4-35A

95 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= sp oL witha e ample(sp)

96 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= sp oL witha e ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

97 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)

98 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P B2 B3
P1L= S0 .o = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)
a B Bn—2Bn-1Bni1 Bni2

P1L = S0

99 /275

Stepwise transformation pg ~~ p1 L3435

case 0:

case 1:

case 2:

a B B B3

Po = S ... with a € ample(s)
a Pr1_ B B3

P1L= S0 .o = Po
B1 B2 Br-1 a Bni1 B2

PO — S0 Ce c

where B1,...,8,1 ¢ ample(sp), o € ample(sp)
a B Bn—2Bn-1Bni1 Bni2

pPL= %0
B1 B2 B3
Po— Sy————>——...

where 3; & ample(sp), i =1,2,...

100 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)
a B Bn—2Bn-1Bni1 Bni2

P1L= S0
] B1 B2 B3
case 2: pg= Sp————— ...
where 3; & ample(sp), i =1,2,...

a B1 B2 B3
P1L—= 5

101 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)
a B Bn—2Bn-1Bni1 Bni2

P1= S0
] B1 B2 B3
case 2: pg= Sp————— ...
where 3; & ample(sp), i =1,2,...
_ a Pi1_ B B3
P1L—= 5

by (A3): « is a stutter action in cases 1 and 2

102 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)

a B Bn—2 Bn—1 Bnt1 Bni2 A
e ... = Po

P1L = S0

] B1 B2 B3
case 2: pg= Sp————— ...
where 3; & ample(sp), i =1,2,...

a Bi1 B B A

by (A3): « is a stutter action in cases 1 and 2

103 /275

Stepwise transformation pg ~~ p1 L3435

case 0: po= s o ln B with a € ample(sp)

a P11 B2 B3
P1L—= S0 ... = Po

B1 B2 Bro1 o PBnti Bni2

case 1I: pg= 5

where B1,...,8,1 ¢ ample(sp), o € ample(sp)

a B Bn—2 Bn—1 Bnt1 Bni2 A
e ... = Po

P1L = S0

] B1 B2 B3
case 2: pg= Sp————— ...
where 3; & ample(sy), i =1,2,...

a Bi1 B B A

pP1 ~ P2
repeat the same procedure from the 2nd state on ...

Stutter trace equivalence of 7 and 7 ,.q

LTL3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution p in T,
a stutter trace equivalent execution preq in 7 req

can be constructed

105 /275

Stutter trace equivalence of 7 and 7 ,.q

LTL3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution p in T,
a stutter trace equivalent execution preq in 7 req

can be constructed by successively

e permutating the order independent actions

106 /275

Stutter trace equivalence of 7 and 7 ,.q

LTL3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution p in T,
a stutter trace equivalent execution preq in 7 req

can be constructed by successively
e permutating the order independent actions

e adding independent stutter actions

107 /275

Stutter trace equivalence of 7 and 7 ,.q

LTL3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution p in T,
a stutter trace equivalent execution preq in 7 req

can be constructed by successively
e permutating the order independent actions

e adding independent stutter actions

execution preq in 7 req
A

execution pin 7~
st. p = Pred

108 /275

Stutter trace equivalence of 7 and 7 ,.q LrL3.4-21

execution pPreq in 7 req

execution pin 7~ A
st. p = Pred

109 /275

Stutter trace equivalence of 7 and 7 ,.q LrL3.4-21

execution pPreq in 7 req

execution pin 7~ A
st. p = Pred

by successively applying the following transformations:

110 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7 req

execution p in 7~ A
st. p = Pred
case 0: p = sposp— ... with o € ample(sg)
. }31 ,Bn o .
case I. p= sp—...———...with a € ample(sp)
Bi¢ ample(so)
case 2. p = so&&ﬁ . with ;¢ ample(sp)

111/275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7 req

execution p in 7~ A
st. p = Pred
case 0: p = sposp— ... with o € ample(sg)
@
}31 ,Bn o .
case I. p= sp—...———...with a € ample(sp)
Bi¢ ample(so)

case 2. p = so&&ﬁ . with 3;¢ ample(sp)

112 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7 req

execution p in 7~ A
st. p = Pred
case 0: p = sposp— ... with o € ample(sg)
&
}31 ,Bn o .
case I. p= sp—...———...with a € ample(sp)
Bi¢ ample(so)
(07 ﬂl n
So=—~>— ——
) B1 B2 B3 .
case 2. p= Sp——... with ;¢ ample(sp)

113 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7 req

execution p in 7~ A
st. p = Pred
case 0: p = sposp— ... with o € ample(sg)
@
,Bl ,Bn o .
case I. p= sp—...———...with a € ample(sp)
Bi¢ ample(so)
& ﬂl ﬂn
So=—~>— L ——
) B1 B2 B3 .
case 2. p= sp——— with ;¢ ample(sp)
sos 22 for some o € ample(sg)

114 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7 eq

execution pin 7~ A
st. p = Pred

Pred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

P~ P~ P2~ P3 .

