

Overview: Model Checking

1. Introduction
2. Modelling parallel systems
3. Linear Time Properties
4. Regular Properties
5. Linear Temporal Logic
6. Computation Tree Logic
7. Equivalences and Abstraction
8. **Partial Order Reduction**
9. Timed Automata
10. Probabilistic Systems

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes that represent the same the same behavior up to the interleaving order

Basic idea of partial order reduction

LTL3.4-3

- for asynchronous systems
- analyze representatives of path equivalence classes that represent the same the same behavior up to the interleaving order

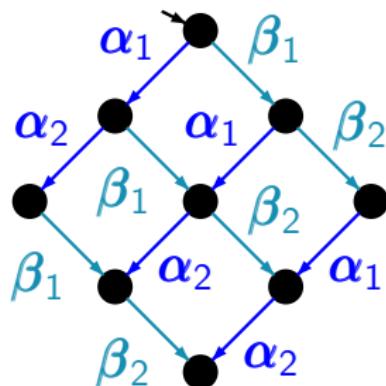
$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

Basic idea of partial order reduction

LTL3.4-3

- for **asynchronous** systems
- analyze **representatives** of path equivalence classes that represent the same the same behavior up to the **interleaving order**

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$

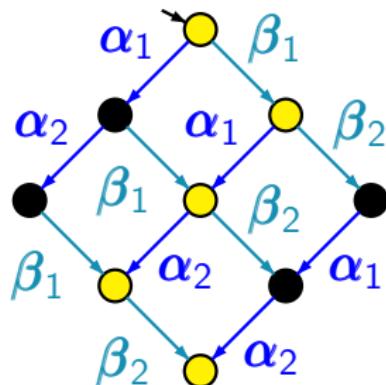


Basic idea of partial order reduction

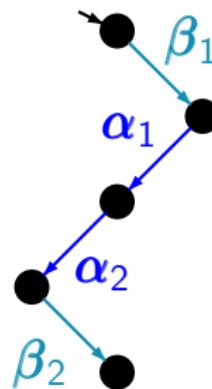
LTL3.4-3

- for **asynchronous** systems
- analyze **representatives** of path equivalence classes that represent the same the same behavior up to the **interleaving order**

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



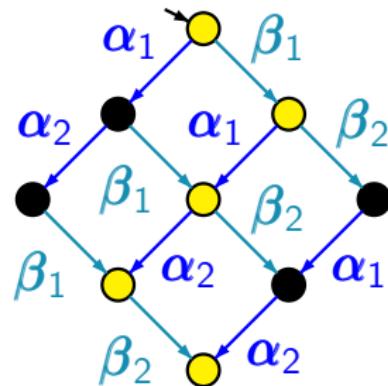
$$\mathcal{T}_{\text{red}}$$



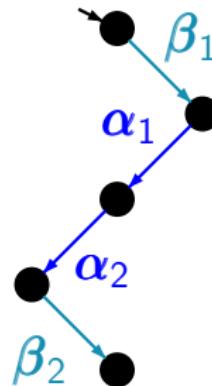
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



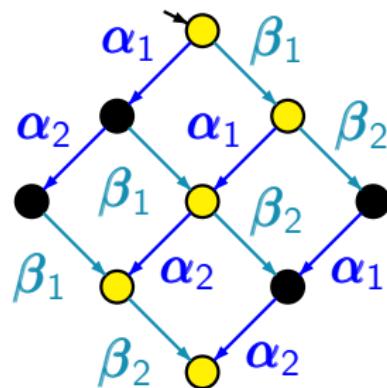
$$\mathcal{T}_{\text{red}}$$



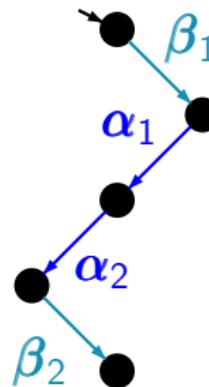
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



$$\mathcal{T}_{\text{red}}$$



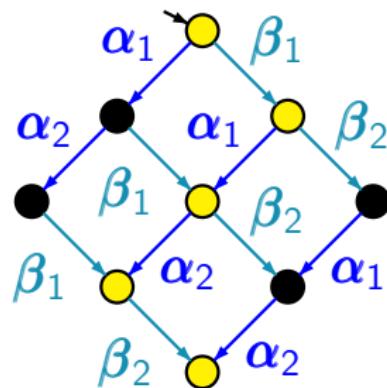
requirement: for all $LTL \setminus \Diamond$ formulas φ :

$$\mathcal{T} \models \varphi \text{ iff } \mathcal{T}_{\text{red}} \models \varphi$$

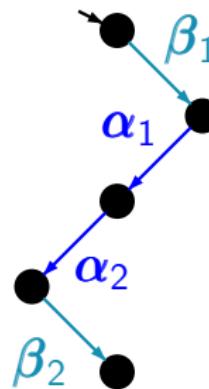
Partial order reduction for $LTL \setminus \Diamond$ specifications

LTL3.4-3

$$\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$$



$$\mathcal{T}_{\text{red}}$$



requirement: for all $LTL \setminus \Diamond$ formulas φ :

$$\mathcal{T} \models \varphi \text{ iff } \mathcal{T}_{\text{red}} \models \varphi$$

hence: ensure that the reduction yields $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

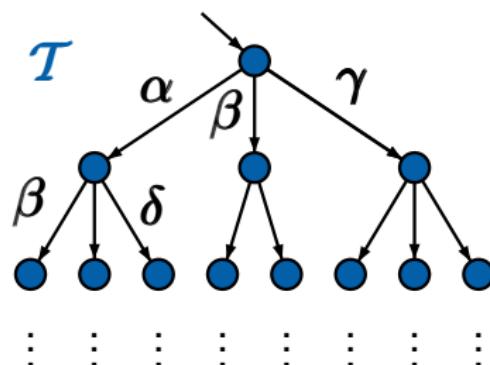
goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

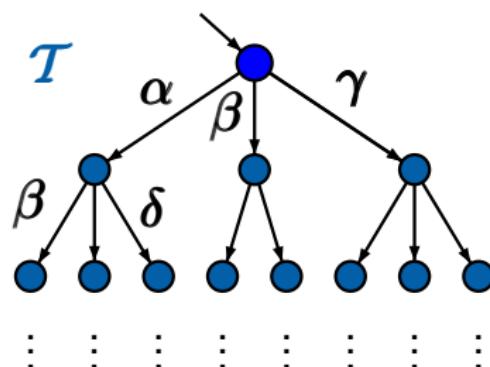


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

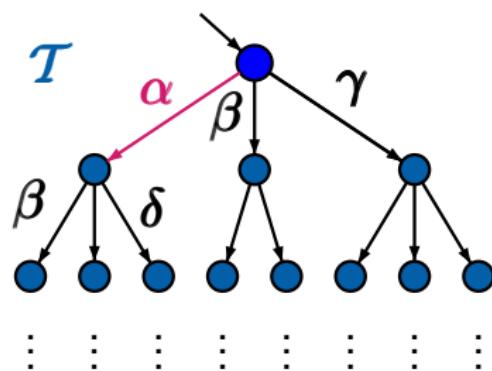


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

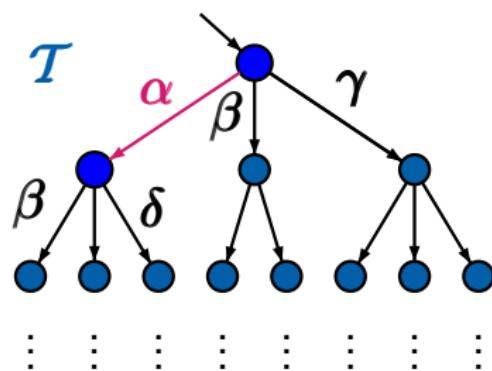


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$



The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

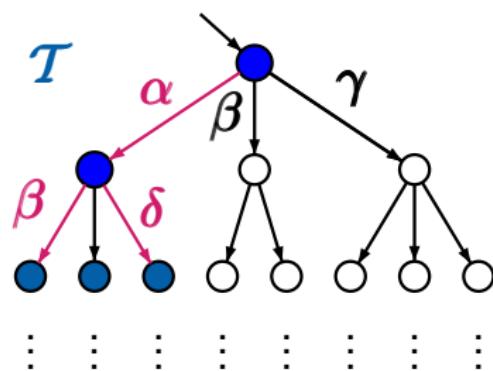


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

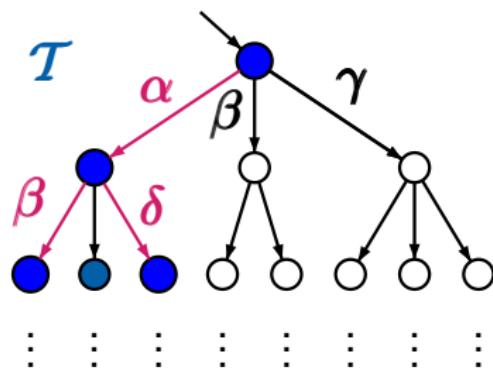


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

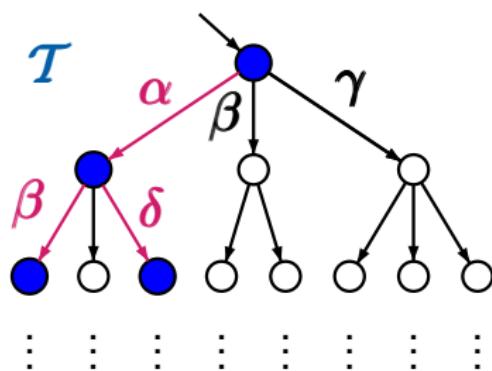


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red} by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$ and expanding only the α -successors of s where $\alpha \in \text{ample}(s)$

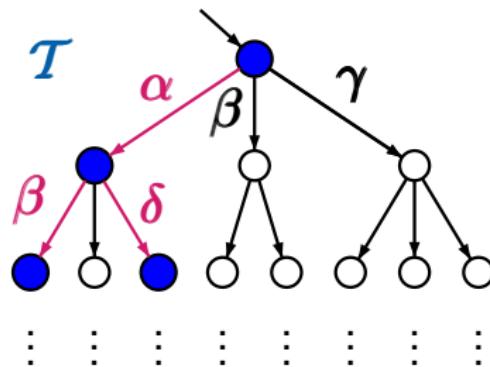
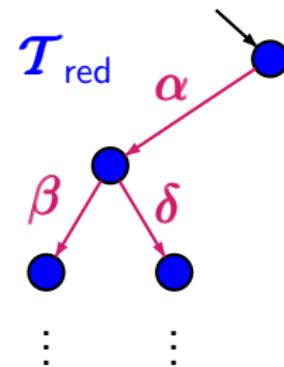


The ample set method [Peled '93]

LTL3.4-4

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$



The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent
- \mathcal{T}_{red} is smaller than \mathcal{T}

The ample set method [Peled '93]

LTL3.4-5

given: syntactical representation of processes of TS \mathcal{T}

goal: on-the-fly construction of a fragment \mathcal{T}_{red}
by selecting action-sets $\text{ample}(s) \subseteq \text{Act}(s)$
and expanding only the α -successors of s
where $\alpha \in \text{ample}(s)$

requirements:

- stutter trace equivalence: $\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$
hence: $\mathcal{T}, \mathcal{T}_{\text{red}}$ are $\text{LTL}_{\setminus \Diamond}$ equivalent
- \mathcal{T}_{red} is smaller than \mathcal{T}
- efficient construction of \mathcal{T}_{red} is possible

The reduced transition system \mathcal{T}_{red}

LTL3.4-6

is a fragment of \mathcal{T} that results from \mathcal{T} by

- a DFS-based on-the-fly analysis and
- choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$ for each expanded state,
- expanding only the α -successors of s where $\alpha \in \text{ample}(s)$

The reduced transition system \mathcal{T}_{red}

LTL3.4-6

is a fragment of \mathcal{T} that results from \mathcal{T} by

- a DFS-based on-the-fly analysis and
- choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$ for each expanded state,
- expanding only the α -successors of s where $\alpha \in \text{ample}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$

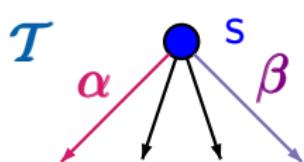
The reduced transition system \mathcal{T}_{red}

LTL3.4-6

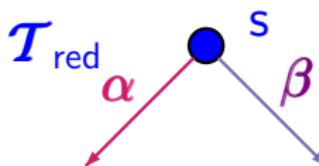
is a fragment of \mathcal{T} that results from \mathcal{T} by
... choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$



$$\text{ample}(s) = \{\alpha, \beta\}$$



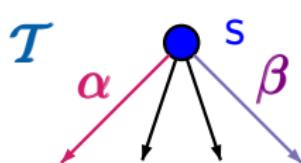
The reduced transition system \mathcal{T}_{red}

LTL3.4-6

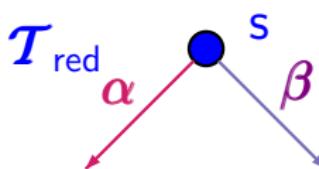
is a fragment of \mathcal{T} that results from \mathcal{T} by
... choosing ample sets $\text{ample}(s) \subseteq \text{Act}(s)$

transition relation \Rightarrow of \mathcal{T}_{red} is given by:

$$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \xrightarrow{\alpha} s'}$$



$$\text{ample}(s) = \{\alpha, \beta\}$$



state space S_{red} of \mathcal{T}_{red} : all states that are reachable
from the initial states in \mathcal{T} via \Rightarrow

Action-determinism

LTL3.4-11A

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \mathbf{Act}, \rightarrow, \mathbf{S}_0, \mathbf{AP}, \mathbf{L})$ be a transition system.

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a transition system.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a transition system.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

\mathcal{T} is called **action-deterministic** iff for all states \mathbf{s} and all actions $\alpha \in \text{Act}(\mathbf{s})$:

$$|\{ \mathbf{t} \in \mathbf{S} : \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}| \leq 1$$

Action-determinism

LTL3.4-11A

Let $\mathcal{T} = (\mathbf{S}, \text{Act}, \rightarrow, \mathbf{S}_0, \text{AP}, \text{L})$ be a TS.

For state \mathbf{s} :

$$\text{Act}(\mathbf{s}) = \{ \alpha \in \text{Act} : \exists \mathbf{t} \in \mathbf{S} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}$$

\mathcal{T} is called **action-deterministic** iff for all states \mathbf{s} and all actions $\alpha \in \text{Act}(\mathbf{s})$:

$$|\{ \mathbf{t} \in \mathbf{S} : \mathbf{s} \xrightarrow{\alpha} \mathbf{t} \}| \leq 1$$

notation: if $\alpha \in \text{Act}(\mathbf{s})$ then

$$\alpha(\mathbf{s}) = \text{unique state } \mathbf{t} \text{ s.t. } \mathbf{s} \xrightarrow{\alpha} \mathbf{t}$$

Independence of actions

LTL3.4-11

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

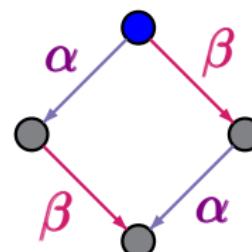
α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:



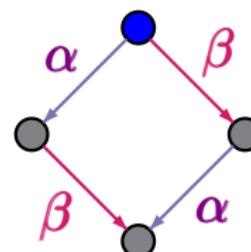
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$



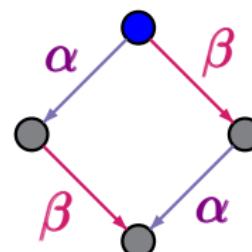
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$
2. $\alpha \in Act(\beta(s))$



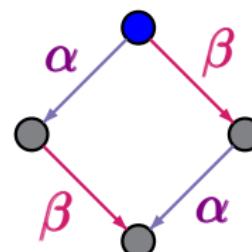
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

1. $\beta \in Act(\alpha(s))$
2. $\alpha \in Act(\beta(s))$
3. $\beta(\alpha(s)) = \alpha(\beta(s))$



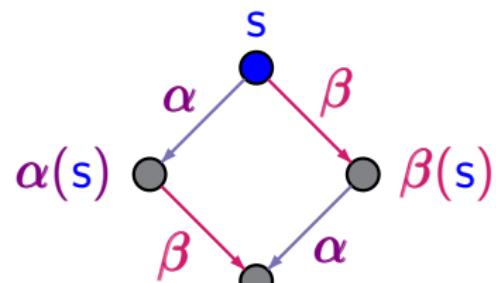
Independence of actions

LTL3.4-11

Let \mathcal{T} be an action-deterministic transition system with action-set Act , and $\alpha, \beta \in Act$.

α, β are called **independent** in \mathcal{T} if for all states s s.t. $\alpha, \beta \in Act(s)$:

- $\beta \in Act(\alpha(s))$
- $\alpha \in Act(\beta(s))$
- $\beta(\alpha(s)) = \alpha(\beta(s))$



$$\beta(\alpha(s)) = \alpha(\beta(s))$$

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(\mathbf{s}) \subseteq \text{Act}(\mathbf{s})$$

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(\mathbf{s}) \subseteq \text{Act}(\mathbf{s})$$

(A2) dependency condition

Conditions for ample sets

LTL3.4-A12

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is dependent from $\text{ample}(s)$
there is some $i < n$ with

$$\beta_i \in \text{ample}(s)$$

Conditions for ample sets

LTL3.4-A3

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

Conditions for ample sets

LTL3.4-A3

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

Conditions for ample sets

LTL3.4-A3

(A1) nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) dependency condition

for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \beta_{i+1} \xrightarrow{\beta_{n-1}} \dots \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are **stutter actions**

Example

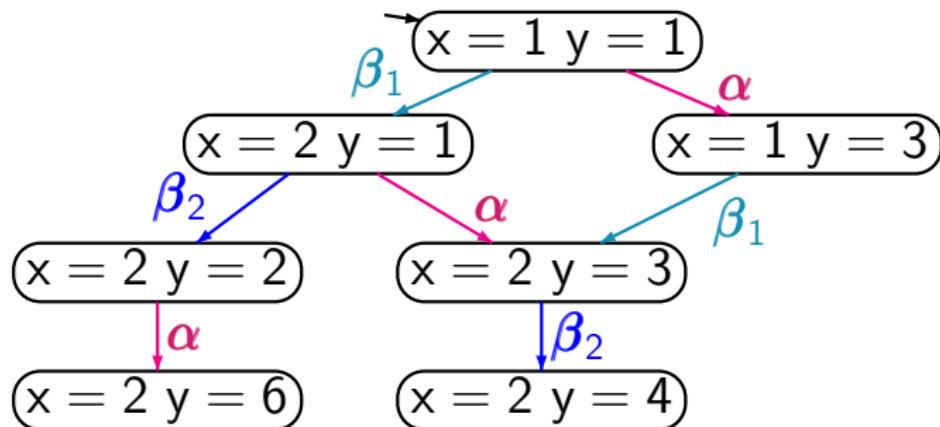
LTL3.4-23

$$\boxed{\underbrace{x := 2 \cdot x}_{\beta_1} \quad ; \quad \underbrace{y := y + 1}_{\beta_2} \quad ||| \quad \underbrace{y := 3 \cdot y}_{\alpha}}$$

