
Overview: Model Checking

1. Introduction

2. Modelling parallel systems

3. Linear Time Properties

4. Regular Properties

5. Linear Temporal Logic

6. Computation Tree Logic

7. Equivalences and Abstraction

8. Partial Order Reduction

9. Timed Automata

10. Probabilistic Systems

1 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems

2 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems
• analyze representatives of path equivalence

classes

3 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems
• analyze representatives of path equivalence

classes that represent the same the same
behavior up to the interleaving order

4 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems
• analyze representatives of path equivalence

classes that represent the same the same
behavior up to the interleaving order

TTT = TTT 1 |||TTT 2

5 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems
• analyze representatives of path equivalence

classes that represent the same the same
behavior up to the interleaving order

TTT = TTT 1 |||TTT 2

ααα1

ααα2

βββ1

βββ2

βββ1

βββ2

ααα1

ααα2

βββ1

ααα1

ααα2

βββ2

6 / 275

Basic idea of partial order reduction
ltl3.4-3

• for asynchronous systems
• analyze representatives of path equivalence

classes that represent the same the same
behavior up to the interleaving order

TTT = TTT 1 |||TTT 2

ααα1

ααα2

βββ1

βββ2

βββ1

βββ2

ααα1

ααα2

βββ1

ααα1

ααα2

βββ2

TTT red

βββ2

βββ1

ααα1

ααα2

7 / 275

Partial order reduction for LTL\© specifications
ltl3.4-3

TTT = TTT 1 |||TTT 2

ααα1

ααα2

βββ1

βββ2

βββ1

βββ2

ααα1

ααα2

βββ1

ααα1

ααα2

βββ2

TTT red

βββ2

βββ1

ααα1

ααα2

8 / 275

Partial order reduction for LTL\© specifications
ltl3.4-3

TTT = TTT 1 |||TTT 2

ααα1

ααα2

βββ1

βββ2

βββ1

βββ2

ααα1

ααα2

βββ1

ααα1

ααα2

βββ2

TTT red

βββ2

βββ1

ααα1

ααα2

requirement: for all LTL\© formulas ϕϕϕ:

TTT |= ϕϕϕ iff TTT red |= ϕϕϕ

9 / 275

Partial order reduction for LTL\© specifications
ltl3.4-3

TTT = TTT 1 |||TTT 2

ααα1

ααα2

βββ1

βββ2

βββ1

βββ2

ααα1

ααα2

βββ1

ααα1

ααα2

βββ2

TTT red

βββ2

βββ1

ααα1

ααα2

requirement: for all LTL\© formulas ϕϕϕ:

TTT |= ϕϕϕ iff TTT red |= ϕϕϕ

hence: ensure that the reduction yields TTT ∆
= TTT red

10 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

11 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)

12 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

13 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

δδδβββ

...
...

...
...

...
...

...
...

14 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

δδδβββ

...
...

...
...

...
...

...
...

15 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

δδδβββ

...
...

...
...

...
...

...
...

16 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

δδδβββ

...
...

...
...

...
...

...
...

17 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

δδδβββ

...
...

...
...

...
...

...
...

18 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

βββ δδδ

...
...

...
...

...
...

...
...

19 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

βββ δδδ

...
...

...
...

...
...

...
...

20 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

βββ δδδ

...
...

...
...

...
...

...
...

21 / 275

The ample set method [Peled ’93]
ltl3.4-4

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

TTT ααα
βββ

γγγγγγ

βββ δδδ

...
...

...
...

...
...

...
...

TTT red

...
...

ααα

βββ δδδ

22 / 275

The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

23 / 275

The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

• stutter trace equivalence: TTT ∆
= TTT red

24 / 275

The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

• stutter trace equivalence: TTT ∆
= TTT red

hence: TTT , TTT red are LTL\© equivalent

25 / 275

The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

• stutter trace equivalence: TTT ∆
= TTT red

hence: TTT , TTT red are LTL\© equivalent

• TTT red is smaller than TTT

26 / 275

The ample set method [Peled ’93]
ltl3.4-5

given: syntactical representation of processes of TS TTT
goal: on-the-fly construction of a fragment TTT red

by selecting action-sets ample(s) ⊆ Act(s)
and expanding only the ααα-successors of s

where ααα ∈ ample(s)

requirements:

• stutter trace equivalence: TTT ∆
= TTT red

hence: TTT , TTT red are LTL\© equivalent

• TTT red is smaller than TTT
• efficient construction of TTT red is possible

27 / 275

The reduced transition system TTT red
ltl3.4-6

is a fragment of TTT that results from TTT by

• a DFS-based on-the-fly analysis and

• choosing ample sets ample(s) ⊆ Act(s) for each
expanded state,

• expanding only the ααα-successors of s where
ααα ∈ ample(s)