115 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7T e
A
s.t. p — pred

Pred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

execution pin 7~

P~ p1 e P2 P3

where for i < j the executions p; and p; have a
common prefix of length i which is a path fragment

in Tred

116 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7T e
A
s.t. p — pred

Pred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

execution pin 7~

P~ p1 e P2 P3

where for i < j the executions p; and p; have a
common prefix of length i which is a path fragment
in 7 eq,i.e., p; has the form

pi:§0$51$...jsji—>si+1—>si+2—>...

7

WV Vo
in 7T g in7T

117 /275

Stutter trace equivalence of 7 and 7 ,.q 1r13.4-21

execution preq in 7T e
A
s.t. p = Pred

Pred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

execution p in 7~

P~ PL S o P3

where
Pi = Sp = S1 = ... = S > Sj41 7 Si42 — Si43 — ..
Pi+1 = Sop = S1 = ... = S = Si41 — Si42 ~> Sj43 — ..

Pir2 = SO =>S1 = ... = S = Siy1 = Sj4+2 —> Si43 — ..

118 /275

Transformation p ~ p; 1TL3.4-21

case 0: p= sy—sh—... with a € ample(sp)
. ﬁl ,Bn [0 .
case I. p= sp—...———...witha € ample(sp)
B¢ ample(sp)
case 2. p= Sg... with 3¢ ample(sp)

119/275

Transformation p ~ p; 1TL3.4-21

case 0: p= sy—sh—... with a € ample(sp)
&
p1 = So=Syp—
case I. p = soﬁ e witha e ample(sg)
B¢ ample(sp)
case 2. p= Sg... with 3¢ ample(sp)

120 /275

Transformation p ~ p; 1TL3.4-21

case 0: p= sy—sh—... with a € ample(sp)
&
p1 = Sp=5S)—
. ;51 ,Bn [0 .
case I: p= sp—...———...with a € ample(sp)
Bi¢ ample(sp)
pr= so2s
i _ B1 B2 B3 .
case 2. p= Ssp———r... with ;¢ ample(sp)

121/275

Transformation p ~ p; 1TL3.4-21

case 0: p= sy—sh—... with a € ample(sp)
&
p1 = Sp=5S)—
case I. p = soﬁ e witha e ample(sp)
B¢ ample(sp)
o 4 Pl ﬁn
p1L= Sp=Sp— ... ——
case 2. p = soﬁ—2>—3> . with ;¢ ample(sp)
p1 = 50%56—1>&>—3> ... for some a € ample(sp)

122 /275

Transformation p ~ p; 1TL3.4-21

case 0: p= sy—sh—... with a € ample(sp)
p1 = 50§>56—> e
. o B1 Bn « .
case I. p= sp—...———...witha € ample(sp)
B¢ ample(sp)
i _ B1 B2 B3 .
case 2. p= sp—o——r... with 3¢ ample(sp)
p1 = SO%S{J&&& ... for some o € ample(sp)

for the transformation p; ~~ p»:

apply case 0,1 or 2 to the suffix starting in state s,

123 /275

Transformation according to cases 1 and 2

171.3.4-36
PO — Soih.. E&M
P1 — Soéslih.. Ei%
P2 = So%%@ﬂm.. E&M
;. a QAm B1 Bx Bt

Pm = S0 Sm

124 /275

Transformation according to cases 1 and 2

LTL3.4-36
B1 Br-1 Bk Brt1
PO — So—— . .. —_— > ...
P1 — S] st ﬂl o ,Bk—l ,Bk ﬁk+1
p2 — S a; Q3 5 ﬂl ,kal ,Bk ﬂk+1
(o7} Q) an\ ﬂl ,Bk ﬁk+1
Pm — 50 c. Sm .. .

«; stutter action

125 /275

Transformation according to cases 1 and 2

LTL3.4-36

Bk—1 Br Brs1
Br-1 Bk Brs1
Bk-1 Bx Brs1

:Bk ﬁk+1

_ B1
PO — So—— ...
a B1
p1 = Sy=—=>5]— . . .
a o« B
P2 = 50:1>:2>52—1> c.
o ap om B1
Pm — 50 e Sm

o stutter action ~ py = Pl = p2 =

126 /275

Transformation according to cases 1 and 2
LTL3.4-36

B1 Br-1 Bk Brt1
po = So— ... S S L
P1 — S g st ﬂl o ,Bk—l ,Bk ﬁk+1
oy = s a1 a 5 B1 Br-1 Bk Brt1
(e 7%} Q) an\ ﬂl ,Bk ﬁk+1
Pm= S S o .

by the cycle condition (A4):

“action (31 will not be postponed forever”

127 /275

Transformation according to cases 1 and 2

B1 Br-1 Bk Bri1
pPo = So— ... ——— ...
p1 = s o s, B1 Br-1 Bk Brt1
p2 _ S a; Qap s ﬂl ,Bk—l ,Bk ﬁk+1
. a; Q3 am ﬂl ,Bk ﬂk+1
Pm =) ce Sm ce

by the cycle condition (A4):
“action 31 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and Pm = Pm+1

128/275

Transformation according to cases 1 and 2

B1 Br-1 Bk Bri1
pPo = So— ... ——— ...
p1 = s o s, B1 Br-1 Bk Brt1
p2 _ S a; Qap s ﬂl ,Bk—l ,Bk ﬁk+1
. a; Q3 am ﬂl ,Bk ﬂk+1
Pm =) ce Sm ce

by the cycle condition (A4):
“action 31 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and Pm = Pm+1