Example

LTL3.4-23

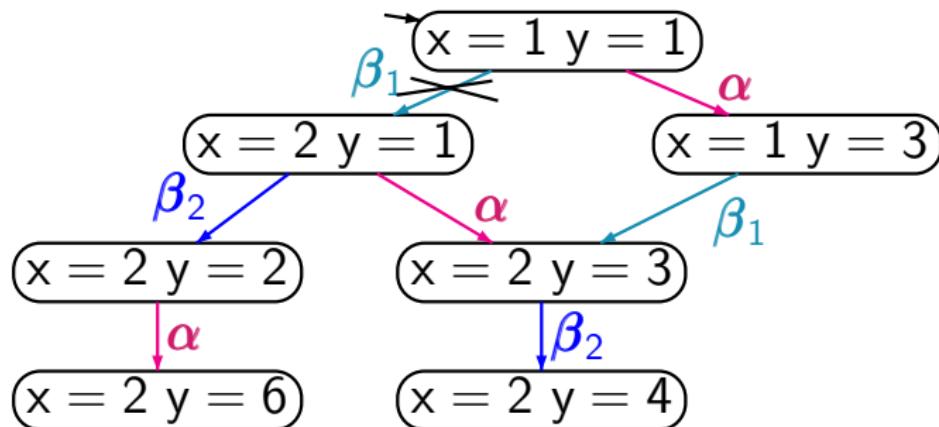
$$\boxed{\underbrace{x := 2 \cdot x}_{\beta_1} \quad ; \quad \underbrace{y := y + 1}_{\beta_2} \quad ||| \quad \underbrace{y := 3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

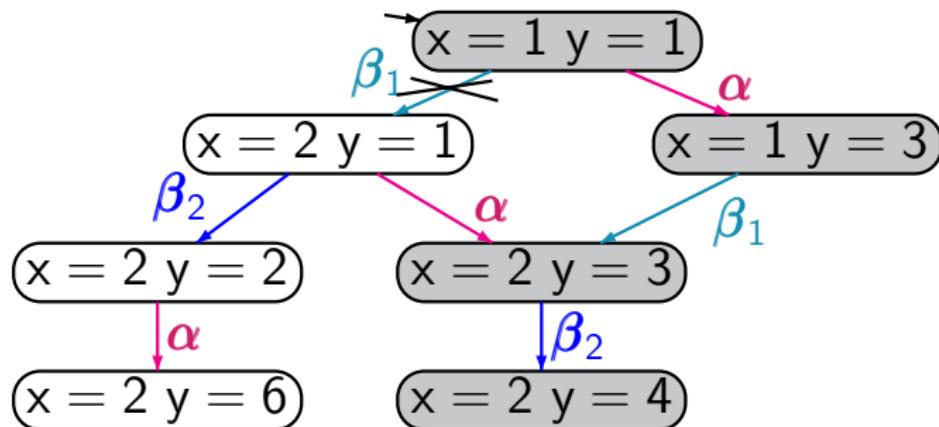
$$\boxed{\underbrace{x := 2 \cdot x}_{\beta_1} \quad ; \quad \underbrace{y := y + 1}_{\beta_2} \quad ||| \quad \underbrace{y := 3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

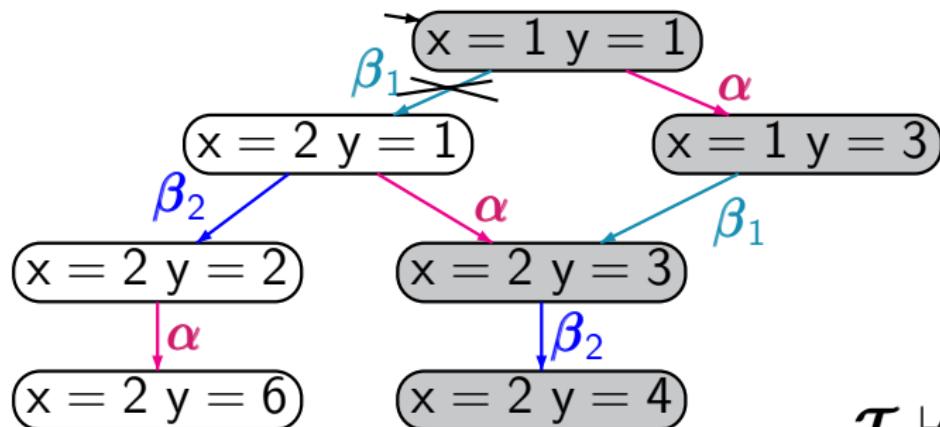
$$\boxed{x := \underbrace{2 \cdot x}_{\beta_1} \quad ; \quad y := \underbrace{y + 1}_{\beta_2} \quad ||| \quad y := \underbrace{3 \cdot y}_{\alpha}}$$



Example

LTL3.4-23

$$\boxed{x := \underbrace{2 \cdot x}_{\beta_1} \quad ; \quad y := \underbrace{y + 1}_{\beta_2} \quad ||| \quad y := \underbrace{3 \cdot y}_{\alpha}}$$



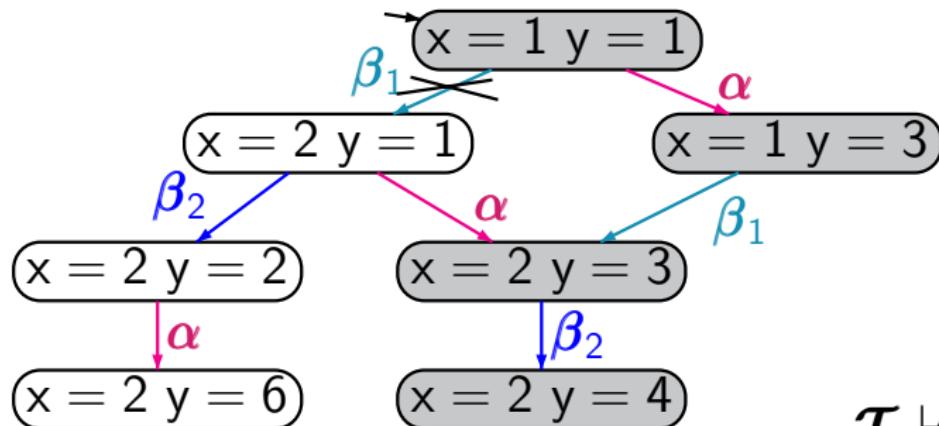
$$\begin{aligned}\mathcal{T} &\not\models \Box(y \neq 6) \\ \mathcal{T}_{\text{red}} &\models \Box(y \neq 6)\end{aligned}$$

Example

LTL3.4-23

$$\boxed{x := 2 \cdot x \quad ; \quad y := y + 1 \quad ||| \quad y := 3 \cdot y}$$

β_1 β_2 α



$$\mathcal{T} \not\models \Box(y \neq 6)$$
$$\mathcal{T}_{\text{red}} \models \Box(y \neq 6)$$

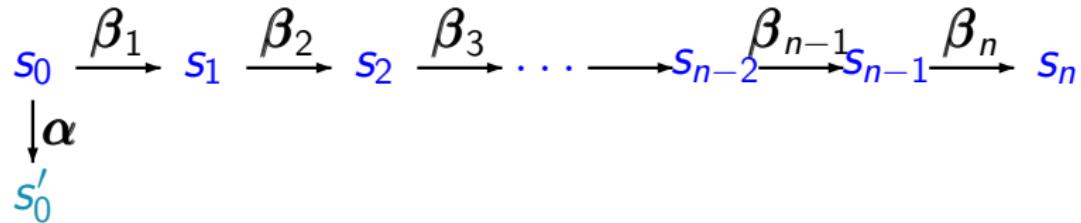
(A2) violated as β_2, α dependent

Conditions (A2) and (A3)

LTL3.4-24A

Suppose

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action

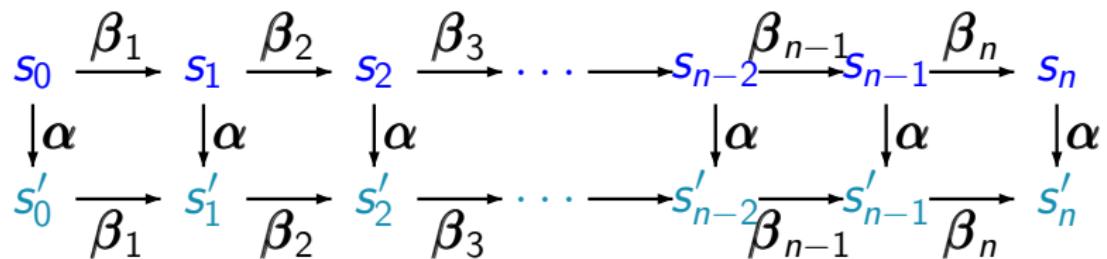


Conditions (A2) and (A3)

LTL3.4-24A

Suppose

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action

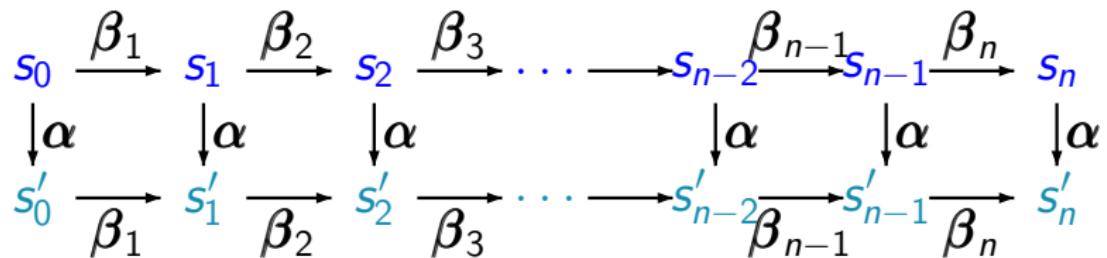


Conditions (A2) and (A3)

LTL3.4-24A

Suppose

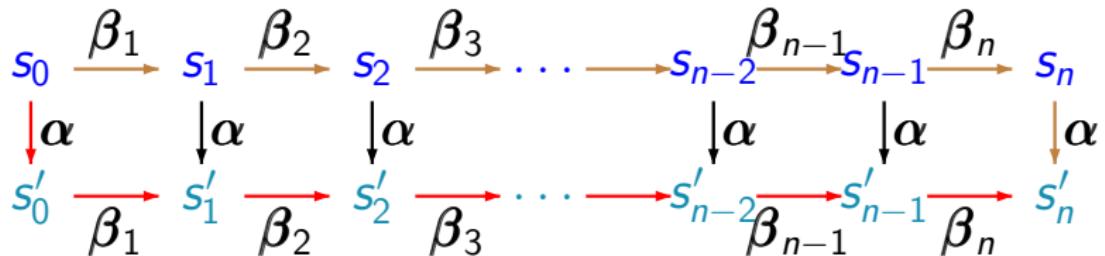
- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



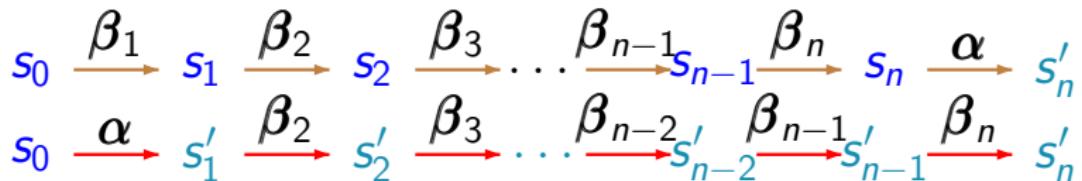
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



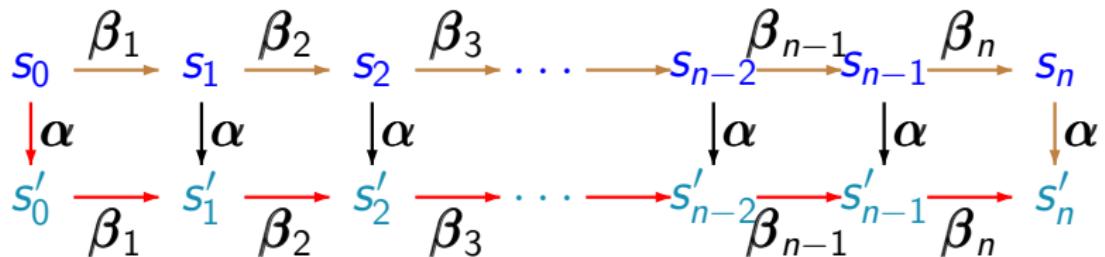
case 1:



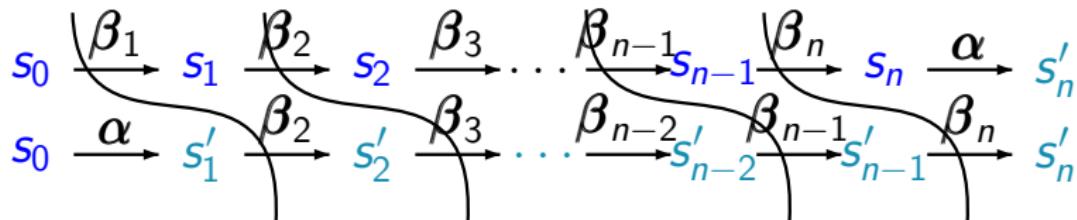
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



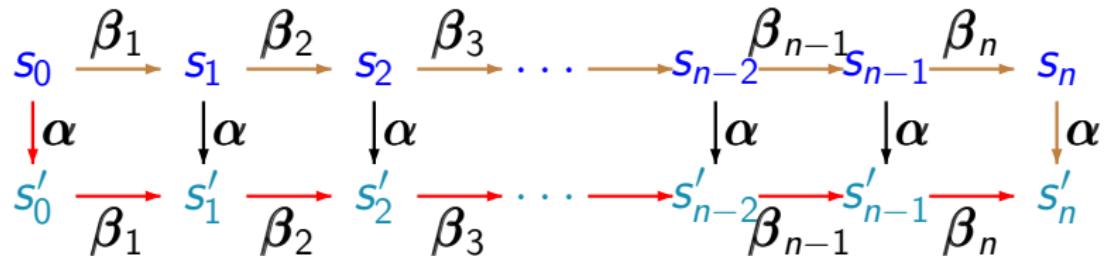
case 1:



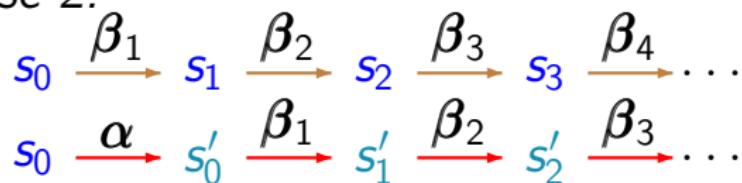
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



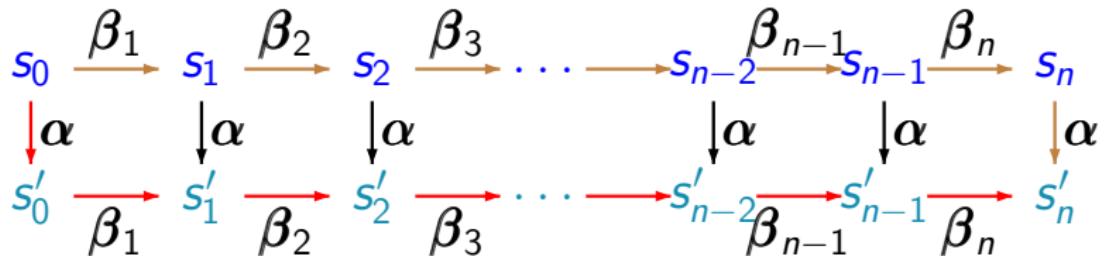
case 2:



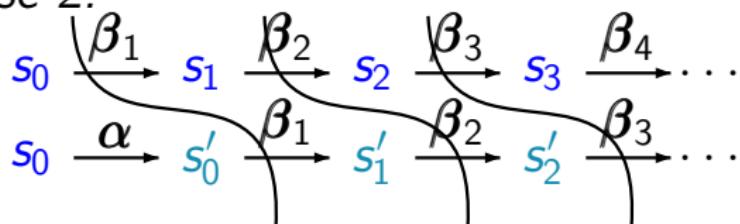
Conditions (A2) and (A3)

LTL3.4-24A

- $\alpha \in \text{ample}(s_0)$, $\beta_i \notin \text{ample}(s_0)$
- α stutter action $\Rightarrow L(s_i) = L(s'_i)$, $i = 0, 1, 2, \dots$



case 2:



Conditions (A1), (A2), (A3) are not sufficient

LTL3.4-30

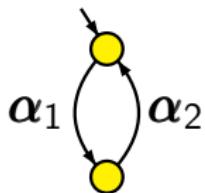
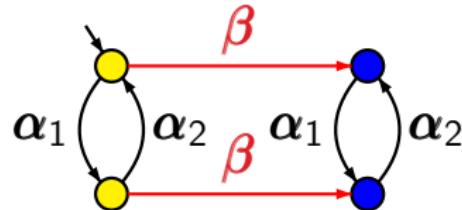
Conditions (A1), (A2), (A3) are not sufficient

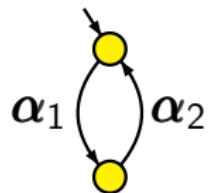
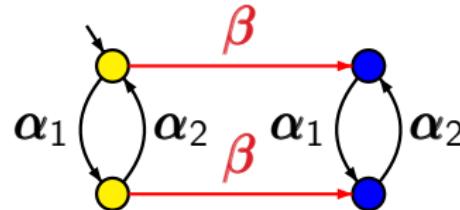
LTL3.4-30

There exists a finite, action-deterministic transition system \mathcal{T} and ample sets for \mathcal{T} such that

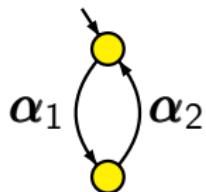
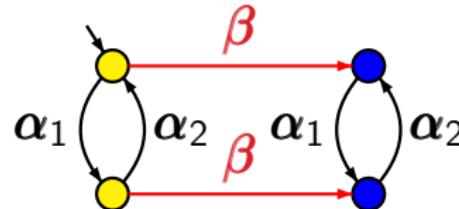
$$\mathcal{T} \not\stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$$

remind: $\stackrel{\Delta}{=}$ stutter trace equivalence

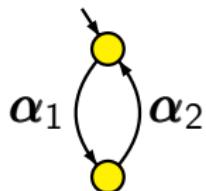
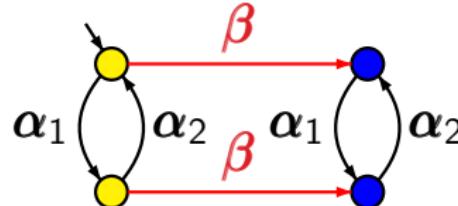
\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$ 

\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$ 

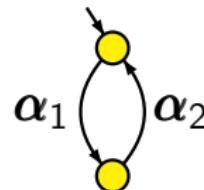
β, α_i independent

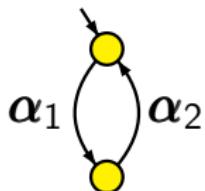
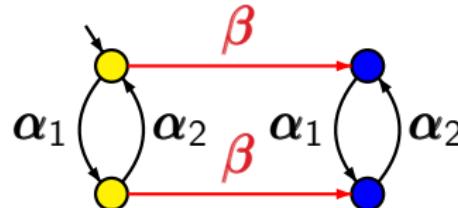
\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$ 

β, α_i independent
 α_1, α_2 stutter actions

\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$ 

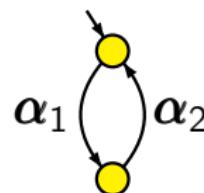
β, α_i independent
 α_1, α_2 stutter actions