28 / 275

The reduced transition system TTT red
ltl3.4-6

is a fragment of TTT that results from TTT by

• a DFS-based on-the-fly analysis and

• choosing ample sets ample(s) ⊆ Act(s) for each
expanded state,

• expanding only the ααα-successors of s where
ααα ∈ ample(s)

transition relation ⇒ of TTT red is given by:

s
ααα→ s′ ∧ ααα ∈ ample(s)

s
ααα

=⇒ s′

29 / 275

The reduced transition system TTT red ltl3.4-6

is a fragment of TTT that results from TTT by
. . . choosing ample sets ample(s) ⊆ Act(s)

transition relation ⇒ of TTT red is given by:

s
ααα→ s′ ∧ ααα ∈ ample(s)

s
ααα

=⇒ s′

ααα βββ
sTTT

ample(s) = {ααα,βββ}

ααα βββ
sTTT red

30 / 275

The reduced transition system TTT red ltl3.4-6

is a fragment of TTT that results from TTT by
. . . choosing ample sets ample(s) ⊆ Act(s)

transition relation ⇒ of TTT red is given by:

s
ααα→ s′ ∧ ααα ∈ ample(s)

s
ααα

=⇒ s′

ααα βββ
sTTT

ample(s) = {ααα,βββ}

ααα βββ
sTTT red

state space Sred of TTT red: all states that are reachable
from the initial states in TTT via ⇒

31 / 275

Action-determinism
ltl3.4-11a

32 / 275

Action-determinism
ltl3.4-11a

Let TTT = (S, Act,→,S0, AP, L) be a transition
system.

33 / 275

Action-determinism
ltl3.4-11a

Let TTT = (S, Act,→,S0, AP, L) be a transition
system.

For state s:

Act(s) =
{

ααα ∈ Act : ∃t ∈ S s.t. s
ααα−→ t

}

34 / 275

Action-determinism
ltl3.4-11a

Let TTT = (S, Act,→,S0, AP, L) be a transition
system.

For state s:

Act(s) =
{

ααα ∈ Act : ∃t ∈ S s.t. s
ααα−→ t

}

TTT is called action-deterministic iff for all states s
and all actions ααα ∈ Act(s):

| {t ∈ S : s
ααα−→ t } | ≤ 1

35 / 275

Action-determinism
ltl3.4-11a

Let TTT = (S, Act,→,S0, AP, L) be a TS.

For state s:
Act(s) =

{
ααα ∈ Act : ∃t ∈ S s.t. s

ααα−→ t
}

TTT is called action-deterministic iff for all states s and
all actions ααα ∈ Act(s):

| {t ∈ S : s
ααα−→ t } | ≤ 1

notation: if ααα ∈ Act(s) then

ααα(s) = unique state t s.t. s
ααα−→ t

36/275

Independence of actions
ltl3.4-11

37 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

38 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

39 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

ααα βββ

βββ ααα

40 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s)) ααα βββ

βββ ααα

41 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s))

2. ααα ∈ Act(βββ(s))

ααα βββ

βββ ααα

42 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s))

2. ααα ∈ Act(βββ(s))

3. βββ(ααα(s)) = ααα(βββ(s))

ααα βββ

βββ ααα

43 / 275

Independence of actions
ltl3.4-11

Let TTT be an action-deterministic transition system
with action-set Act, and ααα,βββ ∈ Act.

ααα,βββ are called independent in TTT if for all states s
s.t. ααα,βββ ∈ Act(s):

1. βββ ∈ Act(ααα(s))

2. ααα ∈ Act(βββ(s))

3. βββ(ααα(s)) = ααα(βββ(s))

ααα βββ

βββ ααα

s

ααα(s) βββ(s)

βββ(ααα(s)) = ααα(βββ(s))

44 / 275

Conditions for ample sets
ltl3.4-A12

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

45 / 275

Conditions for ample sets
ltl3.4-A12

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

46 / 275

Conditions for ample sets
ltl3.4-A12

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s)
there is some i < n with

βββ i ∈ ample(s)

47 / 275

Conditions for ample sets ltl3.4-A3

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

48 / 275

Conditions for ample sets ltl3.4-A3

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition

49 / 275

Conditions for ample sets ltl3.4-A3

(A1) nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) dependency condition

for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition

if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

50 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

51 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

52 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

53 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

54 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

TTT �|= �(y �= 6)
TTT red |= �(y �= 6)

55 / 275

Example
ltl3.4-23

x := 2 · x︸ ︷︷ ︸ ; y := y + 1︸ ︷︷ ︸ ||| y := 3 · y︸ ︷︷ ︸
βββ1 βββ2 ααα

x = 1 y = 1

x = 1 y = 3

x = 2 y = 3

x = 2 y = 4

x = 2 y = 1

x = 2 y = 2

x = 2 y = 6

βββ1 ααα

βββ2 ααα βββ1

ααα βββ2

TTT �|= �(y �= 6)
TTT red |= �(y �= 6)