129/275

Transformation according to cases 1 and 2

B1 Br-1 Bk Bri1
pPo = So— ... — L.
p1 = s o s, B1 Br-1 Bk Brt1
a1 «@ B1 Bk-1 Bi Brs1
pPo = Sy S —— .. . S Itk S
. a; Q3 QO ﬂl ,Bk ﬂk+1
Pm =) ce Sm ce
a; @ a B1 Bk Bt
Pm+1 = S0 ﬂSm R A I

by the cycle condition (A4):
“action 31 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and Pm = Pm+1

130 /275

4 conditions for ample sets i3 1r0ur-con

(A1) 0 #£ ample(s) C Act(s)

(A2) for each execution fragment in T
B1 B2 Bi-1 Bi Bit Bn-1 B,

such that (3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) if ample(s) # Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cyclesy = sy = ... = s, in T g and
each action
pBe U Act(si)
0<i<n
there is some i € {1,...,n} with 3 € ample(s;)

131/275

The ample set method for LTL, model checking

LTL3.4-37

132/275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

133 /275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

e exploration of state s:

create the states a(s) for a € ample(s),

134 /275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

e exploration of state s:

create the states a(s) for a € ample(s), but
ignore the [3-successors of s for 3 ¢ ample(s)

135 /275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

e exploration of state s:

create the states a(s) for a € ample(s), but
ignore the [3-successors of s for 3 ¢ ample(s)

e interleave the generation of 7T o4 with the
product construction T ,oq ® A

where A is an NBA for the negation of the formula
to be checked

136 /275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

e exploration of state s:

create the states a(s) for a € ample(s), but
ignore the [3-successors of s for 3 ¢ ample(s)

e interleave the generation of 7T o4 with the
product construction 7 ,oq ® A and

where A is an NBA for the negation of the formula
to be checked

137 /275

The ample set method for LTL, model checking

LTL3.4-37

e on-the-fly DFS-based generatation of 7 oy

e exploration of state s:
create the states a(s) for a € ample(s), but

ignore the [3-successors of s for 3 ¢ ample(s)

e interleave the generation of 7T o4 with the
product construction 7 ,oq ® A and

where A is an NBA for the negation of the formula
to be checked

here: only explanations for reachability analysis

138/275

The ample set method for reachability
LTL3.4-37

given: finite transition system 7°
atomic proposition a

goal: on-the-fly construction of 7T 4
abort as soon as a state s with
s [~ a has been generated

139/275

The ample set method for reachability
LTL3.4-37

given: finite transition system 7°
atomic proposition a

goal: on-the-fly construction of 7T 4
abort as soon as a state s with
s [~ a has been generated

uses
e V = set of states that have been generated so
far (organized as a hash table)

140 /275

The ample set method for reachability
LTL3.4-37

given: finite transition system 7°
atomic proposition a

goal: on-the-fly construction of 7T 4
abort as soon as a state s with
s [~ a has been generated

uses
e V = set of states that have been generated so
far (organized as a hash table)
e DFS-stack 7

141 /275

The ample set method for reachability
LTL3.4-37

given: finite transition system 7T for Py||...||P,
atomic proposition a

goal: on-the-fly construction of 7T 4
abort as soon as a state s with
s [~ a has been generated

uses
e V = set of states that have been generated so
far (organized as a hash table)
e DFS-stack 7
e “local” criteria to compute ample(s) from a
syntactic representation of the processes P;

142 /275

Ample set method (full generation of 7 o) s

m:=0:V:=10(

WHILE S, £ V DO
select an initial state s € Sp \ V; add s to V;
Push(w, s);

143 /275

Ample set method (full generation of 7 o) s

m:=0:V:=10(

WHILE S, ¢ V DO
select an initial state s € Sp \ V; add s to V;
Push(m,s); compute ample(s);

144 /275

Ample set method (full generation of 7 ,eq)

mi=0;V:=10
WHILE S, Z V DO

select an initial state s € Sp \ V; add s to V;

Push(m, s); compute ample(s);
WHILE 7 # () DO
s := Top(m);

(0]0)
ob

LTL3.4-37

145 /275

Ample set method (full generation of 7 ,eq)

mi=0;V:=10
WHILE S, ¢ V DO

select an initial state s € Sp \ V; add s to V;

Push(m,s); compute ample(s);
WHILE 7 + () DO

s := Top(m);

IF Ja € ample(s) with a(s) € V

@)
O
‘U‘

LTL3.4-37

146 / 275

Ample set method (full generation of 7 o) s

m:=0:V:=10(
WHILE S, ¢ V DO
select an initial state s € Sp \ V; add s to V;
Push(m,s); compute ample(s);
WHILE 7 + () DO
s := Top(m);
IF Ja € ample(s) with a(s) € V
THEN select such «; add s’ := a(s) to V;
Push(w,s');

(0]0)
(0]0)

147 /275

Ample set method (full generation of 7 o) s

mi=0;V:=10
WHILE S, ¢ V DO
select an initial state s € Sp \ V; add s to V;
Push(m, s); compute ample(s);
WHILE 7 # () DO
s := Top(m);
IF Ja € ample(s) with a(s) € V
THEN select such «; add s’ := a(s) to V;
Push(m,s’); compute ample(s');