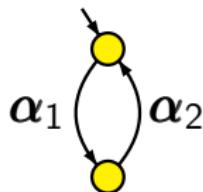
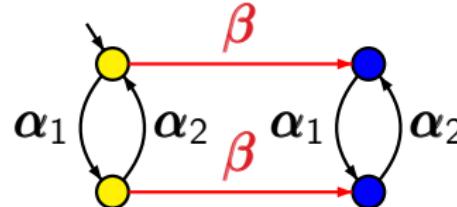
 \mathcal{T}_{red} 

\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$ 

β, α_i independent
 α_1, α_2 stutter actions

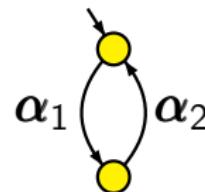
\mathcal{T}_{red} satisfies (A1), (A2), (A3)

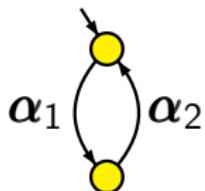
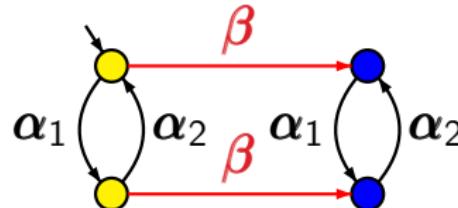


\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$  $\mathcal{T} \not\models \Box \neg \text{blue}$

β, α_i independent
 α_1, α_2 stutter actions

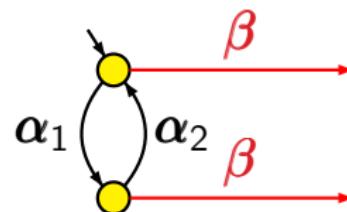
\mathcal{T}_{red} satisfies (A1), (A2), (A3)

 $\mathcal{T}_{\text{red}} \models \Box \neg \text{blue}$

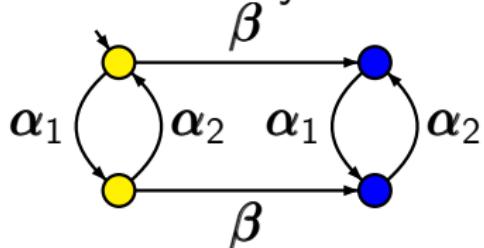
\mathcal{T}_1 \mathcal{T}_2  $\mathcal{T} = \mathcal{T}_1 \parallel \mathcal{T}_2$  $\mathcal{T} \not\models \Box \neg \text{blue}$

β, α_i independent
 α_1, α_2 stutter actions

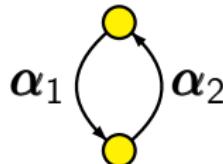
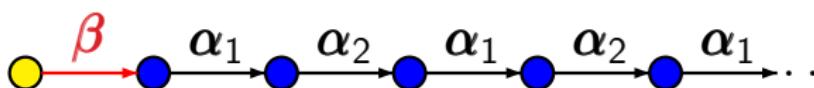
\mathcal{T}_{red} satisfies (A1), (A2), (A3)

 $\mathcal{T}_{\text{red}} \models \Box \neg \text{blue}$

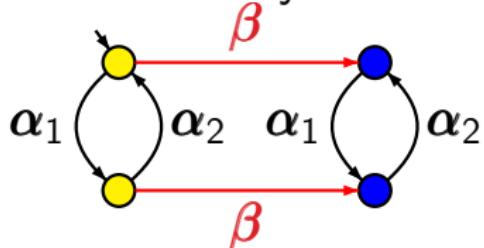
transition system \mathcal{T}



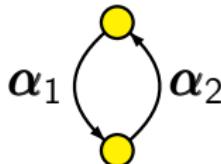
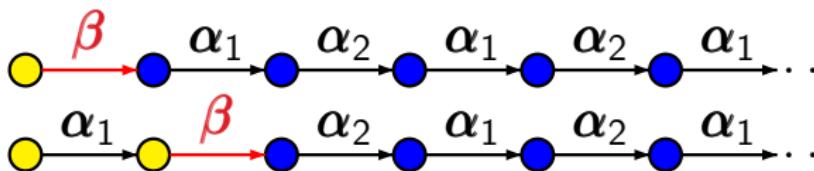
reduced TS \mathcal{T}_{red}



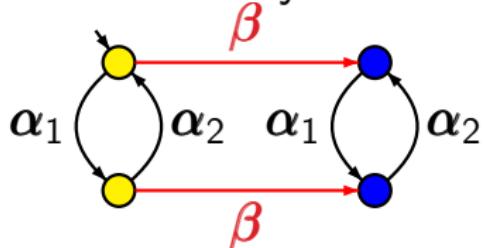
transition system \mathcal{T}



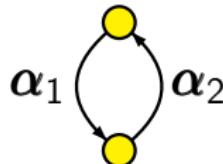
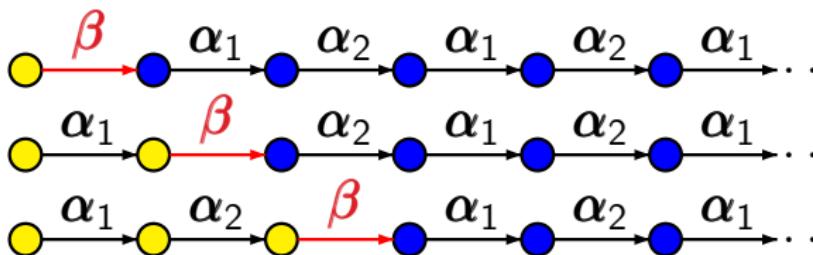
reduced TS \mathcal{T}_{red}



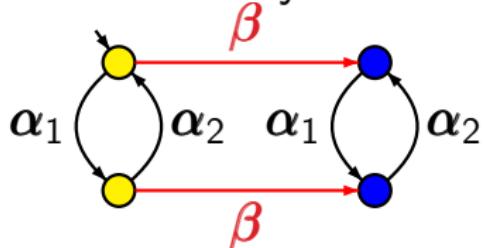
transition system \mathcal{T}



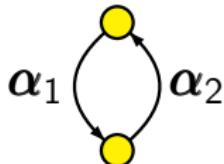
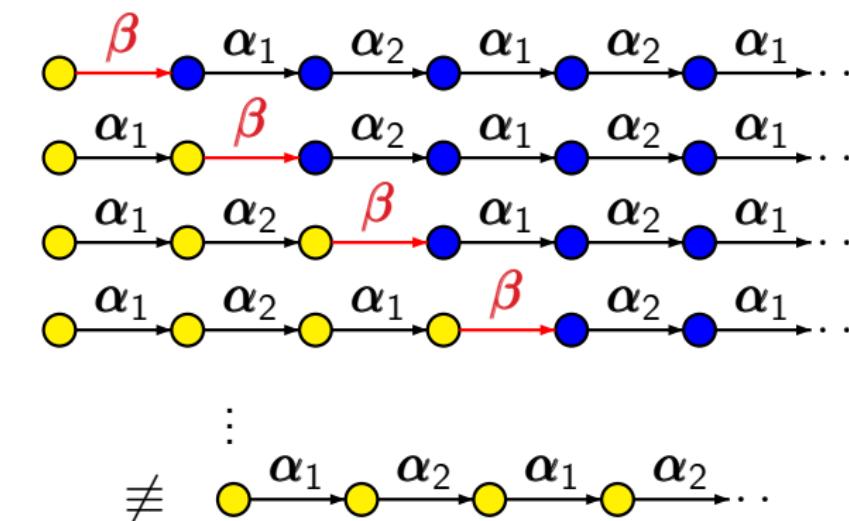
reduced TS \mathcal{T}_{red}



transition system \mathcal{T}

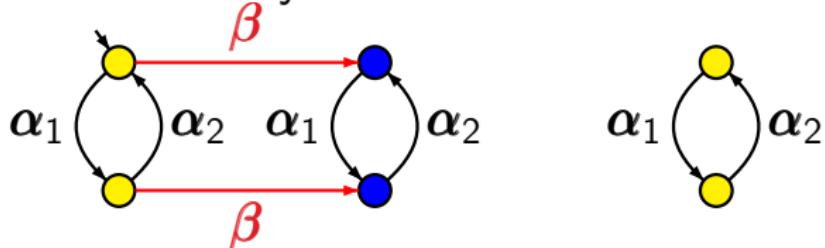
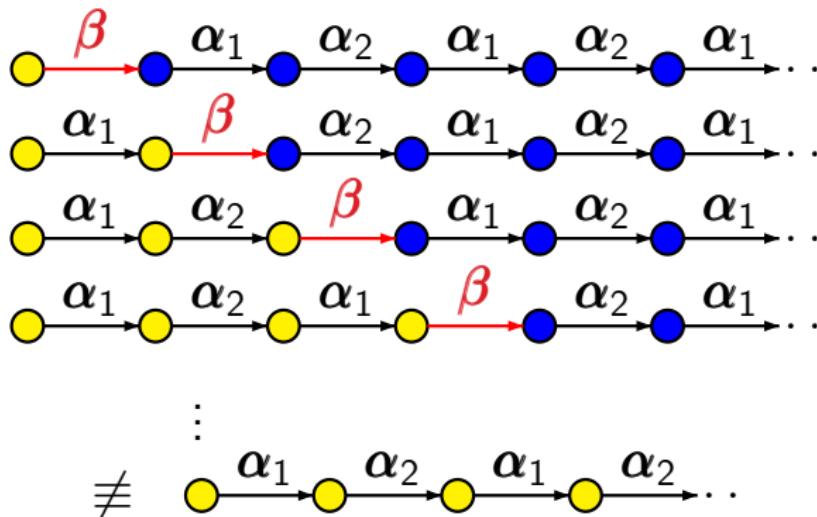


reduced TS \mathcal{T}_{red}



transition system \mathcal{T}

reduced TS \mathcal{T}_{red}



= the unique execution of \mathcal{T}_{red}

4 conditions for ample sets LTL3.4-A4

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

4 conditions for ample sets LTL3.4-A4

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \beta_{i+1} \xrightarrow{\beta_{i+2}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

4 conditions for ample sets LTL3.4-A4

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

4 conditions for ample sets LTL3.4-A4

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

(A4) cycle condition

4 conditions for ample sets LTL3.4-A4

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

(A4) for each *cycle* $s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_n$ in \mathcal{T}_{red} and each action

$$\beta \in \bigcup_{0 \leq i < n} \text{Act}(s_i)$$

there is some $i \in \{1, \dots, n\}$ with $\beta \in \text{ample}(s_i)$

4 conditions for ample sets LTL3.4-34

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

(A4) for each *cycle* $s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_n$ in \mathcal{T}_{red} and each action

$$\beta \in \bigcup_{0 \leq i < n} \text{Act}(s_i)$$

there is some $i \in \{1, \dots, n\}$ with $\beta \in \text{ample}(s_i)$

4 conditions for ample sets LTL3.4-34

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

(A4) for each *cycle* $s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_n$ in \mathcal{T}_{red} and each action

$$\beta \in \bigcup_{0 \leq i < n} \text{Act}(s_i)$$

there is some $i \in \{1, \dots, n\}$ with $\beta \in \text{ample}(s_i)$

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system.

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system.

If the ample sets $\text{ample}(s)$ satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$$

remind: $\stackrel{\Delta}{=}$ stutter trace equivalence

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system.

If the ample sets $\text{ample}(s)$ satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

hence: for all $\text{LTL}_{\setminus \Diamond}$ formulas φ :

$$\mathcal{T} \models \varphi \text{ iff } \mathcal{T}_{\text{red}} \models \varphi$$

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system. If the ample sets $\text{ample}(s)$ satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

Proof: show that

$$\mathcal{T} \trianglelefteq \mathcal{T}_{\text{red}} \text{ and } \mathcal{T}_{\text{red}} \trianglelefteq \mathcal{T}$$

where \trianglelefteq = stutter trace inclusion

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system. If the ample sets $\text{ample}(s)$ satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

Proof:

- $\mathcal{T}_{\text{red}} \trianglelefteq \mathcal{T}$: ✓

Soundness of conditions (A1), (A2), (A3), (A4)

LTL3.4-35

Let \mathcal{T} be a finite, action-deterministic transition system. If the ample sets $\text{ample}(s)$ satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \triangleq \mathcal{T}_{\text{red}}$$

Proof:

- $\mathcal{T}_{\text{red}} \trianglelefteq \mathcal{T}$: ✓

- $\mathcal{T} \trianglelefteq \mathcal{T}_{\text{red}}$:

show that each execution ρ of \mathcal{T} can be transformed into a stutter equivalent execution ρ' of \mathcal{T}_{red}

Proof of $\mathcal{T} \trianglelefteq \mathcal{T}_{\text{red}}$

LTL3.4-35A

given: infinite execution fragment ρ of \mathcal{T}

goal: construction of a stutter equivalent execution fragment ρ' of \mathcal{T}_{red}

Proof of $\mathcal{T} \trianglelefteq \mathcal{T}_{\text{red}}$

LTL3.4-35A

given: infinite execution fragment ρ of \mathcal{T}

goal: construction of a stutter equivalent execution fragment ρ' of \mathcal{T}_{red}

idea: ρ' results from the “limit” of transformations

$$\rho = \rho_0 \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

Proof of $\mathcal{T} \trianglelefteq \mathcal{T}_{\text{red}}$

LTL3.4-35A

given: infinite execution fragment ρ of \mathcal{T}

goal: construction of a stutter equivalent execution fragment ρ' of \mathcal{T}_{red}

idea: ρ' results from the “limit” of transformations

$$\rho = \rho_0 \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow$$

where, for $i > j \geq 0$, the execution fragments ρ_i and ρ_j have a common prefix

- of length j
- consisting of transitions in \mathcal{T}_{red}

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$

case 2: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$

where $\beta_i \notin \text{ample}(s_0)$, $i = 1, 2, \dots$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$

case 2: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$

where $\beta_i \notin \text{ample}(s_0)$, $i = 1, 2, \dots$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$

case 2: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$

where $\beta_i \notin \text{ample}(s_0)$, $i = 1, 2, \dots$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$

by (A3): α is a stutter action in cases 1 and 2

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots \triangleq \rho_0$$

case 2: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$

where $\beta_i \notin \text{ample}(s_0)$, $i = 1, 2, \dots$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \triangleq \rho_0$$

by (A3): α is a stutter action in cases 1 and 2

Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 1: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$

where $\beta_1, \dots, \beta_{n-1} \notin \text{ample}(s_0)$, $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots \triangleq \rho_0$$

case 2: $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$

where $\beta_i \notin \text{ample}(s_0)$, $i = 1, 2, \dots$

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \triangleq \rho_0$$

$\rho_1 \rightsquigarrow \rho_2$:

repeat the same procedure from the 2nd state on

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

idea: the conditions for the ample sets

should ensure that

for each execution ρ in \mathcal{T} ,

a stutter trace equivalent execution ρ_{red} in \mathcal{T}_{red}

can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

$\text{execution } \rho \text{ in } \mathcal{T} \rightsquigarrow \text{execution } \rho_{\text{red}} \text{ in } \mathcal{T}_{\text{red}}$

s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

by successively applying the following transformations:

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
 s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\dots} \dots$ with $\alpha \in \text{ample}(s_0)$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Stutter trace equivalence of \mathcal{T} and \mathcal{T}_{red}

LTL3.4-21

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\cdot\cdot\cdot} \dots$ with $\alpha \in \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\cdot\cdot\cdot} \dots$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \xrightarrow{\cdot\cdot\cdot} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\cdot\cdot\cdot} \dots$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ for some $\alpha \in \text{ample}(s_0)$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for $i < j$ the executions ρ_j and ρ_i have a common prefix of length i which is a path fragment in \mathcal{T}_{red}

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for $i < j$ the executions ρ_j and ρ_i have a common prefix of length i which is a path fragment in \mathcal{T}_{red} , i.e., ρ_i has the form

$$\rho_i = \underbrace{s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i}_{\text{in } \mathcal{T}_{\text{red}}} \underbrace{\rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow \dots}_{\text{in } \mathcal{T}}$$

execution ρ in \mathcal{T} \rightsquigarrow execution ρ_{red} in \mathcal{T}_{red}
s.t. $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$

ρ_{red} results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where

$$\rho_i = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

$$\rho_{i+1} = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \Rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

$$\rho_{i+2} = s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_i \Rightarrow s_{i+1} \Rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \dots$$

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$
 $\beta_i \notin \text{ample}(s_0)$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \text{ for some } \alpha \in \text{ample}(s_0)$$

Transformation $\rho \rightsquigarrow \rho_1$

LTL3.4-21

case 0: $\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$ with $\alpha \in \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$ with $\alpha \in \text{ample}(s_0)$

$\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \dots$$

case 2: $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ with $\beta_i \notin \text{ample}(s_0)$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \text{ for some } \alpha \in \text{ample}(s_0)$$

for the transformation $\rho_1 \rightsquigarrow \rho_2$:

apply case 0,1 or 2 to the suffix starting in state s'_0

Transformation according to cases 1 and 2

LTL3.4-36

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

Transformation according to cases 1 and 2

LTL3.4-36

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

α_i stutter action

Transformation according to cases 1 and 2

LTL3.4-36

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

α_i stutter action $\rightsquigarrow \rho_0 \stackrel{\Delta}{=} \rho_1 \stackrel{\Delta}{=} \rho_2 \stackrel{\Delta}{=} \dots$

Transformation according to cases 1 and 2

LTL3.4-36

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

by the cycle condition (A4):

“action β_1 will *not* be postponed forever”

Transformation according to cases 1 and 2

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

by the cycle condition (A4):

“action β_1 will *not* be postponed forever”

i.e., there exists some m such that case 0 applies
and $\rho_m = \rho_{m+1}$

Transformation according to cases 1 and 2

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots & \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

by the cycle condition (A4):

“action β_1 will *not* be postponed forever”

i.e., there exists some m such that case 0 applies
and $\rho_m = \rho_{m+1}$

Transformation according to cases 1 and 2

$$\begin{aligned}\rho_0 &= s_0 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_1 &= s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_2 &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} s_2 \xrightarrow{\beta_1} \dots & \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ &\vdots \\ \rho_m &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots \\ \rho_{m+1} &= s_0 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_m} s_m \xrightarrow{\beta_1} \dots \xrightarrow{\beta_k} \xrightarrow{\beta_{k+1}} \dots\end{aligned}$$

by the cycle condition (A4):

“action β_1 will *not* be postponed forever”

i.e., there exists some m such that case 0 applies
and $\rho_m = \rho_{m+1}$

4 conditions for ample sets

LTL3.4-FOUR-COND

(A1) $\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$

(A2) for each execution fragment in \mathcal{T}

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) if $\text{ample}(s) \neq \text{Act}(s)$ then all actions in $\text{ample}(s)$ are *stutter actions*

(A4) for each *cycle* $s_0 \Rightarrow s_1 \Rightarrow \dots \Rightarrow s_n$ in \mathcal{T}_{red} and each action

$$\beta \in \bigcup_{0 \leq i < n} \text{Act}(s_i)$$

there is some $i \in \{1, \dots, n\}$ with $\beta \in \text{ample}(s_i)$

The ample set method for LTL_{\O} model checking

LTL3.4-37

The ample set method for LTL_{\O} model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}

The ample set method for LTL_{\bigcirc} model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}
- *exploration* of state s :
create the states $\alpha(s)$ for $\alpha \in \text{ample}(s)$,

The ample set method for LTL_{\bigcirc} model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}
- *exploration* of state s :
create the states $\alpha(s)$ for $\alpha \in \text{ample}(s)$, but
ignore the β -successors of s for $\beta \notin \text{ample}(s)$