(A2) violated as βββ2,ααα dependent
56 / 275

Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0

ααα

57 / 275

Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

58 / 275

Conditions (A2) and (A3)
ltl3.4-24a

Suppose

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

59 / 275

Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 1:

s0 s1 s2 . . . sn−1 sn s ′n
βββ1 βββ2 βββ3 βββn−1 βββn ααα

s0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′n
ααα βββ2 βββ3 βββn−2 βββn−1 βββn

60 / 275

Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 1:

s0 s1 s2 . . . sn−1 sn s ′n
βββ1 βββ2 βββ3 βββn−1 βββn ααα

s0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′n
ααα βββ2 βββ3 βββn−2 βββn−1 βββn

61 / 275

Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 2:

s0 s1 s2 s3 . . .βββ1 βββ2 βββ3 βββ4

s0 s ′0 s ′1 s ′2 . . .ααα βββ1 βββ2 βββ3

62 / 275

Conditions (A2) and (A3) ltl3.4-24a

• ααα ∈ ample(s0), βββi �∈ ample(s0)
• ααα stutter action ⇒ L(si) = L(s ′i), i = 0, 1, 2, . . .

s0 s1 s2 . . . sn−2 sn−1 sn
βββ1 βββ2 βββ3 βββn−1 βββn

s ′0 s ′1 s ′2 . . . s ′n−2 s ′n−1 s ′nβββ1 βββ2 βββ3 βββn−1 βββn

ααα ααα ααα ααα ααα ααα

case 2:

s0 s1 s2 s3 . . .βββ1 βββ2 βββ3 βββ4

s0 s ′0 s ′1 s ′2 . . .ααα βββ1 βββ2 βββ3

63 / 275

Conditions (A1), (A2), (A3) are not sufficient
ltl3.4-30

64 / 275

Conditions (A1), (A2), (A3) are not sufficient
ltl3.4-30

There exists a finite, action-deterministic transition
system TTT and ample sets for TTT such that

TTT �∆= TTT red

remind:
∆
= stutter trace equivalence

65 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

66 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent

67 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

68 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions TTT red

ααα2ααα1

69 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

ααα2ααα1

70 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

TTT �|= �¬blue

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

TTT red |= �¬blue

ααα2ααα1

71 / 275

TTT 1 TTT 2 TTT = TTT 1 ||| TTT 2

TTT �|= �¬blue

βββ ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

βββ,αααi independent
ααα1,ααα2 stutter actions

TTT red satisfies (A1), (A2), (A3)

TTT red |= �¬blue

ααα2ααα1

βββ

βββ

72 / 275

transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

73 / 275

transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

74 / 275

transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1

75 / 275

transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1

. . .ααα1 ααα2 ααα1 βββ ααα2 ααα1

. . .ααα1 ααα2 ααα1 ααα2

...

�≡

76 / 275

transition system TTT reduced TS TTT red

ααα2ααα1 ααα2ααα1 ααα2ααα1

βββ

βββ

. . .βββ ααα1 ααα2 ααα1 ααα2 ααα1

. . .ααα1 βββ ααα2 ααα1 ααα2 ααα1

. . .ααα1 ααα2 βββ ααα1 ααα2 ααα1

. . .ααα1 ααα2 ααα1 βββ ααα2 ααα1

. . .ααα1 ααα2 ααα1 ααα2

...

�≡

= the unique execution of TTT red
77 / 275

4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

78 / 275

4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

79 / 275

4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

80 / 275

4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) cycle condition

81 / 275

4 conditions for ample sets ltl3.4-A4

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
82 / 275

4 conditions for ample sets ltl3.4-34

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
83 / 275

4 conditions for ample sets ltl3.4-34

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
84 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

85 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.

86 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

TTT ∆
= TTT red

remind:
∆
= stutter trace equivalence

87 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system.

If the ample sets ample(s) satisfy conditions (A1),
(A2), (A3), (A4) then

TTT ∆
= TTT red

hence: for all LTL\© formulas ϕϕϕ:

TTT |= ϕϕϕ iff TTT red |= ϕϕϕ

88 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof: show that

TTT � TTT red and TTT red � TTT

where � = stutter trace inclusion

89 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof:

• TTT red � TTT :
√

90 / 275

Soundness of conditions (A1), (A2), (A3), (A4)
ltl3.4-35

Let TTT be a finite, action-deterministic transition
system. If the ample sets ample(s) satisfy conditions
(A1), (A2), (A3), (A4) then

TTT ∆
= TTT red

Proof:

• TTT red � TTT :
√

• TTT � TTT red:
show that each execution ρρρ of TTT can be
transformed into a stutter equivalent execution
ρρρ′ of TTT red

91 / 275

Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red

92 / 275

Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red

idea: ρρρ′ results from the “limit” of transformations

ρρρ = ρρρ0 � ρρρ1 � ρρρ2 � ρρρ3 �

93 / 275

Proof of TTT � TTT red
ltl3.4-35a

given: infinite execution fragment ρρρ of TTT
goal: construction of a stutter equivalent

execution fragment ρρρ′ of TTT red

idea: ρρρ′ results from the “limit” of transformations

ρρρ = ρρρ0 � ρρρ1 � ρρρ2 � ρρρ3 �
where, for i > j ≥ 0, the execution fragments ρρρi and
ρρρj have a common prefix

• of length j

• consisting of transitions in TTT red

94 / 275

Stepwise transformation ρρρ0 � ρρρ1
ltl3.4-35a

95 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

96 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

97 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

98 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

99 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

100 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

101 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

by (A3): ααα is a stutter action in cases 1 and 2
102 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .
∆
= ρρρ0

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

∆
= ρρρ0

by (A3): ααα is a stutter action in cases 1 and 2
103 / 275

Stepwise transformation ρρρ0 � ρρρ1 ltl3.4-35a

case 0: ρρρ0 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . . = ρρρ0

case 1: ρρρ0 = s0
βββ1−→ βββ2−→ . . .

βββn−1−→ ααα−→βββn+1−→βββn+2−→ . . .

where βββ1, . . . , βββn−1 /∈ ample(s0), ααα ∈ ample(s0)

ρρρ1 = s0
ααα−→ βββ1−→ . . .

βββn−2−→βββn−1−→βββn+1−→βββn+2−→ . . .
∆
= ρρρ0

case 2: ρρρ0 = s0
βββ1−→ βββ2−→ βββ3−→ . . .

where βββ i �∈ ample(s0), i = 1, 2, . . .

ρρρ1 = s0
ααα−→ βββ1−→ βββ2−→ βββ3−→ . . .

∆
= ρρρ0

ρρρ1 � ρρρ2:
repeat the same procedure from the 2nd state on 104 / 275

Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed

105 / 275

Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions

106 / 275

Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions

• adding independent stutter actions

107 / 275

Stutter trace equivalence of TTT and TTT red
ltl3.4-21

idea: the conditions for the ample sets
should ensure that

for each execution ρρρ in TTT ,
a stutter trace equivalent execution ρρρred in TTT red

can be constructed by successively

• permutating the order independent actions

• adding independent stutter actions

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

108 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

109 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

by successively applying the following transformations:

110 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

111 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

112 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

s0
ααα⇒βββ1→ . . .

βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

113 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

s0
ααα⇒βββ1→ . . .

βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

s0
ααα⇒βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)

114 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

115 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where for i < j the executions ρρρj and ρρρi have a
common prefix of length i which is a path fragment
in TTT red

116 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where for i < j the executions ρρρj and ρρρi have a
common prefix of length i which is a path fragment
in TTT red,i.e., ρρρi has the form

ρρρi = s0 ⇒ s1 ⇒ . . .⇒ si︸ ︷︷ ︸
in TTT red

→ si+1 → si+2 → . . .︸ ︷︷ ︸
in TTT

117 / 275

Stutter trace equivalence of TTT and TTT red ltl3.4-21

execution ρρρ in TTT � execution ρρρred in TTT red

s.t. ρρρ
∆
= ρρρred

ρρρred results by an infinite sequence application of
cases 0, 1 and 2, i.e.,

ρρρ� ρρρ1 � ρρρ2 � ρρρ3 � . . .

where

ρρρi = s0 ⇒ s1 ⇒ . . .⇒ si → si+1 → si+2 → si+3 → . .

ρρρi+1 = s0 ⇒ s1 ⇒ . . .⇒ si ⇒ si+1 → si+2 → si+3 → . .

ρρρi+2 = s0 ⇒ s1 ⇒ . . .⇒ si ⇒ si+1 ⇒ si+2 → si+3 → . .

118 / 275

Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

119 / 275

Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

120 / 275

Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

121 / 275

Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)

122 / 275

Transformation ρρρ� ρρρ1 ltl3.4-21

case 0: ρρρ = s0
ααα→s′0→ . . . with ααα ∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0→ . . .

case 1: ρρρ = s0
βββ1→ . . .

βββn→ ααα→→ . . . with ααα ∈ ample(s0)
βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→ . . .
βββn→→ . . .

case 2: ρρρ = s0
βββ1→βββ2→βββ3→ . . . with βββ i �∈ ample(s0)

ρρρ1 = s0
ααα⇒s′0

βββ1→βββ2→βββ3→ . . . for some ααα ∈ ample(s0)

for the transformation ρρρ1 � ρρρ2:

apply case 0,1 or 2 to the suffix starting in state s′0
123 / 275

Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

124 / 275

Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

αααi stutter action

125 / 275

Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

αααi stutter action � ρρρ0
∆
= ρρρ1

∆
= ρρρ2

∆
= . . .