(0]0)
(0]0)

148 /275

Ample set method (full generation of 7 o) s

mi=0;V:=10
WHILE S, ¢ V DO
select an initial state s € Sp \ V; add s to V;
Push(m, s); compute ample(s);
WHILE 7 # () DO
s := Top(m);
IF Ja € ample(s) with a(s) € V
THEN select such «; add s’ := a(s) to V;
Push(m,s’); compute ample(s');
ELSE Pop(m)
|
(0]5)
oD

149 /275

The ample set method for reachability
m:=0;,V:=10
WHILE S, £ V DO
select an initial state s € Sp \ V; add s to V;
Push(m, s); compute ample(s);
WHILE 7« # () DO
s := Top(m);
IF Ja € ample(s) with a(s) € V
THEN select such «; add s’ := a(s) to V;

Push(m,s’); compute ample(s’);
ELSE Pop(m)

LTL3.4-37

‘o
© ‘c o

150 /275

Does 7 |= Ua hold?

=0 V:=10(
WHILE S, ¢ V DO
select an initial state s € Sp \ V; add s to V;
Push(m,s); compute ample(s);
WHILE 7 + (DO
s := Top(m);
IF Ja € ample(s) with a(s) € V
THEN select such «; add s’ := a(s) to V;

Push(m,s’); compute ample(s’);
ELSE Pop(m)

LTL3.4-37

‘O
© ‘c Ja

151 /275

Does 7 |= Ua hold? Ur13.4.37

=0 V:=10(

WHILE S, ¢ V DO
select an initial state s € Sy \ V; add s to V;
Push(m,s); compute ample(s);
WHILE 7 + (DO

s := Top(m);
IF s = a THEN return “NO” FI;
IF Ja € ample(s) with a(s) € V

ELSE Pop(m)

‘O
© ‘U |m

152 /275

Does 7 |= Ua hold? Ur13.4.37

=0 V:=10(

WHILE S, ¢ V DO
select an initial state s € Sy \ V; add s to V;
Push(m,s); compute ample(s);
WHILE 7 + (DO

s := Top(m);
IF s = a THEN return “NO" + FI;
IF Ja € ample(s) with a(s) € V

ELSE Pop(m)

‘O
© ‘U |m

153 /275

Example: ample set method LTL3.4-38

full generation of 7 g for T = Tp, |p, where

e Py, P, are program graphs with shared variable
be {01}

154 /275

Example: ample set method LTL3.4-38

full generation of 7 g for T = Tp, |p, where

e Py, P, are program graphs with shared variable
be {01}

155 /275

Example: ample set method LTL3.4-38

full generation of 7 g for T = Tp, |p, where
e P, P, are program graphs with shared variable
be {0,1}
o AP = {ng,ny}

156 / 275

Example: ample set method LTL3.4-38

full generation of 7 g for T = Tp, |p, where

e Py, P, are program graphs with shared variable
be {0,1}
o AP = {no, n1}

157 /275

independent actions:

do 01 do a1 do B1 00 Y1

158 /275

independent actions:
do 01 do a1 o B1 6o M1
Qg 01 ag 31

159 /275

independent actions:
do 01 do a1 do b1 0o 71
Qg 01 ag By

Bo 61 Bo aq Bo B Bo 7

160 /275

independent actions:

do 01 do a1 do b1 0o 71
Qg 01 ag By

Bo 61 Bo oy Bo B1 Bom

(39 and 31 are never enabled simultaneously

161 /275

independent actions:
do 61
ap 01
Bo 01
Yo 01

0o @

Bo ay

do b1
ap B1
Bo B1
Yo B1

00 71

Bo 11

162 /275

163 /275

@oml—nb) 6(m0£1—|b
S0 O

gm/omlﬂb) (noél—'b)(lonib) (mem

%

164 /275

(foml—'b) 6(m0£1—|b
S0 O

gm/omlﬂ@ (noél—'b)c lonib) (mem

165 /275

@oml—nb) 6(m0£1—|b
S0 O

Em/omlﬂ@ Cnoelﬂb)CKOnlb) (mom

166 / 275

Example: on-the-fly generation of 7 g LTL3.4-40

(A /)
Cgoml_'b) (moﬁpb eomlb) Cmoélb)
NIV e W
Em/omlﬁb) (noélﬁb) (ﬁonlb) (mom@>
((nom1—b) (Cmonib).

167 /275

Example: on-the-fly generation of 7 g LTL3.4-40

(A /)
Cgoml_'b) (moﬁpb eomlb) Cmoélb)
NIV e W
Em/omlﬁb) (noélﬁb) (ﬁonlb) (mom@>
((nom1—b) (Cmonib).

ample(€ol1—b) =

168 /275

Example: on-the-fly generation of 7 g LTL3.4-40

@oml—'b) (moﬁpb eomlb) (m()e{l})
S SN XX SN
ém/ompb) (o)X Clomb) Cinomib)

(nom:1=b)

ample(€ol1—b) =

169 /275

Example: on-the-fly generation of 7 g LTL3.4-40

(A /)
@oml—'b) (moﬁpb eomlb) (moélb)
NIV e W
ém/omlﬁb) (noél—nb) (ﬁonlb) (mom@>
((nom1—b) (Cmonib).