The ample set method for $LTL \setminus \Diamond$ model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}
- *exploration* of state s :
create the states $\alpha(s)$ for $\alpha \in \text{ample}(s)$, but
ignore the β -successors of s for $\beta \notin \text{ample}(s)$
- *interleave* the generation of \mathcal{T}_{red} with the
product construction $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$

where \mathcal{A} is an NBA for the negation of the formula
to be checked

The ample set method for $LTL \setminus \Diamond$ model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}
- *exploration* of state s :
create the states $\alpha(s)$ for $\alpha \in \text{ample}(s)$, but
ignore the β -successors of s for $\beta \notin \text{ample}(s)$
- *interleave* the generation of \mathcal{T}_{red} with the
product construction $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$ and nested DFS

where \mathcal{A} is an NBA for the negation of the formula
to be checked

The ample set method for LTL $\setminus\circlearrowleft$ model checking

LTL3.4-37

- on-the-fly DFS-based generation of \mathcal{T}_{red}
- *exploration* of state s :
create the states $\alpha(s)$ for $\alpha \in \text{ample}(s)$, but
ignore the β -successors of s for $\beta \notin \text{ample}(s)$
- *interleave* the generation of \mathcal{T}_{red} with the
product construction $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$ and nested DFS

where \mathcal{A} is an NBA for the negation of the formula
to be checked

here: only explanations for *reachability analysis*

The ample set method for reachability

LTL3.4-37

given: finite transition system \mathcal{T}

atomic proposition a

goal: on-the-fly construction of \mathcal{T}_{red}

abort as soon as a state s with

$s \not\models a$ has been generated

The ample set method for reachability

LTL3.4-37

given: finite transition system \mathcal{T}

atomic proposition a

goal: on-the-fly construction of \mathcal{T}_{red}

abort as soon as a state s with

$s \not\models a$ has been generated

uses

- V = set of states that have been generated so far (organized as a hash table)

The ample set method for reachability

LTL3.4-37

given: finite transition system \mathcal{T}

atomic proposition a

goal: on-the-fly construction of \mathcal{T}_{red}

abort as soon as a state s with

$s \not\models a$ has been generated

uses

- V = set of states that have been generated so far (organized as a hash table)
- DFS-stack π

The ample set method for reachability

LTL3.4-37

given: finite transition system \mathcal{T} for $P_1 \parallel \dots \parallel P_n$
atomic proposition a

goal: on-the-fly construction of \mathcal{T}_{red}
abort as soon as a state s with
 $s \not\models a$ has been generated

uses

- V = set of states that have been generated so far (organized as a hash table)
- DFS-stack π
- “local” criteria to compute $\text{ample}(s)$ from a syntactic representation of the processes P_i

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ **DO**

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

Push(π, \mathbf{s});

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ DO

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

Push(π, \mathbf{s}); compute $\text{ample}(\mathbf{s})$;

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ DO

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

$\text{Push}(\pi, \mathbf{s})$; compute $\text{ample}(\mathbf{s})$;

WHILE $\pi \neq \emptyset$ DO

$\mathbf{s} := \text{Top}(\pi)$;

OD

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ DO

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

$\text{Push}(\pi, \mathbf{s})$; compute $\text{ample}(\mathbf{s})$;

WHILE $\pi \neq \emptyset$ DO

$\mathbf{s} := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(\mathbf{s})$ with $\alpha(\mathbf{s}) \notin \mathbf{V}$

FI

OD

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ DO

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

Push(π, \mathbf{s}); compute $\text{ample}(\mathbf{s})$;

WHILE $\pi \neq \emptyset$ DO

$\mathbf{s} := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(\mathbf{s})$ with $\alpha(\mathbf{s}) \notin \mathbf{V}$

THEN select such α ; add $\mathbf{s}' := \alpha(\mathbf{s})$ to \mathbf{V} ;

Push(π, \mathbf{s}');

FI

OD

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $S_0 \not\subseteq \mathbf{V}$ DO

select an initial state $\mathbf{s} \in S_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

Push(π, \mathbf{s}); compute $\text{ample}(\mathbf{s})$;

WHILE $\pi \neq \emptyset$ DO

$\mathbf{s} := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(\mathbf{s})$ with $\alpha(\mathbf{s}) \notin \mathbf{V}$

THEN select such α ; add $\mathbf{s}' := \alpha(\mathbf{s})$ to \mathbf{V} ;

Push(π, \mathbf{s}'); compute $\text{ample}(\mathbf{s}')$;

FI

OD

OD

Ample set method (full generation of \mathcal{T}_{red})

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $\mathbf{S}_0 \not\subseteq \mathbf{V}$ **DO**

select an initial state $\mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}$; add \mathbf{s} to \mathbf{V} ;

Push(π, \mathbf{s}); compute ample(\mathbf{s});

WHILE $\pi \neq \emptyset$ **DO**

$\mathbf{s} := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(\mathbf{s})$ with $\alpha(\mathbf{s}) \notin \mathbf{V}$

THEN select such α ; add $\mathbf{s}' := \alpha(\mathbf{s})$ to \mathbf{V} ;

Push(π, \mathbf{s}'); compute ample(\mathbf{s}');

ELSE Pop(π)

FI

OD

OD

The ample set method for **reachability**

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $S_0 \not\subseteq \mathbf{V}$ DO

select an initial state $s \in S_0 \setminus \mathbf{V}$; add s to \mathbf{V} ;

Push(π, s); compute **ample**(s);

WHILE $\pi \neq \emptyset$ DO

$s := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(s)$ with $\alpha(s) \notin \mathbf{V}$

THEN select such α ; add $s' := \alpha(s)$ to \mathbf{V} ;

Push(π, s'); compute **ample**(s');

ELSE Pop(π)

FI

OD

OD

Does $\mathcal{T} \models \Box a$ hold?

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $S_0 \not\subseteq \mathbf{V}$ DO

select an initial state $s \in S_0 \setminus \mathbf{V}$; add s to \mathbf{V} ;

Push(π, s); compute ample(s);

WHILE $\pi \neq \emptyset$ DO

$s := \text{Top}(\pi)$;

IF $\exists \alpha \in \text{ample}(s)$ with $\alpha(s) \notin \mathbf{V}$

THEN select such α ; add $s' := \alpha(s)$ to \mathbf{V} ;

Push(π, s'); compute ample(s');

ELSE Pop(π)

FI

OD

OD

Does $\mathcal{T} \models \Box a$ hold?

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $S_0 \not\subseteq \mathbf{V}$ DO

select an initial state $s \in S_0 \setminus \mathbf{V}$; add s to \mathbf{V} ;

Push(π, s); compute ample(s);

WHILE $\pi \neq \emptyset$ DO

$s := \text{Top}(\pi)$;

IF $s \not\models a$ THEN return “NO”

FI;

IF $\exists \alpha \in \text{ample}(s)$ with $\alpha(s) \notin \mathbf{V}$

THEN

ELSE Pop(π)

FI

OD

OD

Does $\mathcal{T} \models \Box a$ hold?

LTL3.4-37

$\pi := \emptyset$; $\mathbf{V} := \emptyset$

WHILE $S_0 \not\subseteq \mathbf{V}$ DO

select an initial state $s \in S_0 \setminus \mathbf{V}$; add s to \mathbf{V} ;

Push(π, s); compute ample(s);

WHILE $\pi \neq \emptyset$ DO

$s := \text{Top}(\pi)$;

IF $s \not\models a$ THEN return “NO” + counterexample FI;

IF $\exists \alpha \in \text{ample}(s)$ with $\alpha(s) \notin \mathbf{V}$

THEN

ELSE Pop(π)

FI

OD

OD

Example: ample set method

LTL3.4-38

full generation of \mathcal{T}_{red} for $\mathcal{T} = \mathcal{T}_{P_1 \parallel\parallel P_2}$ where

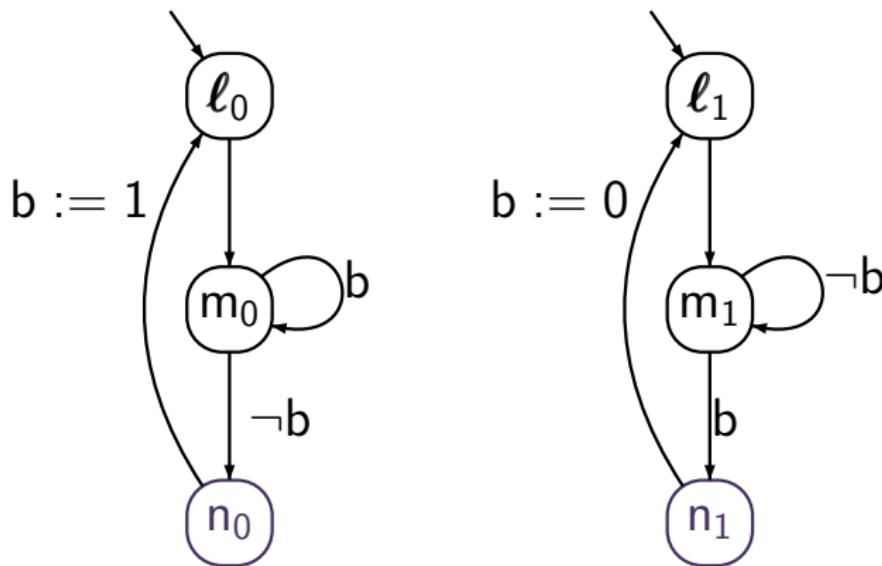
- P_1, P_2 are program graphs with shared variable
 $b \in \{0, 1\}$

Example: ample set method

LTL3.4-38

full generation of \mathcal{T}_{red} for $\mathcal{T} = \mathcal{T}_{P_1 \parallel\!\!\parallel P_2}$ where

- P_1, P_2 are program graphs with shared variable $b \in \{0, 1\}$

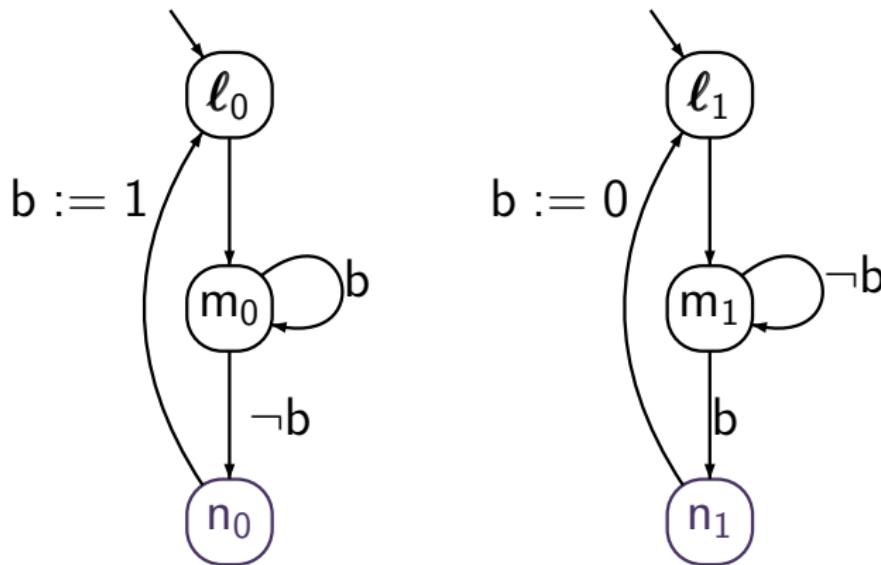


Example: ample set method

LTL3.4-38

full generation of \mathcal{T}_{red} for $\mathcal{T} = \mathcal{T}_{P_1 \parallel\!\!\parallel P_2}$ where

- P_1, P_2 are program graphs with shared variable $b \in \{0, 1\}$
- $AP = \{n_0, n_1\}$

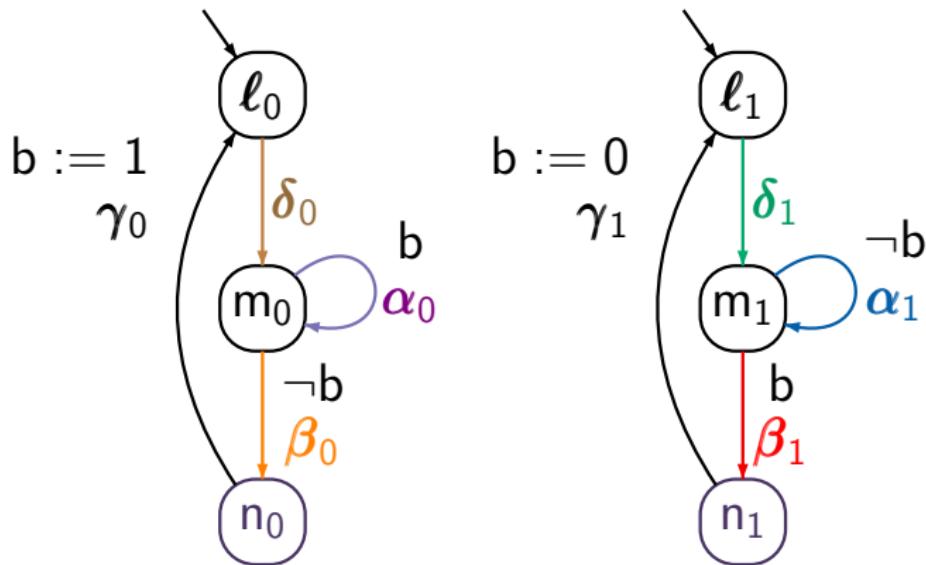


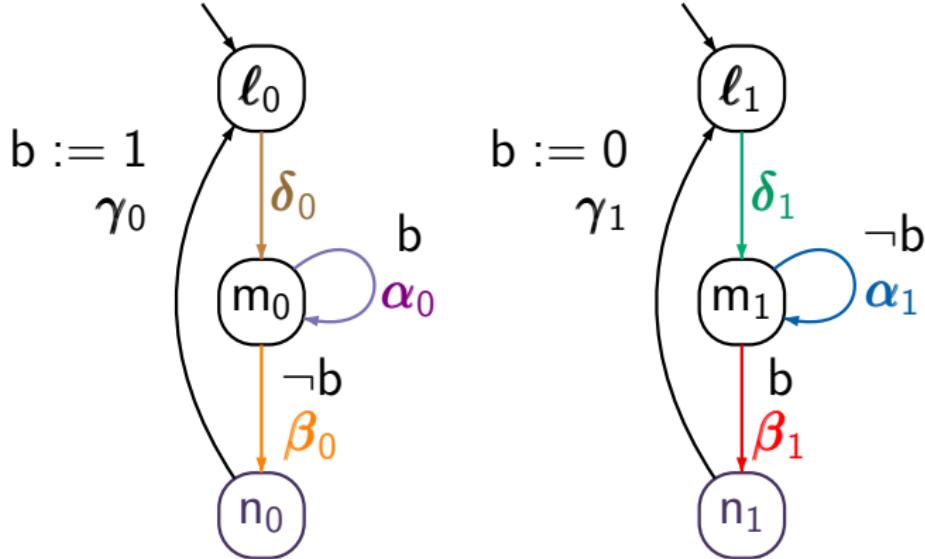
Example: ample set method

LTL3.4-38

full generation of \mathcal{T}_{red} for $\mathcal{T} = \mathcal{T}_{P_1 \parallel\!\!\parallel P_2}$ where

- P_1, P_2 are program graphs with shared variable $b \in \{0, 1\}$
- AP = $\{n_0, n_1\}$





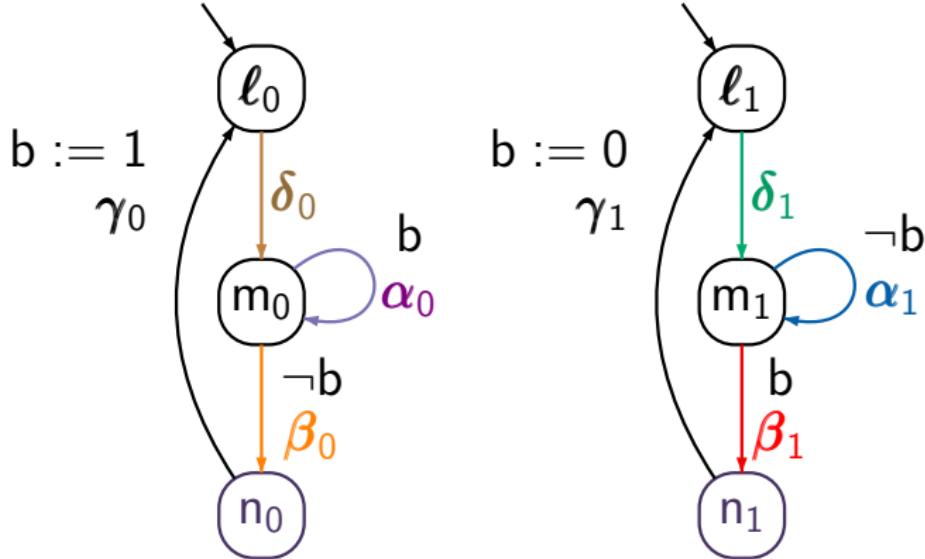
independent actions:

δ_0 δ_1

δ_0 α_1

δ_0 β_1

δ_0 γ_1



independent actions:

$\delta_0 \ \delta_1$

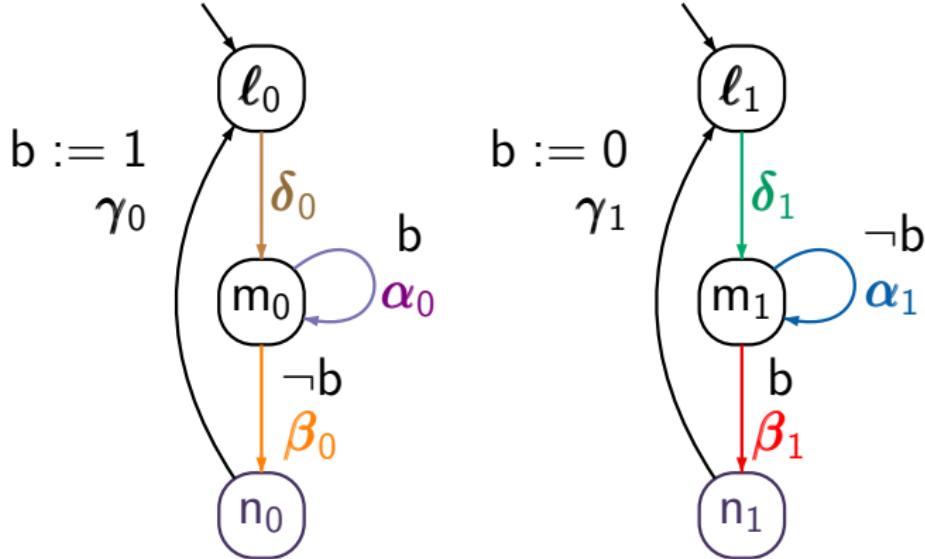
$\delta_0 \ \alpha_1$

$\delta_0 \ \beta_1$

$\delta_0 \ \gamma_1$

$\alpha_0 \ \delta_1$

$\alpha_0 \ \beta_1$



independent actions:

$\delta_0 \ \delta_1$

$\delta_0 \ \alpha_1$

$\delta_0 \ \beta_1$

$\delta_0 \ \gamma_1$

$\alpha_0 \ \delta_1$

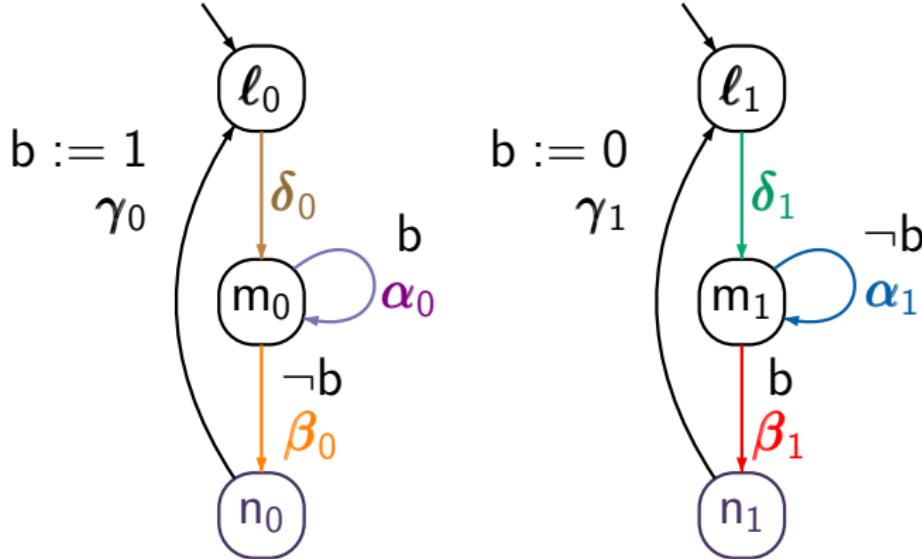
$\alpha_0 \ \beta_1$

$\beta_0 \ \delta_1$

$\beta_0 \ \alpha_1$

$\beta_0 \ \beta_1$

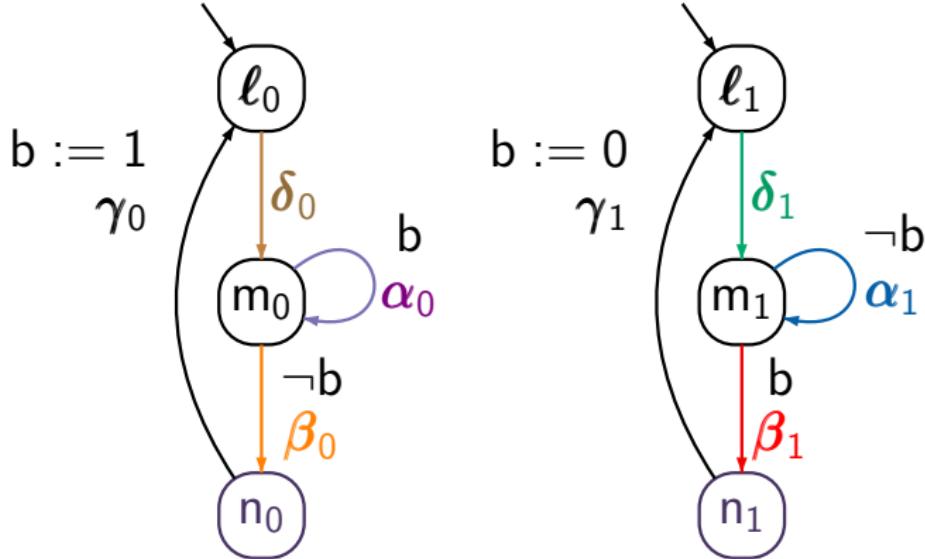
$\beta_0 \ \gamma_1$



independent actions:

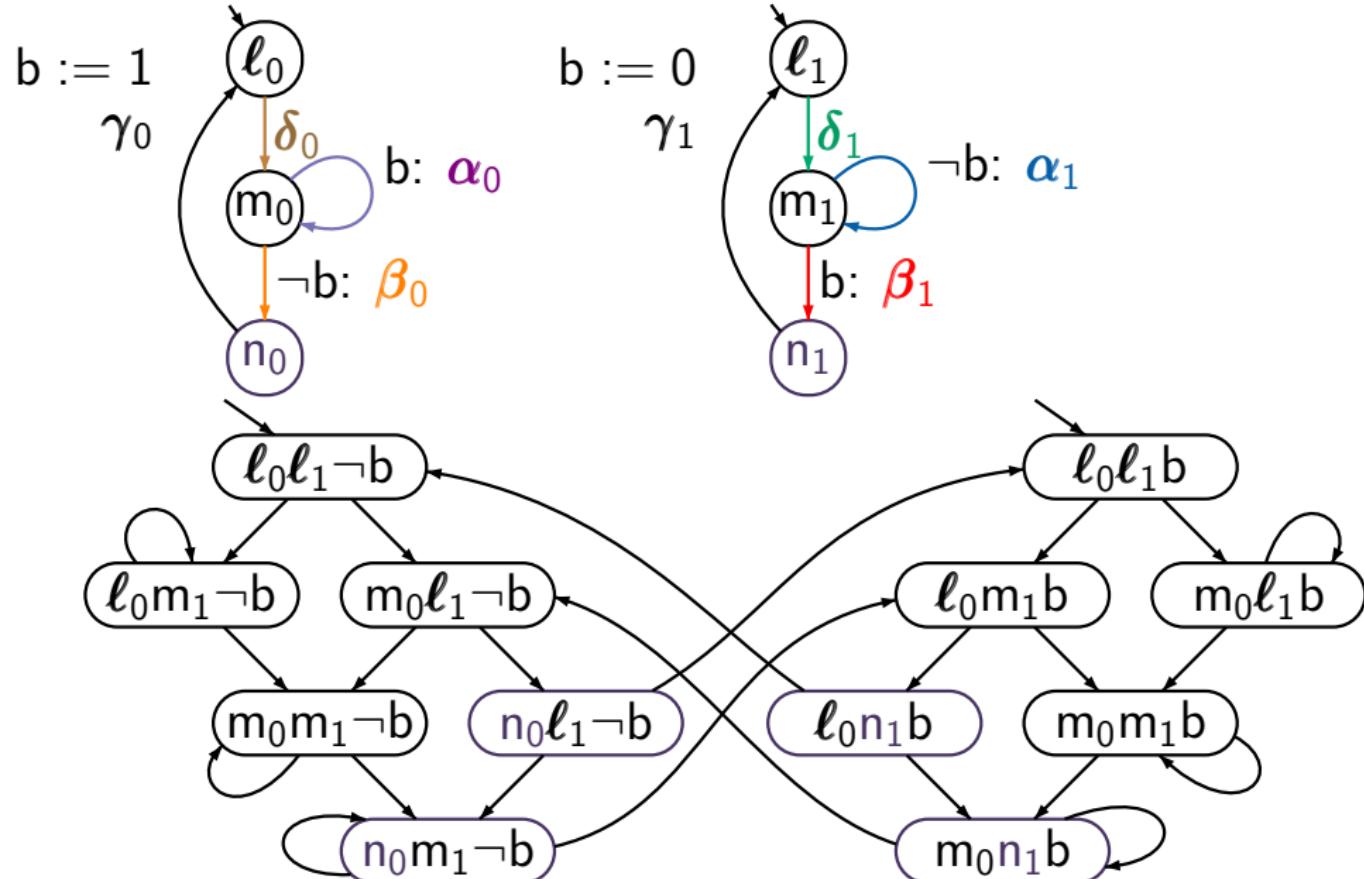
$$\begin{array}{cccc}
 \delta_0 \ \delta_1 & \delta_0 \ \alpha_1 & \delta_0 \ \beta_1 & \delta_0 \ \gamma_1 \\
 \alpha_0 \ \delta_1 & & \alpha_0 \ \beta_1 & \\
 \beta_0 \ \delta_1 & \beta_0 \ \alpha_1 & \beta_0 \ \beta_1 & \beta_0 \ \gamma_1
 \end{array}$$

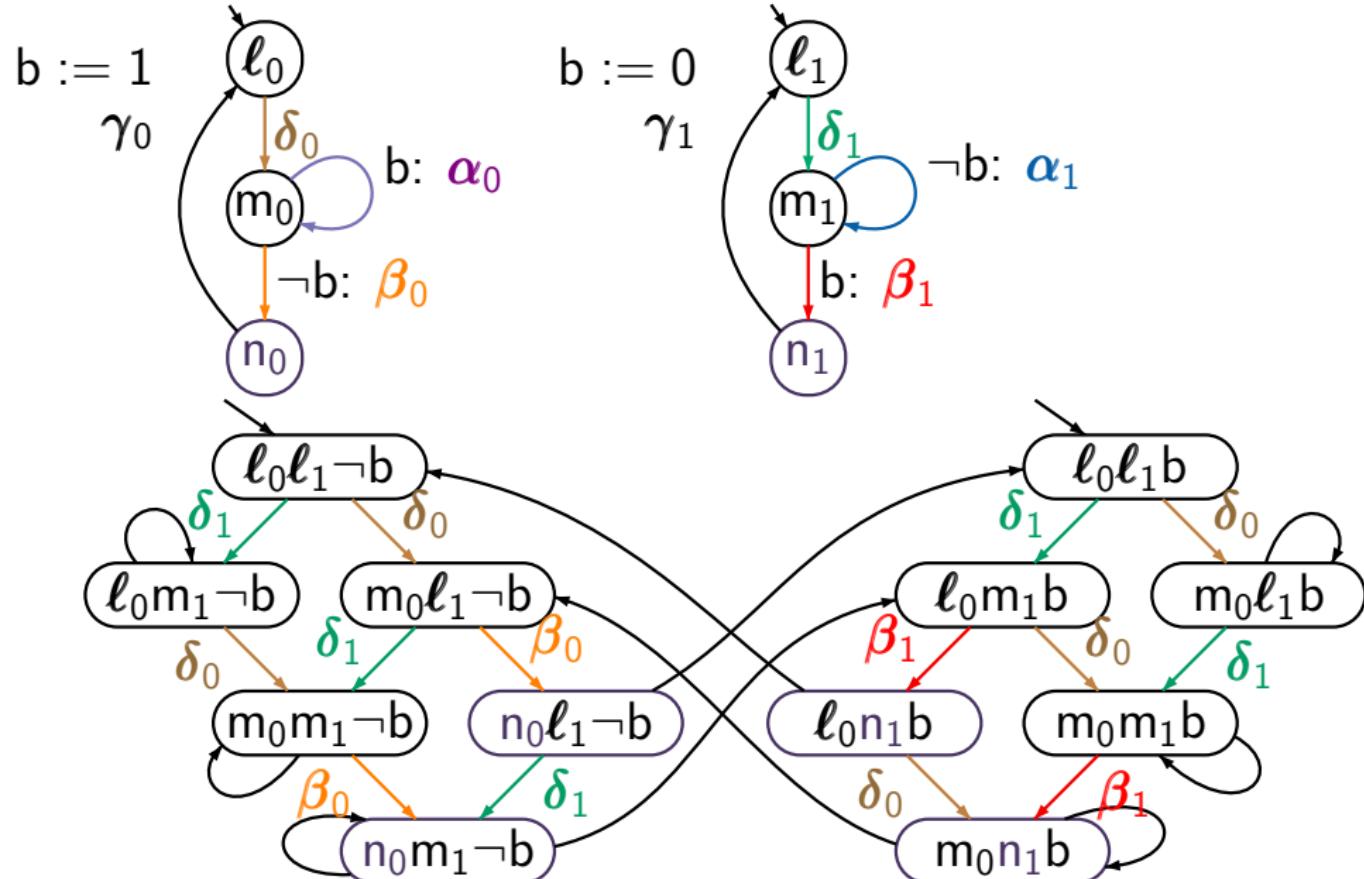
β_0 and β_1 are never enabled simultaneously

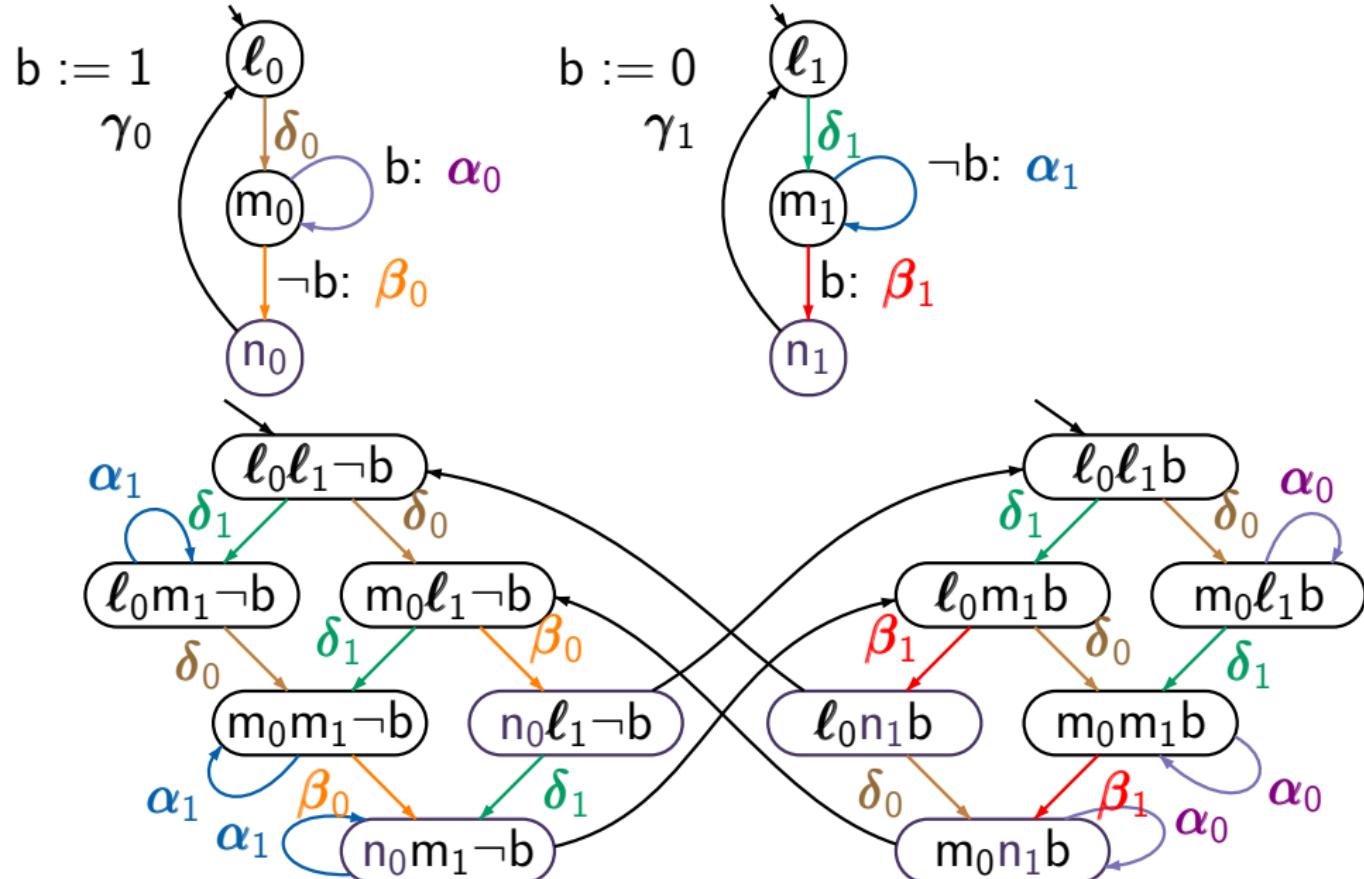


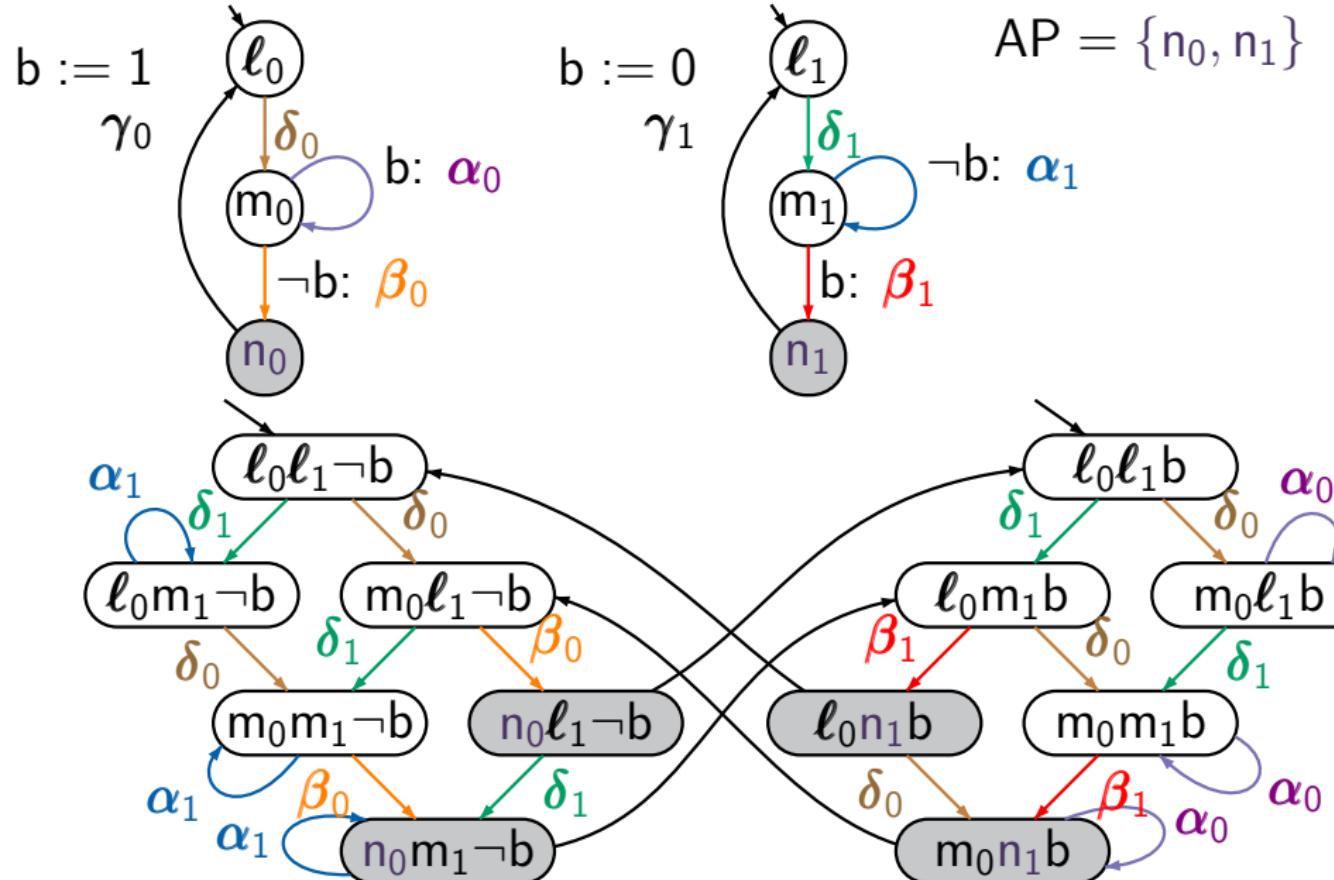
independent actions:

δ_0	δ_1	δ_0	α_1	δ_0	β_1	δ_0	γ_1
α_0	δ_1			α_0	β_1		
β_0	δ_1	β_0	α_1	β_0	β_1	β_0	γ_1
γ_0	δ_1			γ_0	β_1		