126 / 275

Transformation according to cases 1 and 2
ltl3.4-36

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

127 / 275

Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1

128 / 275

Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1

129 / 275

Transformation according to cases 1 and 2

ρρρ0 = s0
βββ1−→ . . .

βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ1 = s0
ααα1=⇒s1

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

ρρρ2 = s0
ααα1=⇒ ααα2=⇒s2

βββ1−→ . . .
βββk−1−→ βββk−→βββk+1−→ . . .

...

ρρρm = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1−→ . . .

βββk−→βββk+1−→ . . .

ρρρm+1 = s0
ααα1=⇒ ααα2=⇒ . . .

αααm=⇒sm
βββ1

=⇒ . . .
βββk−→βββk+1−→ . . .

by the cycle condition (A4):

“action βββ1 will not be postponed forever”

i.e., there exists some m such that case 0 applies
and ρρρm = ρρρm+1

130 / 275

4 conditions for ample sets ltl3.4-four-cond

(A1) ∅ �= ample(s) ⊆ Act(s)

(A2) for each execution fragment in TTT
s

βββ1→βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) if ample(s) �= Act(s) then all actions in ample(s)
are stutter actions

(A4) for each cycle s0 ⇒ s1 ⇒ . . .⇒ sn in TTT red and
each action

βββ ∈
⋃

0≤i<n

Act(si)

there is some i ∈ {1, . . . , n} with βββ ∈ ample(si)
131 / 275

The ample set method for LTL\© model checking
ltl3.4-37

132 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

133 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s),

134 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

135 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA

where AAA is an NBA for the negation of the formula
to be checked

136 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA and nested DFS

where AAA is an NBA for the negation of the formula
to be checked

137 / 275

The ample set method for LTL\© model checking
ltl3.4-37

• on-the-fly DFS-based generatation of TTT red

• exploration of state s:

create the states ααα(s) for ααα ∈ ample(s), but
ignore the βββ-successors of s for βββ /∈ ample(s)

• interleave the generation of TTT red with the
product construction TTT red ⊗AAA and nested DFS

where AAA is an NBA for the negation of the formula
to be checked

here: only explanations for reachability analysis
138 / 275

The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

139 / 275

The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)

140 / 275

The ample set method for reachability
ltl3.4-37

given: finite transition system TTT
atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)
• DFS-stack πππ

141 / 275

The ample set method for reachability
ltl3.4-37

given: finite transition system TTT for P1‖. . .‖Pn

atomic proposition a

goal: on-the-fly construction of TTT red

abort as soon as a state s with
s �|= a has been generated

uses
• V = set of states that have been generated so

far (organized as a hash table)
• DFS-stack πππ

• “local” criteria to compute ample(s) from a
syntactic representation of the processes Pi

142 / 275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s);

OD
143/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);

OD
144/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);

OD
OD

145/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V

FI
OD

OD
146/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′);

FI
OD

OD
147/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);

FI
OD

OD
148/275

Ample set method (full generation of TTT red) ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO

select an initial state s ∈ S0 \ V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO

s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
149/275

The ample set method for reachability ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
150/275

Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);
IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN select such ααα; add s′ := ααα(s) to V;

Push(πππ, s′); compute ample(s′);
ELSE Pop(πππ)

FI
OD

OD
151/275

Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);

IF s �|= a THEN return “NO” FI;

IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN
ELSE Pop(πππ)

FI
OD

OD 152/275

Does TTT |= �a hold? ltl3.4-37

πππ := ∅; V := ∅
WHILE S0 �⊆ V DO
select an initial state s ∈ S0 \V; add s to V;
Push(πππ, s); compute ample(s);
WHILE πππ �= ∅ DO
s := Top(πππ);

IF s �|= a THEN return “NO” + counterexample FI;

IF ∃ααα ∈ ample(s) with ααα(s) �∈ V
THEN
ELSE Pop(πππ)

FI
OD

OD 153/275

Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}

154 / 275

Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}

���0

m0

n0

���1

m1

n1

b := 1 b := 0

b ¬b

¬b b

155 / 275

Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}
• AP = {n0, n1}

���0

m0

n0

���1

m1

n1

b := 1 b := 0

b ¬b

¬b b

156 / 275

Example: ample set method ltl3.4-38

full generation of TTT red for TTT = TTT P1 |||P2
where

• P1, P2 are program graphs with shared variable
b ∈ {0, 1}
• AP = {n0, n1}

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

157 / 275

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

158 / 275

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

159 / 275

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1

160 / 275

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1

βββ0 and βββ1 are never enabled simultaneously
161 / 275

���0

m0

n0

���1

m1

n1

b := 1
γγγ0

b := 0
γγγ1b

ααα0

¬b
ααα1

δδδ1δδδ0

¬b
βββ0

b
βββ1

independent actions:

δδδ0 δδδ1 δδδ0 ααα1 δδδ0 βββ1 δδδ0 γγγ1

ααα0 δδδ1 ααα0 βββ1

βββ0 δδδ1 βββ0 ααα1 βββ0 βββ1 βββ0 γγγ1

γγγ0 δδδ1 γγγ0 βββ1
162 / 275

���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

163 / 275

���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1

164 / 275

���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

ααα1

ααα1
ααα1

ααα0

ααα0ααα0

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1

165 / 275

���0

m0

���1

m1

n1n0

b := 1
γγγ0

b := 0
γγγ1

b: ααα0 ¬b: ααα1

¬b: βββ0 b: βββ1

δδδ1δδδ0

AP = {n0, n1}

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b

���0���1b

���0m1b m0���1b

m0m1b���0n1b

m0n1b

n0���1¬b

n0m1¬b

ααα1

ααα1
ααα1

ααα0

ααα0ααα0

δδδ0

δδδ0
βββ0

βββ0

δδδ0

δδδ0

δδδ0

δδδ1

δδδ1

δδδ1

δδδ1

βββ1 δδδ1

βββ1

166 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

AP = {n0, n1}

167 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

AP = {n0, n1}

ample(���0���1¬b) =

168 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ1 δδδ0

δδδ0 δδδ1

AP = {n0, n1}

ample(���0���1¬b) =

169 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0},

170 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1 βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) =

171 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}

172 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b

δδδ0

δδδ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) =

173 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) =

174 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}

175 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
note:

ααα1 closes cycle (A4),

176 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
note:

ααα1 closes cycle (A4),
βββ0 no stutter action (A3)

177 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1

δδδ0

δδδ1

βββ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) =

178 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) =

179 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

180 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)

181 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)

182 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

δδδ0

δδδ1

βββ0

δδδ0

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)

183 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}

note: ααα1, γγγ0 are dependent (A2)

184 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) =

185 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)

186 / 275

Example: on-the-fly generation of TTT red ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ1

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)

187 / 275

reduction: 8 out of 12 states ltl3.4-40

���0���1¬b

���0m1¬b m0���1¬b

m0m1¬b n0���1¬b

n0m1¬b

���0���1b

���0m1b m0���1b

���0n1b m0m1b

m0n1b
ααα1 ααα1

ααα0ααα0

δδδ0

δδδ1

βββ0

δδδ1

δδδ0

βββ1

γγγ0 γγγ1

AP = {n0, n1}

ample(���0���1¬b) = {δδδ0}, ample(m0���1¬b) = {δδδ1}
ample(m0m1¬b) = {ααα1, βββ0}
ample(n0m1¬b) = {ααα1, γγγ0}
ample(m0n1b) = {ααα0, γγγ1}: cycle condition (A4)

188 / 275

Nested DFS with POR
ltl3.4-41

189 / 275

Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

190 / 275

Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)

• is called for each state s that violates the
persistence condition a

191 / 275

Nested DFS (standard approach)
ltl3.4-41

remind: nested DFS for checking “TTT |= ♦�a?” uses:

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)

• is called for each state s that violates the
persistence condition a

• must not be started before the outer DFS is
finished for s

192 / 275

Nested DFS ltl3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)
• is called for each state s that violates the

persistence condition a
• must not be started before the outer DFS is

finished for s
• early termination

193 / 275

Nested DFS ltl3.4-41

outer DFS: visits all reachable states

inner DFS: CYCLE CHECK(s) searches for a
backward edge s′ → s

CYCLE CHECK(s)
• is called for each state s that violates the

persistence condition a
• must not be started before the outer DFS is

finished for s
• early termination, e.g., abort with the answer

CYCLE CHECK(s) = true

as soon as the inner DFS visits a state in the
DFS-stack of the outer DFS

194 / 275

Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:

195 / 275

Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets

196 / 275

Nested DFS with POR
ltl3.4-41

requirement for the nested DFS in the ample set
approach:

outer DFS and inner DFS must use
the same ample-sets

implementation: uses a hash-table for the set of
states that have been visited in the outer DFS

197 / 275

Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

198 / 275

Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

199 / 275

Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS

200 / 275

Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS

• c = 1 iff s is in the DFS stack

201 / 275

Implementation of the nested DFS with POR
ltl3.4-41

use hash-table for the set of states that have been
visited in the outer DFS

entries in the hash-table have the form

〈s, b, c, a1, . . . , ak〉

where s is a state and b, c, a1, . . . , ak are bits

• b = 1 iff s has been visited in inner DFS

• c = 1 iff s is in the DFS stack

• for Act(s) = {ααα1, . . . ,αααk}:
ai = 1 iff αααi ∈ ample(s)