ample(€ol1—b) = {00},

170 /275

Example: on-the-fly generation of 7 g LTL3.4-40

(A /)
@oml—'b) (mo€1—|b eomlb) (moélb)
51 TN 7
ém/omlﬁb) (noél—nb) (ﬁonlb) (mom@>
((nom1—b) (Cmonib).

ample(€ol1—b) = {00}, ample(mgl;—b) =

171/275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

172 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

ample(mom;—b) =

173 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

ample(mom;—b) =

174 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mom;—b) = {as, 0}

175 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mom;—b) = {as, 0}

note:
o closes cycle (A4),

176 / 275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mom;—b) = {as, 0}

note:
o closes cycle (A4),
no stutter action (A3)

177 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mom;—b) = {as, 0}

ample(ngm;—b) =

178 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mom;—b) = {as, 0}

ample(ngm;—b) =

179/275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mgm;—b) = {a1, 5o}
ample(ngm;—b) = {a1, 70}

180 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mgm;—b) = {a1, 5o}
ample(ngm;—b) = {a1,70}

note: ai, o are dependent (A2)

181/275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mgm;—b) = {a1, 5o}
ample(ngm;—b) = {a1,70}

note: ai, o are dependent (A2)

182 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mgm;—b) = {a1, 5o}
ample(ngm;—b) = {a1,70}

note: ai, o are dependent (A2)

183 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}
ample(mgm;—b) = {a1, 5o}
ample(ngm;—b) = {a1,70}

note: ai, o are dependent (A2)

184 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

(
(momi—b) = {a, 3o}
(nomi—b) = {a1,70}
ample(mgn;b) =

ample
ample

185 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

(
(momi—b) = {a, fo}
(nomi—b) = {a1,70}
ample(mgnib) = {ap,71}: cycle condition (A4)

ample
ample

186 /275

Example: on-the-fly generation of 7 g LTL3.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

(
(momi—b) = {a, fo}
(nomi—b) = {a1,70}
ample(mgnib) = {ap,71}: cycle condition (A4)

ample
ample

187 /275

reduction: 8 out of 12 states 1113.4-40

ample(€ol1—b) = {do}, ample(moli—b) = {41}

(
(momi—b) = {a, fo}
(nomi—b) = {a1,70}
ample(mgnib) = {ap,71}: cycle condition (A4)

ample
ample

188 /275

Nested DFS with POR

LTL3.4-41

189 /275

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking "7 = QJa?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE _CHECK(s) searches for a
backward edge s’ — s

190 /275

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking "7 = QJa?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE _CHECK(s) searches for a
backward edge s’ — s

CYCLE_CHECK(s)

e is called for each state s that violates the
persistence condition a

191 /275

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking "7 = QJa?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE _CHECK(s) searches for a
backward edge s’ — s

CYCLE_CHECK(s)

e is called for each state s that violates the
persistence condition a

e must not be started before the outer DFS is
finished for s

192 /275

Nested DFS L1L3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE _CHECK(s) searches for a
backward edge s’ — s

CYCLE_CHECK(s)
e is called for each state s that violates the
persistence condition a
e must not be started before the outer DFS is
finished for s
e carly termination

193 /275

Nested DFS L1L3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE _CHECK(s) searches for a
backward edge s’ — s

CYCLE_CHECK(s)

e is called for each state s that violates the
persistence condition a

e must not be started before the outer DFS is
finished for s

e carly termination, e.g., abort with the answer

CYCLE_CHECK(s) = true

as soon as the inner DFS visits a state in the
DFS-stack of the outer DFS

194 /275

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set
approach:

195/275

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets

196 /275

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets

implementation: uses a hash-table for the set of
states that have been visited in the outer DFS

197 /275

Implementation of the nested DFS with POR

LTL3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

198 /275

Implementation of the nested DFS with POR

LTL3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

where s is a state and b,c,a{... .. ay are bits

199 /275

Implementation of the nested DFS with POR

LTL3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form
(s,b,c,ay,....,ak)

where s is a state and b,c,a{... .. ay are bits

e b — 1 iff s has been visited in inner DFS

200 /275

Implementation of the nested DFS with POR

LTL3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form
(s,b,c,ay,....,ak)

where s is a state and b,c,a{... .. ay are bits

e b — 1 iff s has been visited in inner DFS
e c — 1 iff sisin the DFS stack

201 /275

Implementation of the nested DFS with POR

LTL3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form
(s,b,c,ay,....,ak)

where s is a state and b,c,a{... .. ay are bits

e b — 1 iff s has been visited in inner DFS
e c — 1 iff sisin the DFS stack
o for Act(s) = {a1, ..., o }:

)

ai = 1 iff a; € ample(s)

202 /275

On-the-fly construction of 7 ,¢q

LTL3.4-42

203 /275

On-the-fly construction of 7 ,¢q

LTL3.4-42

starting point: syntactic description of the processes
Py,...,P, of a parallel system

204 /275

On-the-fly construction of 7 ,¢q

LTL3.4-42

starting point: syntactic description of the processes
Py,...,P, of a parallel system

e.g., PROMELA-specification

205 /275

On-the-fly construction of 7,4 in DFS-manner
LTL3.4-42

starting point: syntactic description of the processes
Py,...,P, of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of T o4 in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