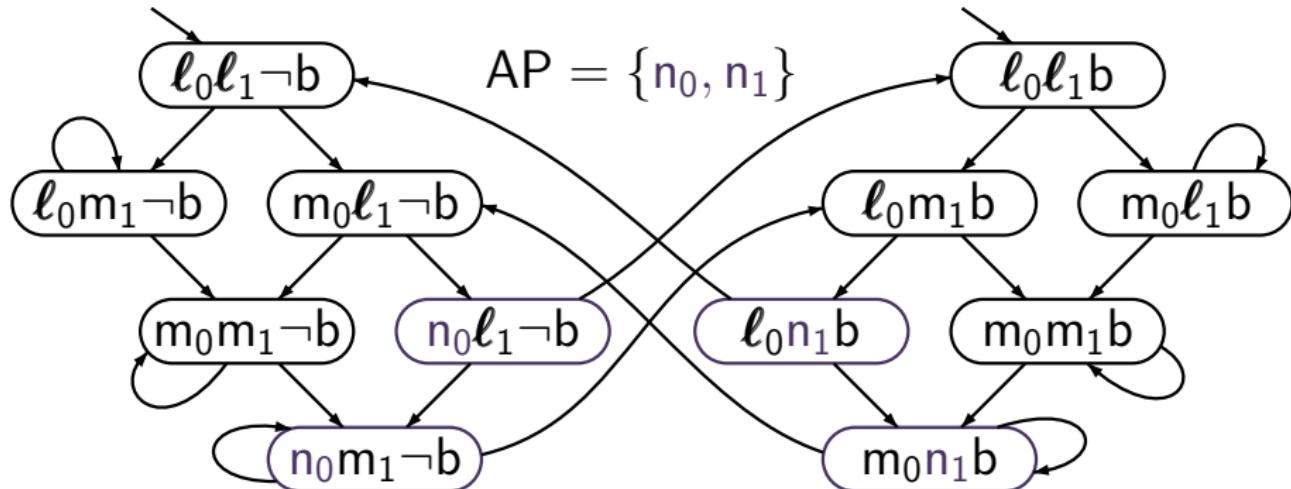






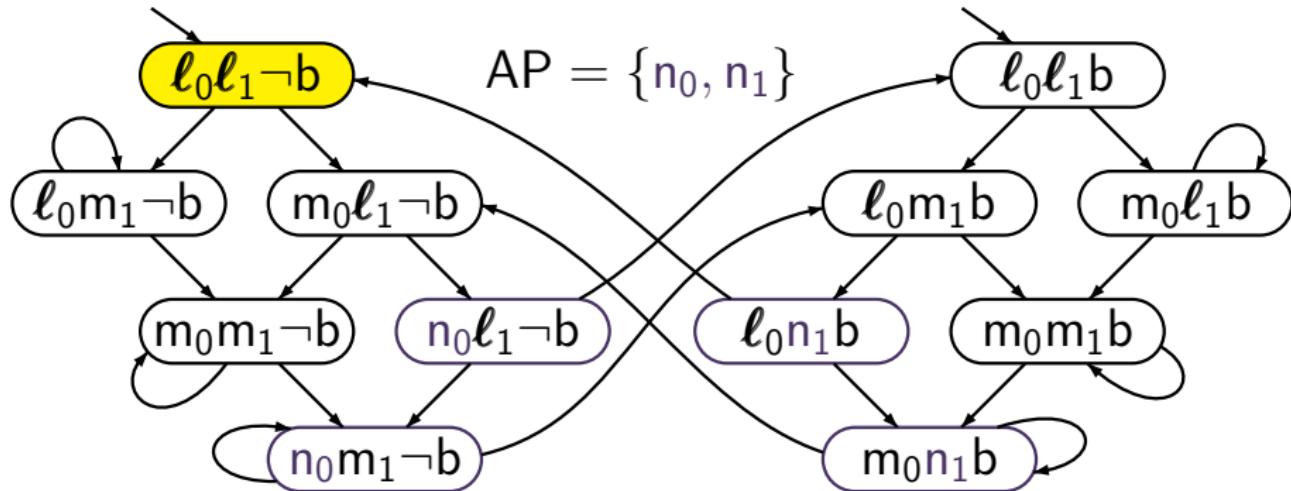
Example: on-the-fly generation of T_{red}

LTL3.4-40



Example: on-the-fly generation of T_{red}

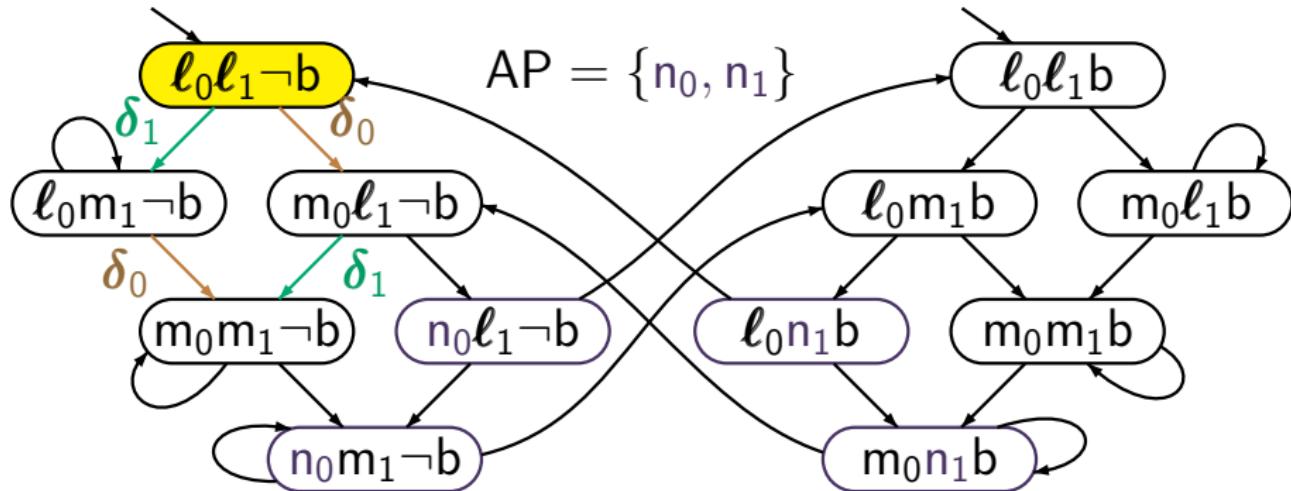
LTL3.4-40



ample($\ell_0\ell_1\neg b$) =

Example: on-the-fly generation of \mathcal{T}_{red}

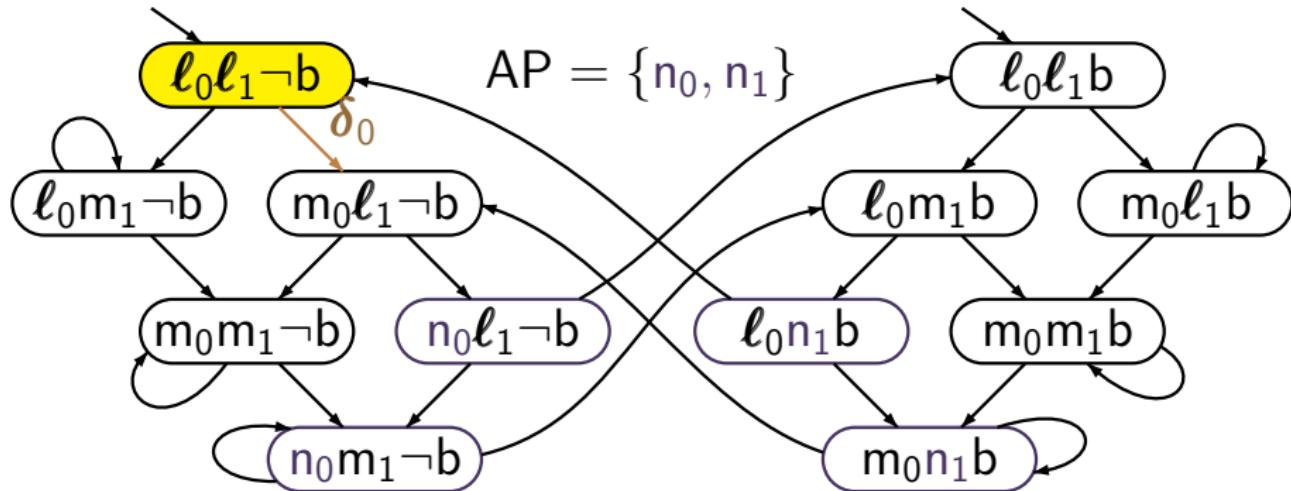
LTL3.4-40



ample($\ell_0\ell_1\neg b$) =

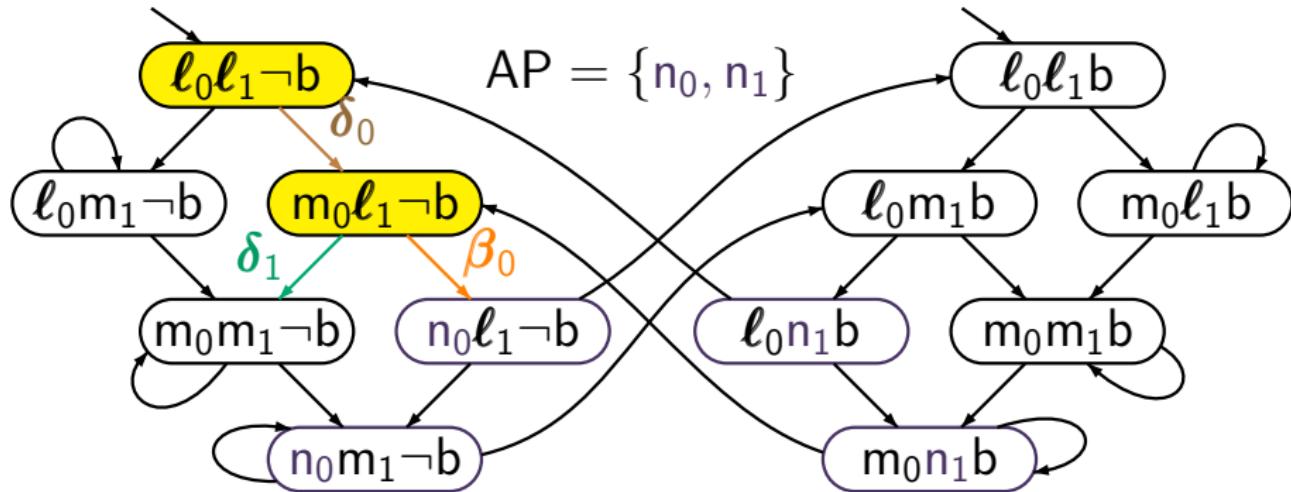
Example: on-the-fly generation of T_{red}

LTL3.4-40



Example: on-the-fly generation of T_{red}

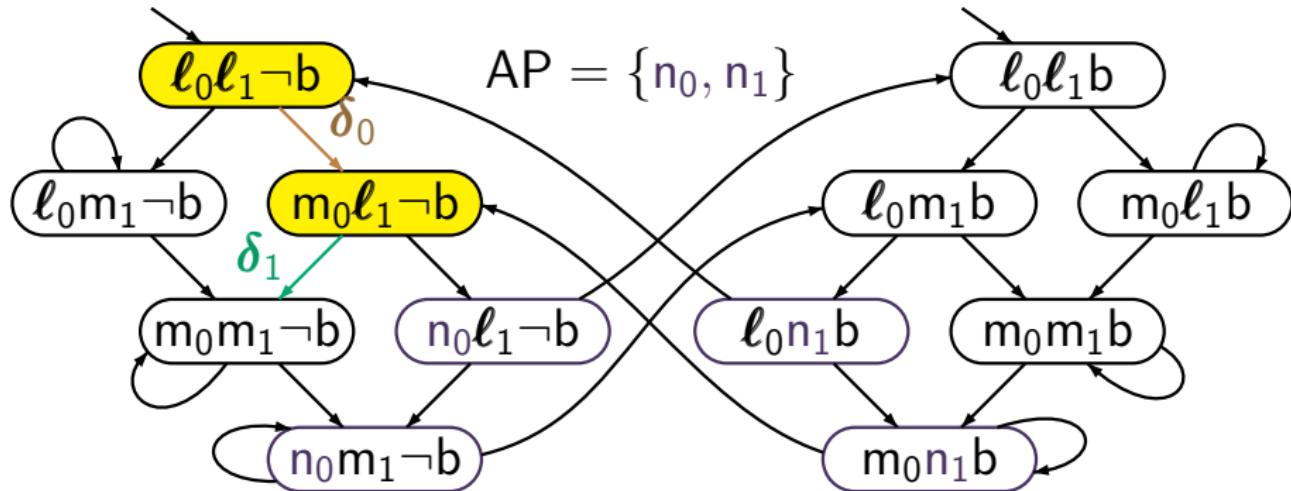
LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) =$

Example: on-the-fly generation of T_{red}

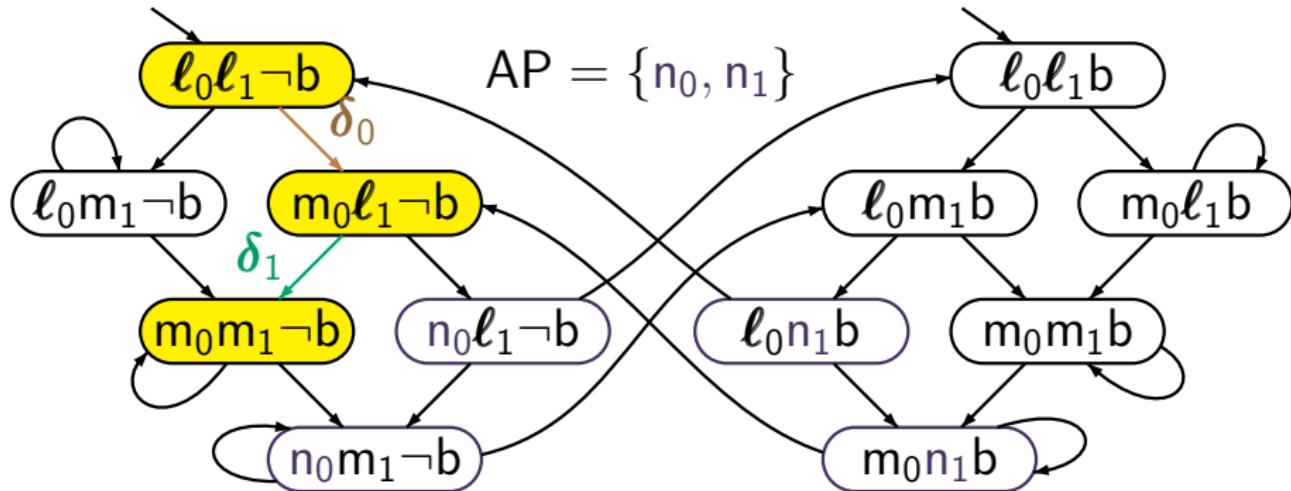
LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}, \quad \text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

Example: on-the-fly generation of T_{red}

LTL3.4-40

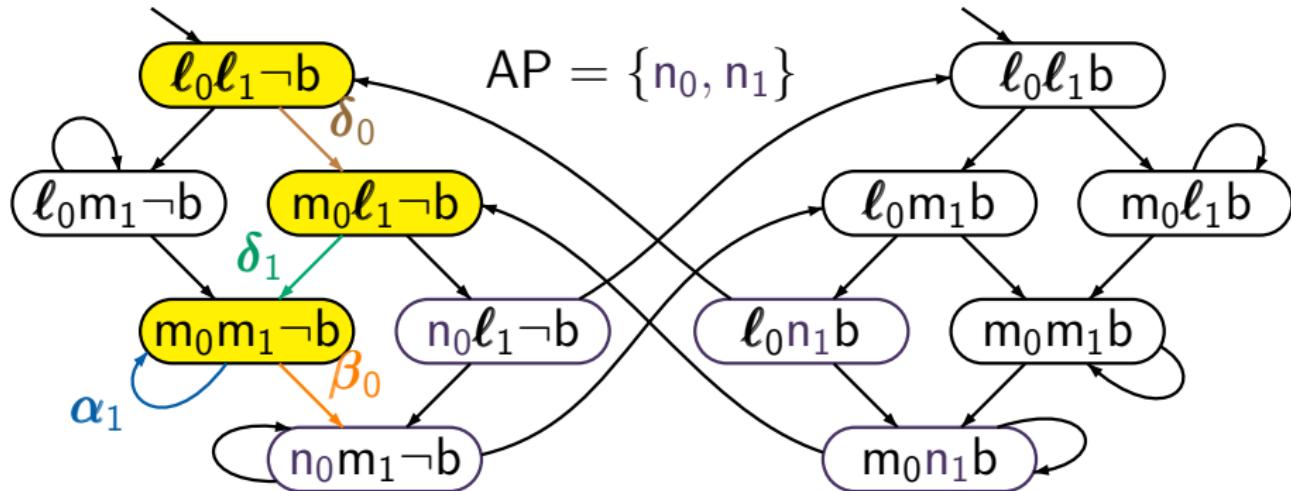


$$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}, \quad \text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$$

$$\text{ample}(m_0m_1\neg b) =$$

Example: on-the-fly generation of T_{red}

LTL3.4-40

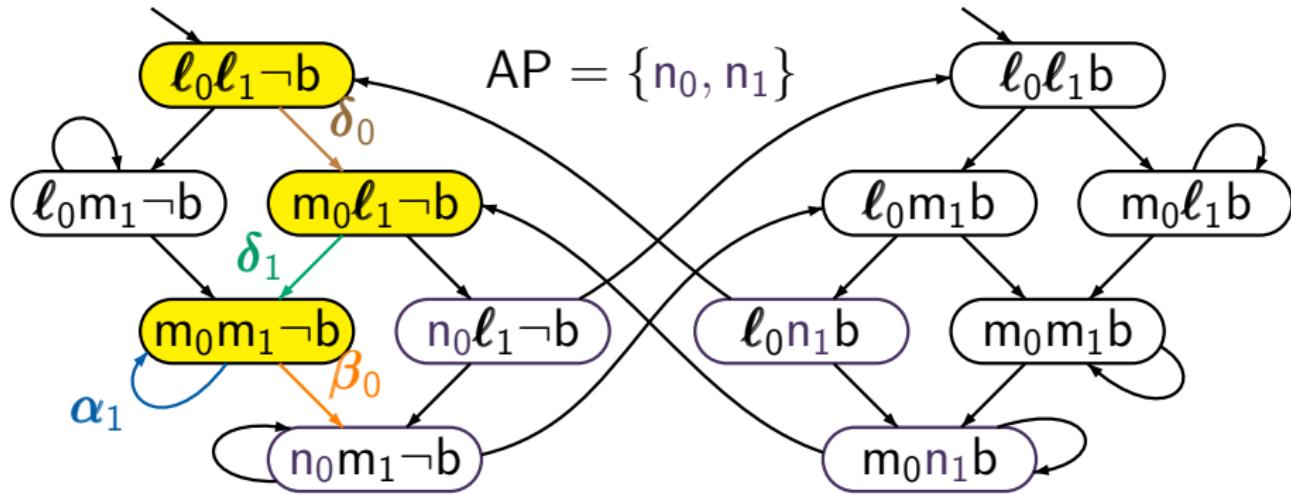


$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) =$

Example: on-the-fly generation of T_{red}

LTL3.4-40

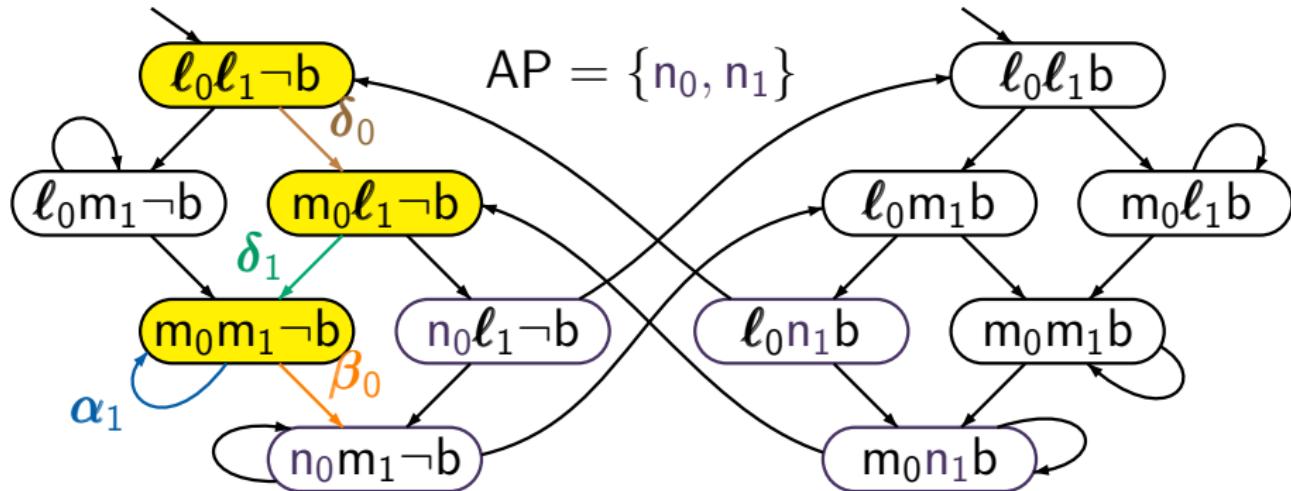


$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}, \quad \text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