202 / 275

On-the-fly construction of TTT red
ltl3.4-42

203 / 275

On-the-fly construction of TTT red
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system

204 / 275

On-the-fly construction of TTT red
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

205 / 275

On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

206 / 275

On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process Pi

fulfills (A1), (A2), (A3)

207 / 275

On-the-fly construction of TTT red in DFS-manner
ltl3.4-42

starting point: syntactic description of the processes
P1, . . . , Pn of a parallel system
e.g., PROMELA-specification

method: generate the reachable fragment of TTT red in
DFS-manner by generating ample sets by means of
local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process Pi

fulfills (A1), (A2), (A3) and ensure (A4) by
searching for backward edges in TTT red

208 / 275

Computing the ample set for state s ltl3.4-42

209 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before

210 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)

211 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

212 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions

213 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI

214/ 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

215 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) is not violated

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

216/ 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...

217 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...

IF the expansion of s finds a backwards edge s′ =⇒ s

218 / 275

Computing the ample set for state s ltl3.4-42

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF (A1), (A2), (A3) hold THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

... consider state ααα(s) for some ααα ∈ ample(s) ...

IF the expansion of s finds a backwards edge s′ =⇒ s
THEN ample(s) := Act(s) FI

219/ 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

220 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

221 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)

222 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}

ααα1

223 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}
DFS(t)
ample(t) = {ααα2}

ααα1 ααα2

224 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

ααα1 ααα2

225 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

ααα1 ααα2

βββ

226 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

DFS(u) . . .

ααα1 ααα2 ααα1

βββ βββ

227 / 275

Example: construction of TTT red ltl3.4-43

process 1 process 2

βββ

βββ ααα1 ααα2

TTT = process 1 ||| process 2
s

t

u
u

v
v

ααα1 ααα2 ααα1 ααα2

βββ

βββ

βββ

βββ

DFS(s)
ample(s) = {ααα1} ∪ {βββ}
DFS(t)
ample(t) = {ααα2}
backward edge t→ s

DFS(u) . . .
DFS(v) . . .

ααα1 ααα2 ααα1 ααα2

βββ βββ

228 / 275

Computing the ample set for state s ltl3.4-44

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)
IF A �= ∅ and (A2) holds

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

229/ 275

Checking the dependence condition (A2)? ltl3.4-44

REPEAT
select a process Pi not considered before
A := action set of Pi ∩ Act(s)

IF A �= ∅ and (A2) holds

and all actions of A are stutter actions
THEN ample(s) := A FI

UNTIL all processes have been considered
or ample(s) is defined;

IF ample(s) is not yet defined
THEN ample(s) := Act(s) FI

230/ 275

Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

231 / 275

Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the reachability problem

232 / 275

Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition:

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system TTT , a ∈ AP

question: does TTT �|= ∃♦a hold?
233 / 275

Checking the dependence condition (A2)? ltl3.4-44

(A1) nonemptiness condition
(A2) dependence condition: ←− global condition

for each execution fragment in TTT
s

βββ1→ βββ2→ . . .
βββi−1→ βββ i→ βββ i+1→ . . .

βββn−1→ βββn→
such that βββn is dependent from ample(s) there is
some i < n with βββ i ∈ ample(s)

(A3) stutter condition
(A4) cycle condition

checking (A2) is as hard as the unreachability problem

given: finite transition system TTT , a ∈ AP

question: does TTT �|= ∃♦a hold?
234 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT
a ∈ AP

question: does TTT �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)

235 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT
a ∈ AP

question: does TTT �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system TTT ′, ample sets for TTT ′

question: does (A2) hold?
i.e., does for each execution fragment in TTT ′

s
βββ1→ βββ2→ . . .

βββi−1→ βββ i→ βββ i+1→ . . .
βββn−1→ βββn→

such that βββn is dependent from ample(s)
there is some i < n with βββ i ∈ ample(s)?

236 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

show that the unreachability problem

given: finite transition system TTT and initial state s0

a ∈ AP

question: does s0 �|= ∃♦a hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system TTT ′, ample sets for TTT ′

question: does (A2) hold?
i.e., does for each execution fragment in TTT ′

s
βββ1→ βββ2→ . . .

βββi−1→ βββ i→ βββ i+1→ . . .
βββn−1→ βββn→

such that βββn is dependent from ample(s)
there is some i < n with βββ i ∈ ample(s)?

237 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

238 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

239 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

240 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

241 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

242 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

• ααα is independent from all actions in TTT

243 / 275

Algorithmic difficulty of checking (A2) ltl3.4-44

unreachability ≤poly problem of
problem checking (A2)

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

TTT ′ results from TTT by adding two fresh actions ααα, βββ s.t.