206 / 275

On-the-fly construction of 7,4 in DFS-manner
LTL3.4-42

starting point: syntactic description of the processes
Py,...,P, of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of T o4 in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether
ample(s) = set of enabled actions of process P;

fulfills (A1), (A2), (A3)

207 /275

On-the-fly construction of 7,4 in DFS-manner
LTL3.4-42

starting point: syntactic description of the processes
Py,...,P, of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of T o4 in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process P;

fulfills (A1), (A2), (A3) and ensure (A4) by
searching for in 7 eq

208 /275

Computing the ample set for state s 1113.4-42

209 /275

Computing the ample set for state s 1113.4-42

REPEAT
select a process P; not considered before

210 /275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before
A := action set of P; N Act(s)

211/275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before
A := action set of P; N Act(s)
IF A # () and (A2) is not violated

212 /275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before
A := action set of P; N Act(s)
IF A # () and (A2) is not violated
and all actions of A are stutter actions

213 /275

Computing the ample set for state s 1113.4-42

REPEAT
select a process P; not considered before
A := action set of P; N Act(s)
IF A # () and (A2) is not violated
and all actions of A are stutter actions
THEN ample(s) :==A FIl

214 /275

Computing the ample set for state s 1113.4-42

REPEAT
select a process P; not considered before
A := action set of P; N Act(s)
IF A # () and (A2) is not violated
and all actions of A are stutter actions
THEN ample(s) :==A FIl
UNTIL all processes have been considered
or ample(s) is defined;

215 /275

Computing the ample set for state s 1113.4-42

REPEAT
select a process P; not considered before
A := action set of P; N Act(s)
IF A # () and (A2) is not violated
and all actions of A are stutter actions
THEN ample(s) :==A FIl
UNTIL all processes have been considered
or ample(s) is defined;
IF ample(s) is not yet defined
THEN ample(s) := Act(s) Fl

216 /275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before

A := action set of P; N Act(s)

IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered

or ample(s) is defined;

IF ample(s) is not yet defined

THEN ample(s) := Act(s) Fl

.. consider state a(s) for some a € ample(s) ...

217 /275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before

A := action set of P; N Act(s)

IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered

or ample(s) is defined;

IF ample(s) is not yet defined

THEN ample(s) := Act(s) Fl

.. consider state a(s) for some a € ample(s) ...

IF the expansion of s finds a s —s

218 /275

Computing the ample set for state s 1113.4-42

REPEAT

select a process P; not considered before

A := action set of P; N Act(s)

IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered

or ample(s) is defined;

IF ample(s) is not yet defined

THEN ample(s) := Act(s) Fl

.. consider state a(s) for some a € ample(s) ...
IF the expansion of s finds a s —s

THEN ample(s) := Act(s) FI

219 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2

jﬂ Qa; @az
B

220/275

Example: construction of 7 g LTL3.4-43
process 1 process 2 T = process 1||| process 2
S ,3 u

a1 (0] a1 (%)
g B

221/275

Example: construction of 7 g LTL3.4-43
process 1 process 2 T = process 1||| process 2
S ,3 u

a1 (0] a1 (%)
g B

DFS(s)

222 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll process 2

B
jﬂ a1 @ag @az (3] Qo
B B

DFS(s)
ample(s) = {a1}

223 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll process 2
B
jﬂ a1 @ag @az (3] Q-
5 B
DFS(s)
ample(s) = {a1}
DFS(t)

ample(t) = {az}

224 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll process 2
B
jﬂ a1 @ag @az (3] Q-
5 B
DFS(s)
ample(s) = {a1}
DFS(t)

ample(t) = {a,}
backward edge t — s

225 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll processl,B 2
jﬂ a1 @ag @az (3] Q-
5 B
ample(s) = {1} U {8} @

DFS(t)

ample(t) = {a,}
backward edge t — s

226 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll process 2
jﬂ Qa; @az Caz @
5 B
DFS(s) B
ample(s) = {a1} U {8} @ <0
DFS(t)

ample(t) = {a,}
backward edge t — s
DFS(u) ...

227 /275

Example: construction of 7 g LTL3.4-43

process 1 process 2 = process Ll process 2
jﬂ Qa; @az Caz @
5 B
DFS(s) B
ample(s) = {a1} U {8} @ 6
DFS(t)

ample(t) = {az)
backward edge t — s
DFS(u) ...
DFS(v) ...

228 /275

Computing the ample set for state s LTL3.4-44

REPEAT
select a process P; not considered before
A := action set of P; N Act(s)
IE A £ () and (A2) holds
and all actions of A are stutter actions
THEN ample(s) :==A FIl
UNTIL all processes have been considered
or ample(s) is defined;
IF ample(s) is not yet defined
THEN ample(s) := Act(s) Fl

229 /275

Checking the dependence condition (A2)? uusau

REPEAT
select a process P; not considered before
A := action set of P; N Act(s)
IF A = () and [(A2) holds
and all actions of A are stutter actions
THEN ample(s) :==A Fl
UNTIL all processes have been considered
or ample(s) is defined;
IF ample(s) is not yet defined
THEN ample(s) := Act(s) Fl

230 /275

Checking the dependence condition (A2)? uusau

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in T
B1 B2 Bi-1 Bi Biwa Bn-1 B,
such that 3, is dependent from ample(s) there is
some i < n with 3; € ample(s)
(A3) stutter condition
(A4) cycle condition

231/275

Checking the dependence condition (A2)? uusau

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in T
B1 B2 Bi-1 Bi Bita Bn-1 B,

such that 3, is dependent from ample(s) there is

some i < n with 3; € ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the reachability problem

232 /275

Checking the dependence condition (A2)? uusau

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in T
B1 B2 Bi-1 Bi Biwa Bn-1 B,
such that 3, is dependent from ample(s) there is
some i < n with 3; € ample(s)
(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system 7, a € AP
question: does T = 30a hold?