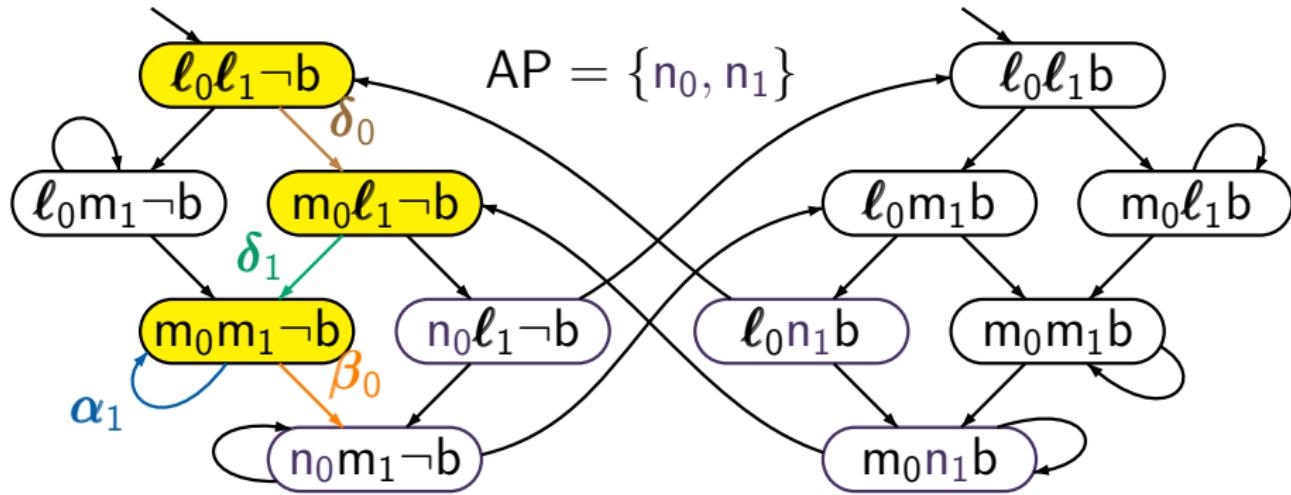
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

note:

α_1 closes cycle (A4),

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

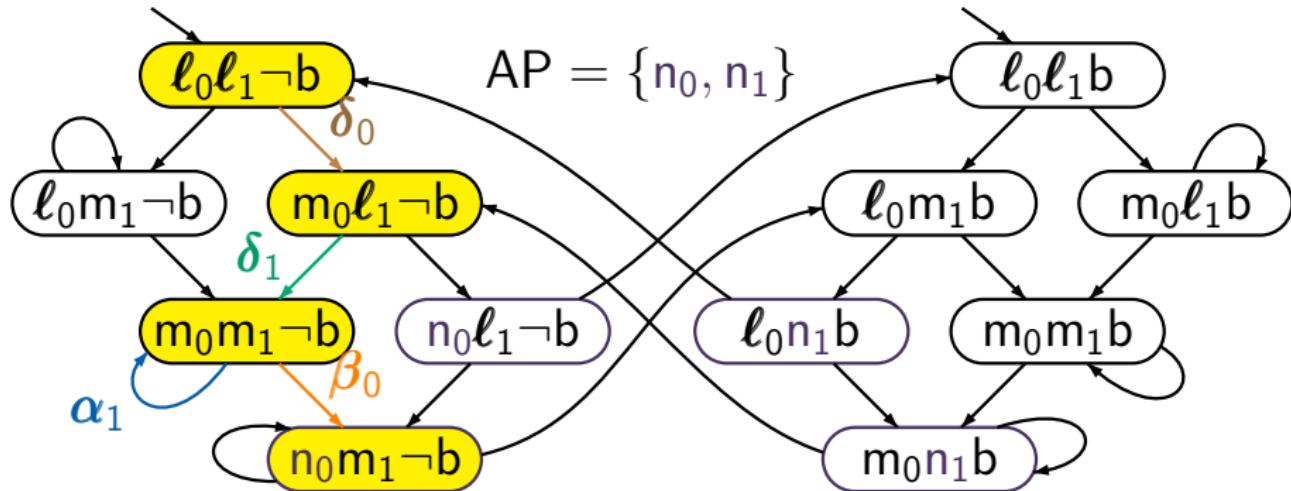
note:

α_1 closes cycle (A4),

β_0 no stutter action (A3)

Example: on-the-fly generation of T_{red}

LTL3.4-40



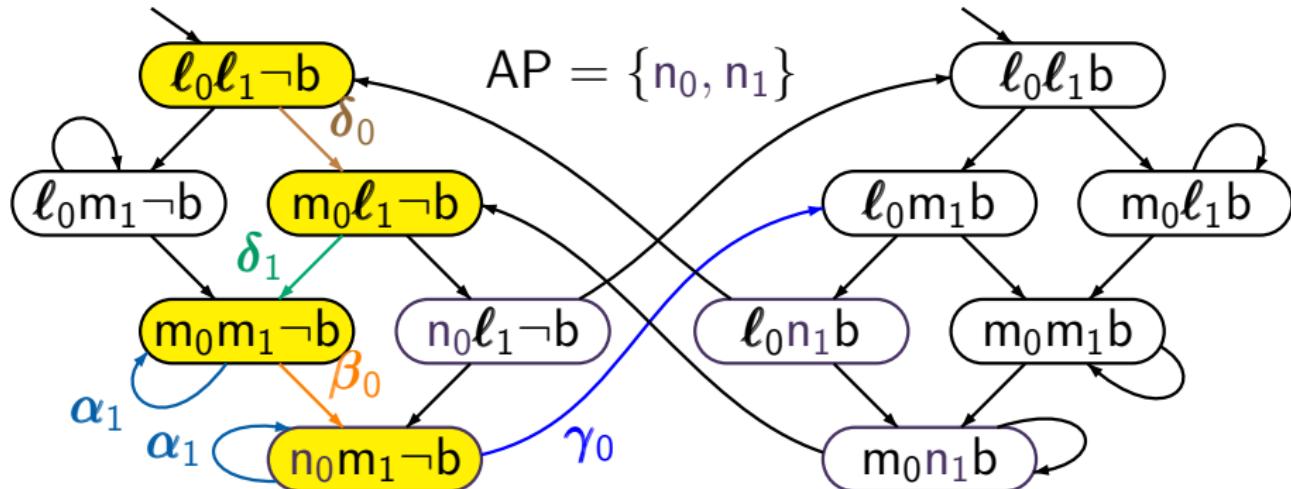
$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) =$

Example: on-the-fly generation of T_{red}

LTL3.4-40



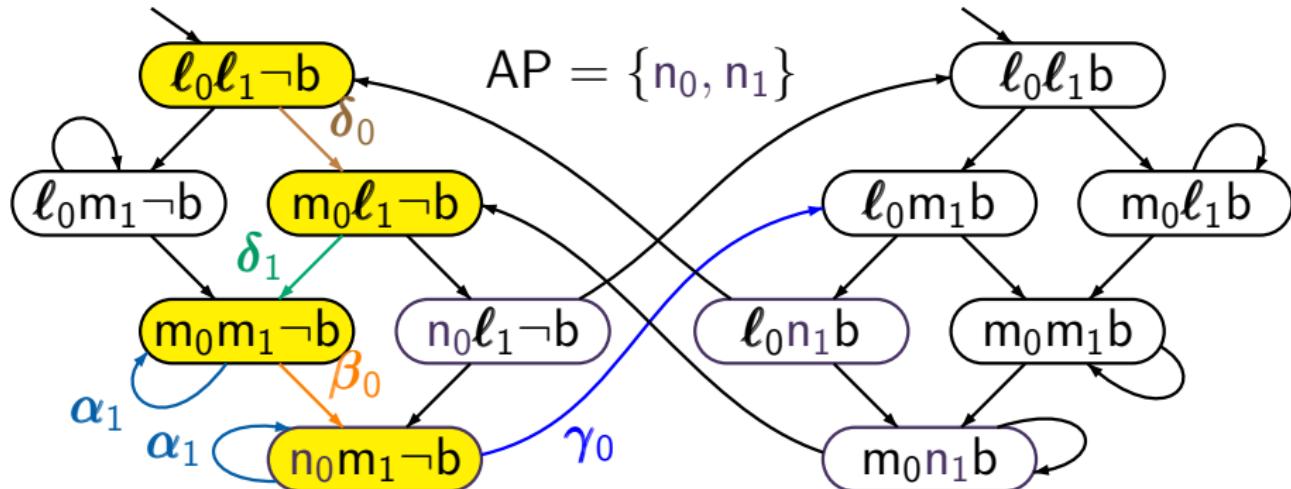
$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) =$

Example: on-the-fly generation of T_{red}

LTL3.4-40



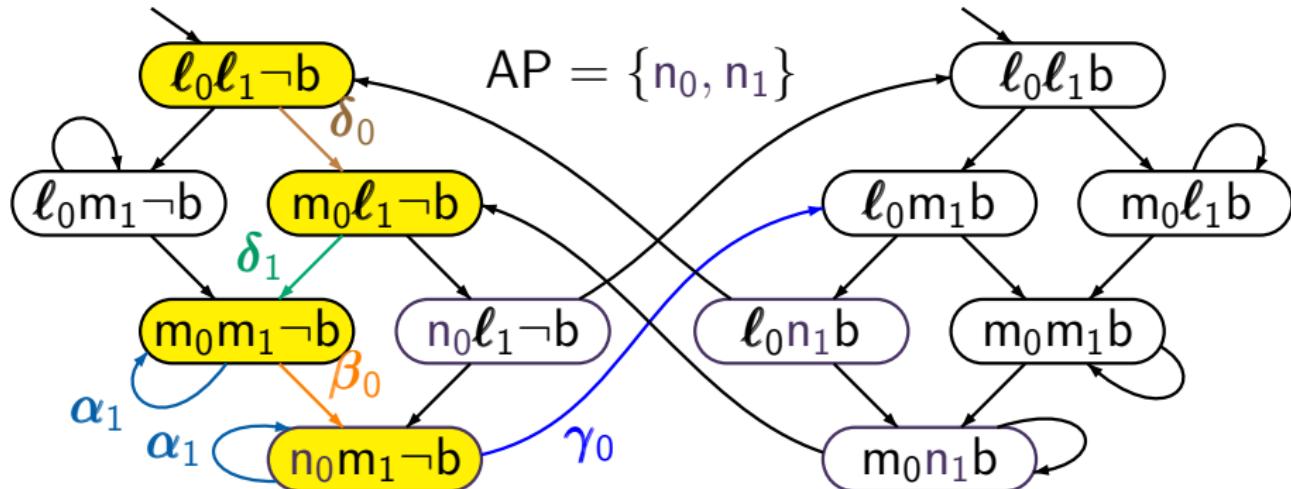
$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}, \quad \text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

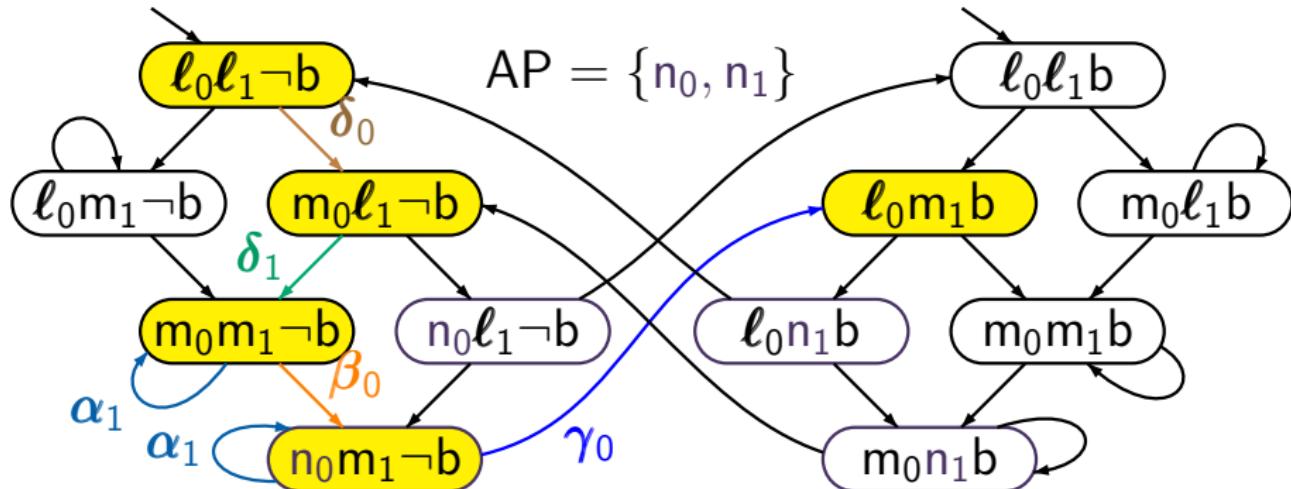
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

note: α_1, γ_0 are dependent (A2)

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

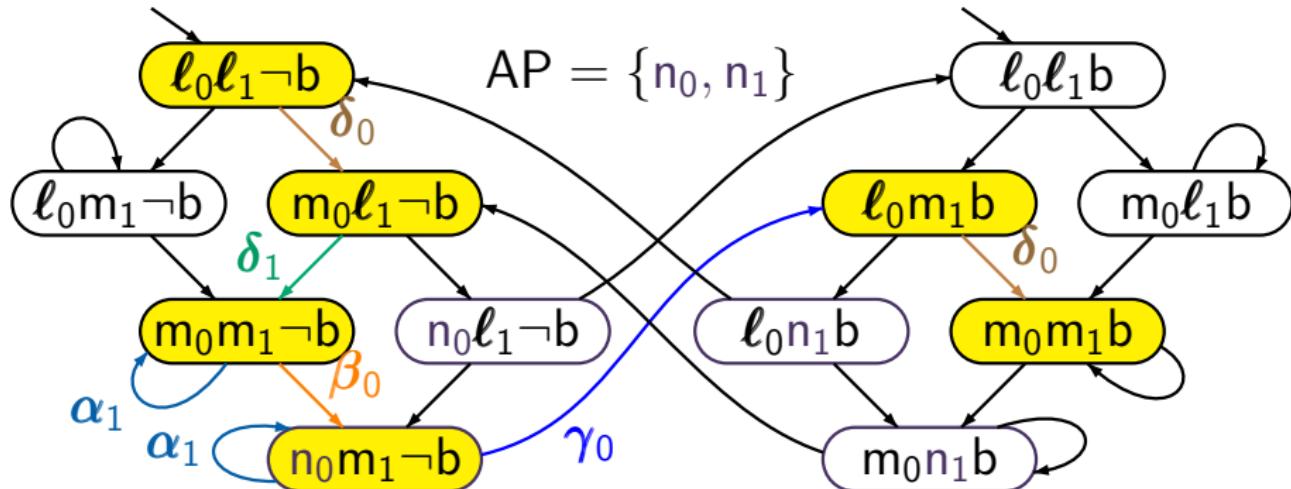
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

note: α_1, γ_0 are dependent (A2)

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

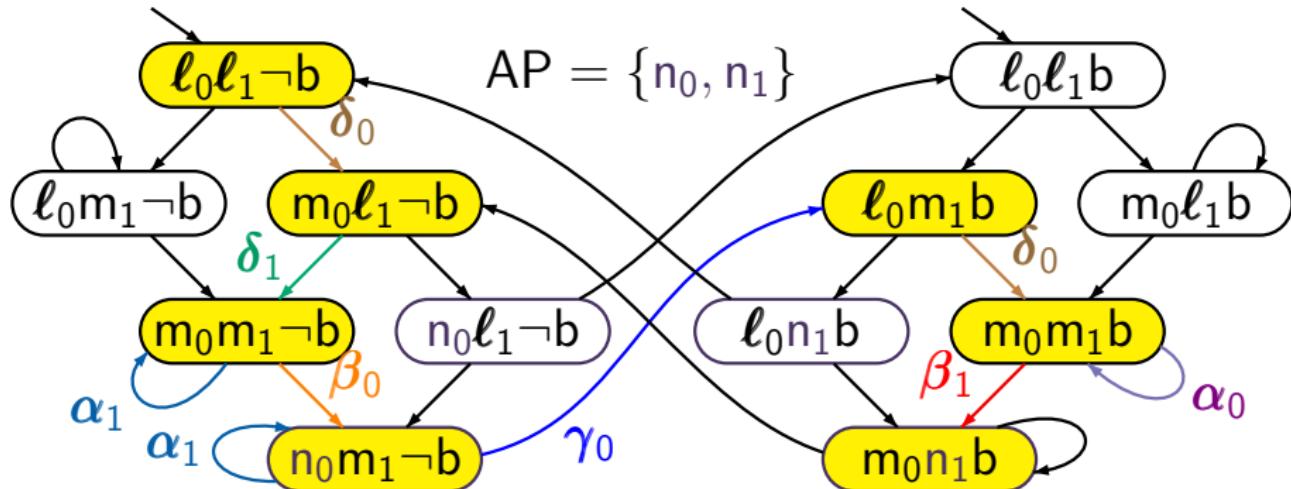
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

note: α_1, γ_0 are dependent (A2)