• ααα are βββ are dependent

• ααα is independent from all actions in TTT
• βββ is enabled exactly in the states t with t |= a

244/275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

245 / 275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

246 / 275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

247 / 275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ

248 / 275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ

ααα,βββ dependent
ααα independent from
all other actions

249 / 275

finite TS TTT + state s0 finite TS TTT ′
+ atomic prop. a � + ample sets

s.t. s0 �|= ∃♦a iff (A2) holds

s0

s1

s2

t

. . .

�

s0

s1

s2

t

. . .

ααα

ααα

ααα

ααα

βββ

δδδ

ααα,βββ dependent
ααα independent from
all other actions

ample(s0) = {ααα}
ample(u) = Act(u)
for all other states u

250 / 275

Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition

251 / 275

Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn

252 / 275

Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn

e.g., the Pi’s are given as program graphs of a channel
system.

253 / 275

Local criterion for condition (A2)
ltl3.4-45

idea: replace the global dependency condition (A2) by
a stronger local condition that can be derived from
the syntactic description for the processes Pi of the
given parallel system

P1‖. . .‖Pn

e.g., the Pi’s are given as program graphs of a channel
system. Then: each state s has the form

s = 〈���1, . . ., ���n, ηηη, ξξξ〉

where ���i is a location of process Pi, ηηη a variable
evaluation, ξξξ a channel evaluation

254 / 275

Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.

255 / 275

Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.
For state s:

Act i(s) = Act i ∩ Act(s)

= set of actions of process Pi

that are enabled in s

256 / 275

Local criterion for condition (A2)
ltl3.4-45

Let Act i denote the set of actions of process Pi.
For state s:

Act i(s) = Act i ∩ Act(s)

= set of actions of process Pi

that are enabled in s

Provide local criteria such that ample(s) = Act i(s)
fulfills the dependency condition (A2)

257 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

258 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s)

259 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

260 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.

261 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈���1, . . . , ���i−1, ���i, ���i+1, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t. γγγ can enable an action βββ ∈ Act i \ Act(s)
from some state s′ with location ���i for process Pi

262 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈. . . , ���j, . . . , ���i, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.
〈. . . hj . . . ���i . . . 〉

γγγ−→ 〈. . . kj . . . ���i . . . 〉
βββ−→

βββ � ↓
for some βββ ∈ Act i \ Act(s)

263 / 275

Local criterion for condition (A2) ltl3.4-45

Let s = 〈. . . , ���j, . . . , ���i, . . . , ���n, . . .〉.
Suppose that

(A2.1) all actions of Pj, j �= i, are independent from
Act i(s), i.e., if γγγ ∈ Act j for some j �= i, and
ααα ∈ Act i(s) then ααα and γγγ are independent

(A2.2) there is no action γγγ of a process Pj where j �= i
s.t.
〈. . . hj . . . ���i . . . 〉

γγγ−→ 〈. . . kj . . . ���i . . . 〉
βββ−→

βββ � ↓
for some βββ ∈ Act i \ Act(s)

Then (A2) holds for ample(s) = Act i(s).

264 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉

265 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

266 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

267 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

268 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that

269 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that

〈. . . hj . . . ���i . . . 〉
γγγ−→ 〈. . . kj . . . ���i . . . 〉

βββ−→
βββ � ↓

for some βββ ∈ Act i \ A

270 / 275

Heuristics for condition (A2)
ltl3.4-45

... expansion of state s = 〈. . . ���j . . . ���i . . .〉
A := Act i(s)

...
check if for all other processes Pj the following holds:

(A2.1) all actions of Pj are independent from A

(A2.2) there is no action γγγ of Pj such that

〈. . . hj . . . ���i . . . 〉
γγγ−→ 〈. . . kj . . . ���i . . . 〉

βββ−→
βββ � ↓

for some βββ ∈ Act i \ A

if yes then set ample(s) := A
...

271 / 275

Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

272 / 275

Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

correct

273/ 275

Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

correct, as we have:

TTT i |=fair ϕϕϕ iff TTT i |= fair→ ϕϕϕ

274 / 275

Correct or wrong?
ltl3.4-46

Let TTT 1, TTT 2 be transition systems with TTT 1
∆
= TTT 2,

and let fair be an LTL fairness assumption.

Remind:
∆
= denotes stutter trace equivalence.

E.g., TTT 1 = TTT , TTT 2 = TTT red

Then, for all LTL\© formulas ϕϕϕ:

TTT 1 |=fair ϕϕϕ iff TTT 2 |=fair ϕϕϕ

correct, as we have:

TTT i |=fair ϕϕϕ iff TTT i |= fair→ ϕϕϕ︸ ︷︷ ︸
LTL\© formula

275 / 275