233 /275

Checking the dependence condition (A2)? uusau

(A1) nonemptiness condition
(A2) dependence condition: «—

for each execution fragment in 7
B B2 Bi-1 Bi Bix Bn-1 B
such that (3, is dependent from ample(s) there is
some i < n with 8; € ample(s)
(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system 7, a € AP
question: does T = J0a hold?

234 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

show that the unreachability problem

given: finite transition system 7°
acAP

question: does T [~ 30a hold?
is polynomially reducible to the problem of checking (A2)

235 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

show that the unreachability problem

given: finite transition system 7°
acAP

question: does T P~ J0a hold?
is polynomially reducible to the problem of checking (A2)
given: finite transition system 7', ample sets for 7'

question: does (A2) hold?
i.e., does for each execution fragment in 7"
BB 6 By A b
such that 3, is dependent from ample(s)
there is some i < n with 3; € ample(s)?

236 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

show that the unreachability problem

given: finite transition system 7" and initial state s
acAP

question: does sy [~ 30a hold?
is polynomially reducible to the problem of checking (A2)
given: finite transition system 7', ample sets for 7'

question: does (A2) hold?
i.e., does for each execution fragment in 7"
BB 6 By A b
such that 3, is dependent from ample(s)
there is some i < n with 3; € ample(s)?

237 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

problem checking (A2)

unreachability <poly problem of

238 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'

+ atomic prop. a ~~> + ample sets

239 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'
+ atomic prop. a ~~> + ample sets

s.t. so £ 30a iff (A2) holds

240 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'
+ atomic prop. a ~~> + ample sets
s.t. so £ 30a iff (A2) holds

T’ results from T by adding two fresh actions a;, (3 s.t.

241 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'
+ atomic prop. a ~~> + ample sets
s.t. so £ 30a iff (A2) holds

T’ results from T by adding two fresh actions a;, (3 s.t.

e « are (3 are dependent

242 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'
+ atomic prop. a ~~> + ample sets
s.t. so £ 30a iff (A2) holds

T’ results from T by adding two fresh actions a;, (3 s.t.
e « are (3 are dependent

e « is independent from all actions in 7

243 /275

Algorithmic difficulty of checking (A2) LrL3.4-44

unreachability <poly problem of
problem checking (A2)
finite TS 7 + state s finite TS 7'
+ atomic prop. a ~~> + ample sets
s.t. so £ 30a iff (A2) holds

T’ results from T by adding two fresh actions a;, (3 s.t.
e « are (3 are dependent
e « is independent from all actions in 7
e [is enabled exactly in the states t with t = a

244 /275

s.t.

finite TS T + state sg
+ atomic prop. a

so £ 30a

finite TS 7'
~~> 4+ ample sets

iff (A2) holds

245 /275

s.t.

finite TS T + state sg
+ atomic prop. a

so £ 30a

finite TS 7'
~~> 4+ ample sets

iff (A2) holds

O—E D@

246 /275

finite TS T + state sg
-+ atomic prop. a

So Fé 3<>a

finite TS T
~~> 4+ ample sets

iff (A2) holds

247 /275

finite TS T + state sg
-+ atomic prop. a

So Fé 3<>a

finite TS T
~~> 4+ ample sets

iff (A2) holds

248 /275

finite TS T + state sg
-+ atomic prop. a

So Fé 3<>a

finite TS T
~~> 4+ ample sets

iff (A2) holds

a, 3 dependent

« independent from

all other actions

249 /275

finite TS T + state sg
-+ atomic prop. a

So Fé 3<>a

finite TS T
~~> 4+ ample sets

iff (A2) holds

a, 3 dependent
« independent from
all other actions

ample(sp) = {a}
ample(u) = Act(u)
for all other states u

250 /275

Local criterion for condition (A2)
LTL3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition

251 /275

Local criterion for condition (A2)
LTL3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes P; of the
given parallel system

P1]. - -||Pn

252 /275

Local criterion for condition (A2)
LTL3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes P; of the
given parallel system

P1]. - -||Pn

e.g., the P;'s are given as program graphs of a channel
system.

253 /275

Local criterion for condition (A2)
LTL3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes P; of the
given parallel system

P1]. - -||Pn

e.g., the P;'s are given as program graphs of a channel
system. Then: each state s has the form

S = <£17 .- '7£n77]7§>

where £; is a location of process P;, 1 a variable
evaluation, & a channel evaluation

254 /275

Local criterion for condition (A2)

LTL3.4-45

Let Act; denote the set of actions of process P;.

255 /275

Local criterion for condition (A2)
LTL3.4-45

Let Act; denote the set of actions of process P;.
For state s:

Acti(s) = Act;N Act(s)

= set of actions of process P;
that are enabled in s

256 / 275

Local criterion for condition (A2)
LTL3.4-45

Let Act; denote the set of actions of process P;.
For state s:

Acti(s) = Act;N Act(s)

= set of actions of process P;
that are enabled in s

Provide such that ample(s) = Acti(s)
fulfills the dependency condition (A2)

257 /275

Local criterion for condition (A2) Lr13.4.45

Let s = <£1, o b 0l >
Suppose that

258 /275

Local criterion for condition (A2) Lr13.4.45

Let s = <£1, o b 0l >
Suppose that

(A2.1) all actions of Pj, j # i, are independent from
ACti(S)

259 /275

Local criterion for condition (A2) Lr13.4.45

Let s = <€1, o b 0l >
Suppose that

(A2.1) all actions of Pj, j # i, are independent from
Acti(s), i.e., if v € Act; for some j # i, and
a € Acti(s) then a and 7y are independent

260 /275

Local criterion for condition (A2) Lr13.4.45

Let s = <€1, o b 0l >
Suppose that

(A2.1) all actions of Pj, j # i, are independent from
Acti(s), i.e., if v € Act; for some j # i, and
a € Acti(s) then a and 7y are independent

(A2.2) there is no action 7y of a process P; where j # i
s.t.

261 /275

Local criterion for condition (A2) Lr13.4.45

Let s = <€1, o b 0l >

Suppose that

(A2.1) all actions of Pj, j # i, are independent from
Acti(s), i.e., if v € Act; for some j # i, and
a € Acti(s) then a and +y are independent

(A2.2) there is no action 7y of a process P; where j # i
s.t. 7y can enable an action 3 € Act; \ Act(s)
from some state s’ with location ¢; for process P;

262 /275

Local criterion for condition (A2) Lr13.4.45

Let s = (...,EJ-,...,&,...,En,...>.

Suppose that

(A2.1) all actions of Pj, j # i, are independent from
Acti(s), i.e., if v € Act; for some j # i, and
a € Acti(s) then a and 7y are independent

(A2.2) there is no action 7y of a process P; where j # i
s.t.
(...hj...

B/

for some 3 € Act; \ Act(s)

N A S VY S QLN

263 /275

Local criterion for condition (A2) Lr13.4.45

Let s = (...,EJ-,...,&,...,En,...>.

Suppose that

(A2.1) all actions of Pj, j # i, are independent from
Acti(s), i.e., if v € Act; for some j # i, and
a € Acti(s) then a and 7y are independent

(A2.2) there is no action 7y of a process P; where j # i
s.t.
(...hj...

By
for some 3 € Act; \ Act(s)

Then (A2) holds for ample(s) = Act;(s).

N A S VY S QLN

264 /275

Heuristics for condition (A2)

LTL3.4-45

expansion of state s = (... ¢;...0;...)

265 /275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

266 / 275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

check if for all other processes P; the following holds:

267 /275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

check if for all other processes P; the following holds:
(A2.1) all actions of P; are independent from A

268 /275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

check if for all other processes P; the following holds:
(A2.1) all actions of P; are independent from A
(A2.2) there is no action 7 of P; such that

269 /275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

check if for all other processes P; the following holds:

(A2.1) all actions of P; are independent from A

(A2.2) there is no action 7 of P; such that
Cohi i Y (ke b)2

B/
for some 3 € Act; \ A

270 /275

Heuristics for condition (A2)
LTL3.4-45

expansion of state s = (... ¢;...0;...)

A = Acti(s)

check if for all other processes P; the following holds:

(A2.1) all actions of P; are independent from A

(A2.2) there is no action 7 of P; such that
Cohi i Y (ke b)2

B/
for some 3 € Act; \ A

if yes then set ample(s) := A

271/275

Correct or wrong?
LTL3.4-46

Let 71, 7, be transition systems with 7', = 75,
and let fair be an LTL fairness assumption.

Remind: = denotes stutter trace equivalence.

E.g., Tl = T, TQ = Tred
Then, for all LTL o formulas :
Tinire it Torlnie

272 /275

Correct or wrong?
LTL3.4-46

Let 71, 7, be transition systems with 7', = 75,
and let fair be an LTL fairness assumption.

Remind: = denotes stutter trace equivalence.

E.g., Tl = T, TQ = Tred
Then, for all LTL o formulas :
Tinire it Torlnie

correct

273 /275

Correct or wrong?
LTL3.4-46

Let 71, 7, be transition systems with 7', = 75,
and let fair be an LTL fairness assumption.

Remind: = denotes stutter trace equivalence.

Eg. T1=T7,7T,="T 4

Then, for all LTL o formulas :
T iff Tolriy

correct, as we have:

Ti \:faircp iff Ti): fair—><p

274 /275

Correct or wrong?
LTL3.4-46

Let 71, 7, be transition systems with 7', = 75,
and let fair be an LTL fairness assumption.

Remind: = denotes stutter trace equivalence.
E.g., Tl = T, TQ = Tred
Then, for all LTL o formulas :

Tl ‘:fair "2 iff T2 ‘:fair "2
correct, as we have:

Ti =nicp iff T, fai
Fair | = fr—g
LTL\ - formula

275 /275