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

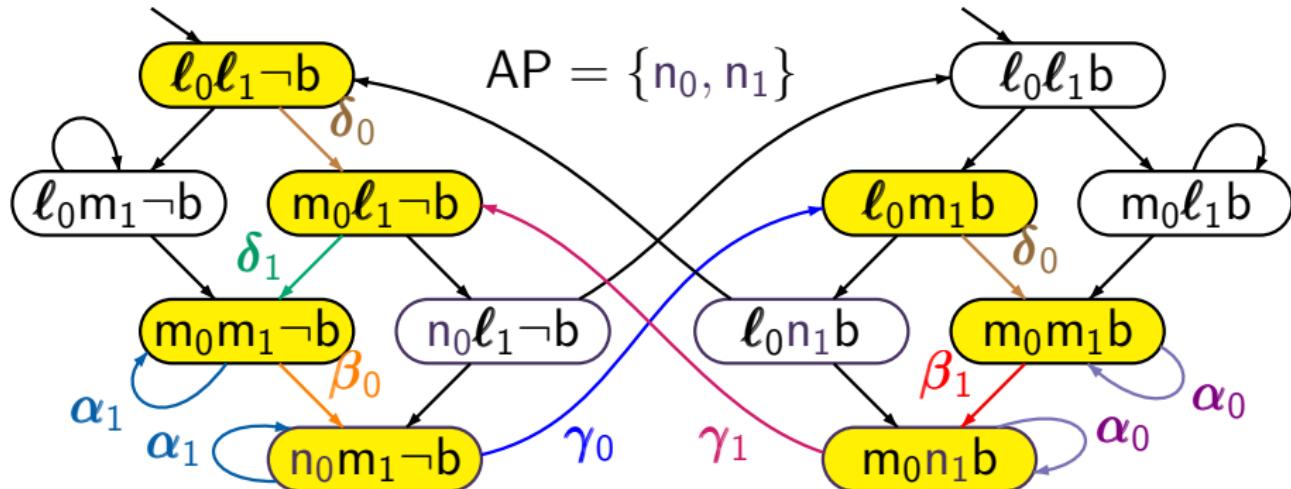
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

note: α_1, γ_0 are dependent (A2)

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

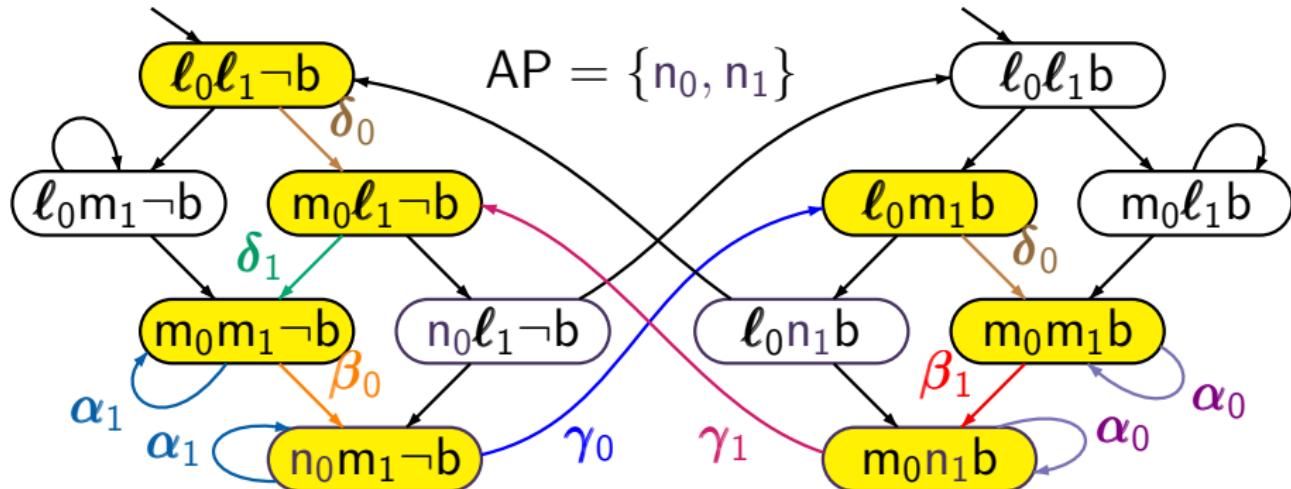
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

$\text{ample}(m_0n_1b) =$

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}$, $\text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

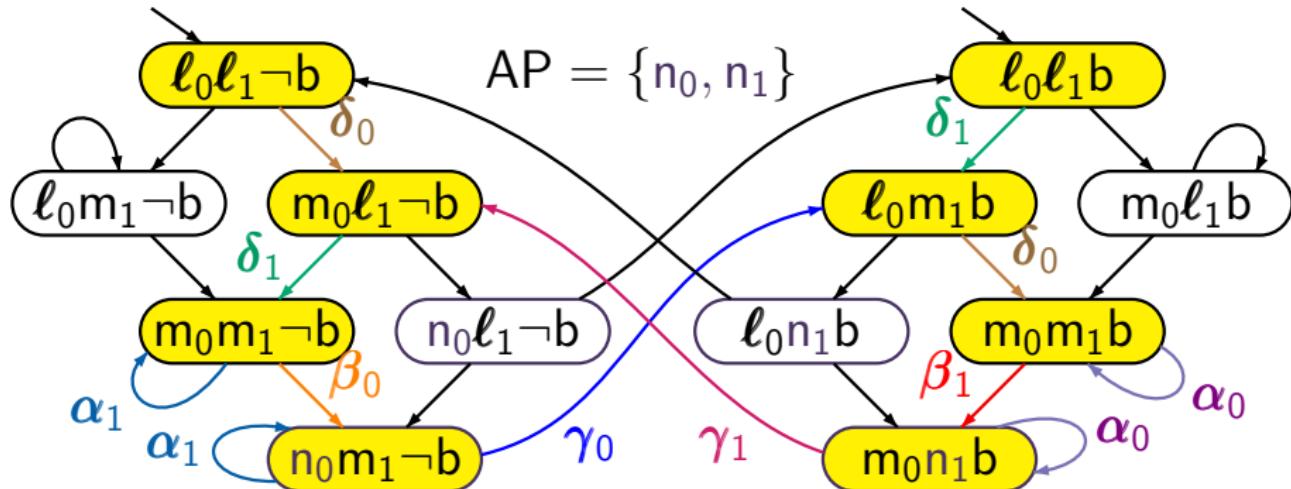
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

$\text{ample}(m_0n_1b) = \{\alpha_0, \gamma_1\}$: cycle condition (A4)

Example: on-the-fly generation of T_{red}

LTL3.4-40



$\text{ample}(\ell_0\ell_1\neg b) = \{\delta_0\}, \quad \text{ample}(m_0\ell_1\neg b) = \{\delta_1\}$

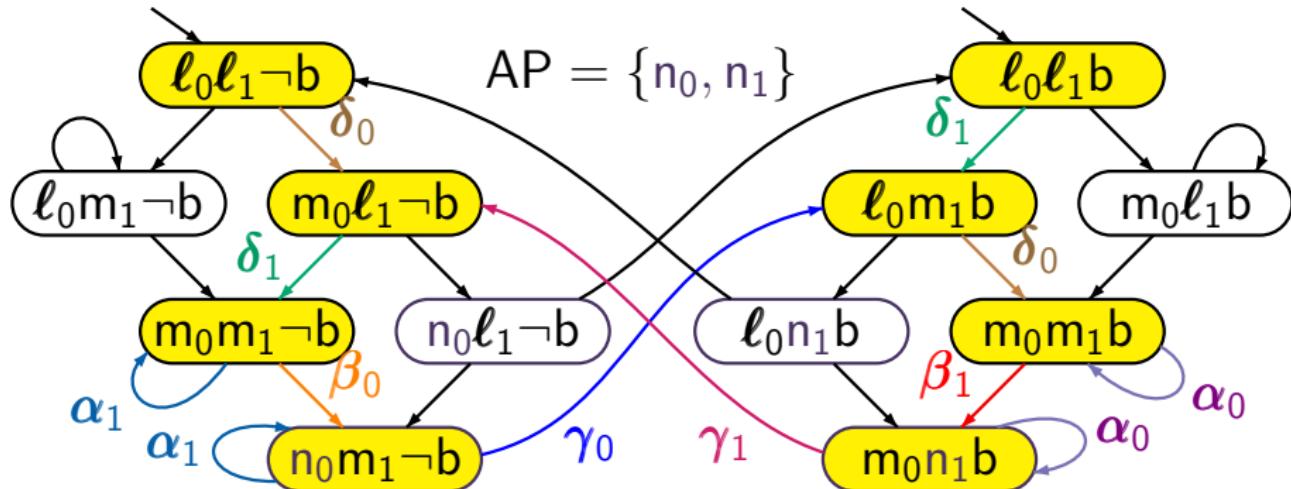
$\text{ample}(m_0m_1\neg b) = \{\alpha_1, \beta_0\}$

$\text{ample}(n_0m_1\neg b) = \{\alpha_1, \gamma_0\}$

$\text{ample}(m_0n_1b) = \{\alpha_0, \gamma_1\}$: cycle condition (A4)

reduction: 8 out of 12 states

LTL3.4-40



ample(l₀l₁¬b) = {δ₀}, ample(m₀l₁¬b) = {δ₁}

ample(m₀m₁¬b) = {α₁, β₀}

ample(n₀m₁¬b) = {α₁, γ₀}

ample(m₀n₁b) = {α₀, γ₁} : cycle condition (A4)

Nested DFS with POR

LTL3.4-41

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking " $\mathcal{T} \models \Diamond \Box a?$ " uses:

outer DFS: visits all reachable states

inner DFS: CYCLE_CHECK(s) searches for a
backward edge $s' \rightarrow s$

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking " $\mathcal{T} \models \Diamond \Box a?$ " uses:

outer DFS: visits all reachable states

inner DFS: CYCLE_CHECK(s) searches for a
backward edge $s' \rightarrow s$

CYCLE_CHECK(s)

- is called for each state s that violates the persistence condition a

Nested DFS (standard approach)

LTL3.4-41

remind: nested DFS for checking " $\mathcal{T} \models \Diamond \Box a?$ " uses:

outer DFS: visits all reachable states

inner DFS: CYCLE_CHECK(s) searches for a
backward edge $s' \rightarrow s$

CYCLE_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s

outer DFS: visits all reachable states

inner DFS: CYCLE_CHECK(s) searches for a backward edge $s' \rightarrow s$

CYCLE_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s
- early termination

outer DFS: visits all reachable states

inner DFS: CYCLE_CHECK(s) searches for a backward edge $s' \rightarrow s$

CYCLE_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s
- early termination, e.g., abort with the answer

CYCLE_CHECK(s) = *true*

as soon as the inner DFS visits a state in the DFS-stack of the outer DFS

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set approach:

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set approach:

outer DFS and inner DFS must use
the same ample-sets

Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set approach:

outer DFS and inner DFS must use
the same ample-sets

implementation: uses a hash-table for the set of states that have been visited in the outer DFS

Implementation of the nested DFS with POR

LTL3.4-41

use *hash-table* for the set of states that have been visited in the **outer DFS**

Implementation of the nested DFS with POR

LTL3.4-41

use *hash-table* for the set of states that have been visited in the **outer DFS**

entries in the hash-table have the form

$$\langle s, b, c, a_1, \dots, a_k \rangle$$

where **s** is a state and **b, c, a₁, ..., a_k** are bits

Implementation of the nested DFS with POR

LTL3.4-41

use *hash-table* for the set of states that have been visited in the **outer DFS**

entries in the hash-table have the form

$$\langle s, b, c, a_1, \dots, a_k \rangle$$

where **s** is a state and **b, c, a₁, ..., a_k** are bits

- **b = 1** iff **s** has been visited in **inner DFS**

Implementation of the nested DFS with POR

LTL3.4-41

use *hash-table* for the set of states that have been visited in the **outer DFS**

entries in the hash-table have the form

$$\langle s, b, c, a_1, \dots, a_k \rangle$$

where **s** is a state and **b, c, a₁, ..., a_k** are bits

- **b = 1** iff **s** has been visited in **inner DFS**
- **c = 1** iff **s** is in the **DFS stack**

Implementation of the nested DFS with POR

LTL3.4-41

use *hash-table* for the set of states that have been visited in the *outer DFS*

entries in the hash-table have the form

$$\langle s, b, c, a_1, \dots, a_k \rangle$$

where s is a state and b, c, a_1, \dots, a_k are bits

- $b = 1$ iff s has been visited in *inner DFS*
- $c = 1$ iff s is in the *DFS stack*
- for $Act(s) = \{\alpha_1, \dots, \alpha_k\}$:

$$a_i = 1 \text{ iff } \alpha_i \in \text{ample}(s)$$

On-the-fly construction of \mathcal{T}_{red}

LTL3.4-42

On-the-fly construction of \mathcal{T}_{red}

LTL3.4-42

starting point: syntactic description of the processes
 P_1, \dots, P_n of a parallel system

On-the-fly construction of \mathcal{T}_{red}

LTL3.4-42

starting point: syntactic description of the processes

P_1, \dots, P_n of a parallel system

e.g., PROMELA-specification

On-the-fly construction of \mathcal{T}_{red} in DFS-manner

LTL3.4-42

starting point: syntactic description of the processes

P_1, \dots, P_n of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of \mathcal{T}_{red} in

DFS-manner by generating **ample sets** by means of
local conditions that ensure (A1)-(A4)

On-the-fly construction of \mathcal{T}_{red} in DFS-manner

LTL3.4-42

starting point: syntactic description of the processes

P_1, \dots, P_n of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of \mathcal{T}_{red} in DFS-manner by generating **ample sets** by means of local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process P_i

fulfills (A1), (A2), (A3)

On-the-fly construction of \mathcal{T}_{red} in DFS-manner

LTL3.4-42

starting point: syntactic description of the processes

P_1, \dots, P_n of a parallel system

e.g., PROMELA-specification

method: generate the reachable fragment of \mathcal{T}_{red} in DFS-manner by generating **ample sets** by means of local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process P_i

fulfills (A1), (A2), (A3) and ensure (A4) by searching for **backward edges** in \mathcal{T}_{red}

Computing the ample set for state s

LTL3.4-42

REPEAT

select a process P_i not considered before

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

REPEAT

select a process P_i not considered before

$A :=$ action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) is not violated

REPEAT

select a process P_i not considered before

$A :=$ action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) is not violated

and all actions of A are stutter actions

REPEAT

select a process P_i not considered before

$A :=$ action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) is not violated

and all actions of A are stutter actions

THEN $\text{ample}(s) := A$ FI

REPEAT

select a process P_i not considered before

$A :=$ action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) is not violated

and all actions of A are stutter actions

THEN $\text{ample}(s) := A$ FI

UNTIL all processes have been considered

or $\text{ample}(s)$ is defined;

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) is not violated

and all actions of A are stutter actions

THEN $ample(s) := A$ FI

UNTIL all processes have been considered

or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ FI

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF (A1), (A2), (A3) hold **THEN** $ample(s) := A$ **FI**

UNTIL all processes have been considered

or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ **FI**

... consider state $\alpha(s)$ for some $\alpha \in ample(s)$...

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF (A1), (A2), (A3) hold **THEN** $ample(s) := A$ **FI**

UNTIL all processes have been considered

or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ **FI**

... consider state $\alpha(s)$ for some $\alpha \in ample(s)$...

IF the expansion of s finds a backwards edge $s' \implies s$

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF (A1), (A2), (A3) hold **THEN** $ample(s) := A$ **FI**

UNTIL all processes have been considered

or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ **FI**

... consider state $\alpha(s)$ for some $\alpha \in ample(s)$...

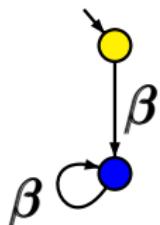
IF the expansion of s finds a backwards edge $s' \implies s$

THEN $ample(s) := Act(s)$ **FI**

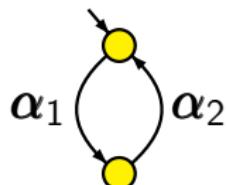
Example: construction of \mathcal{T}_{red}

LTL3.4-43

process 1



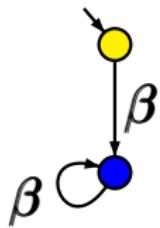
process 2



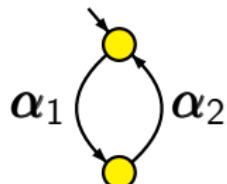
Example: construction of \mathcal{T}_{red}

LTL3.4-43

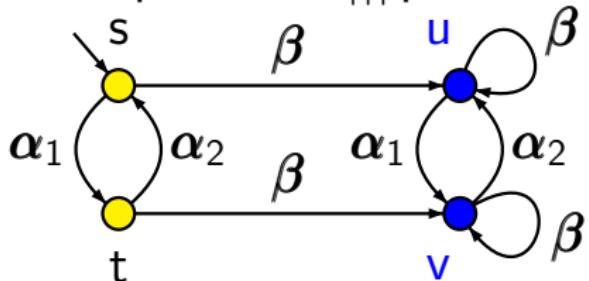
process 1



process 2



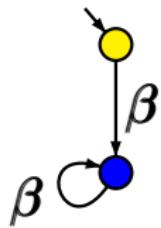
$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



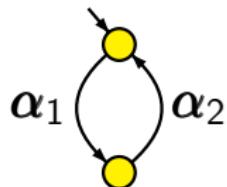
Example: construction of \mathcal{T}_{red}

LTL3.4-43

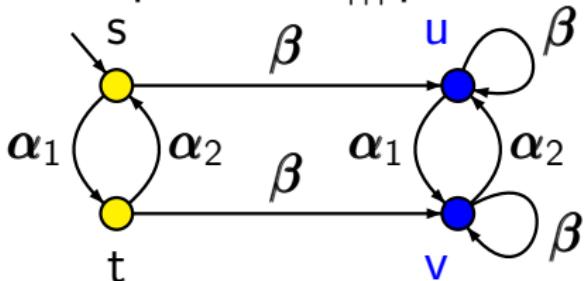
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$

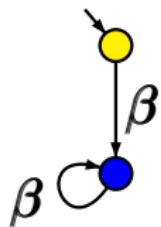


DFS(s)

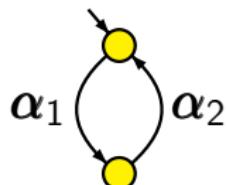
Example: construction of \mathcal{T}_{red}

LTL3.4-43

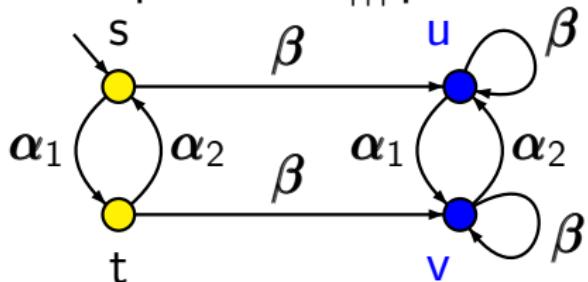
process 1



process 2

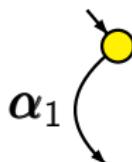


$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



$\text{DFS}(s)$

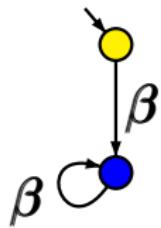
$\text{ample}(s) = \{\alpha_1\}$



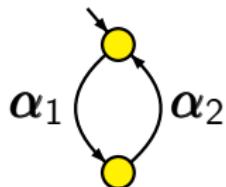
Example: construction of \mathcal{T}_{red}

LTL3.4-43

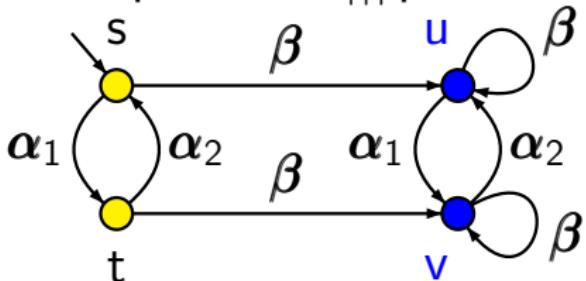
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$

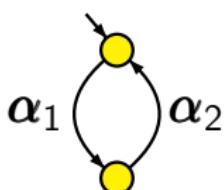


$\text{DFS}(s)$

$\text{ample}(s) = \{\alpha_1\}$

$\text{DFS}(t)$

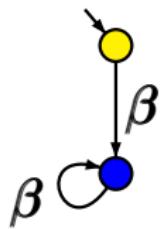
$\text{ample}(t) = \{\alpha_2\}$



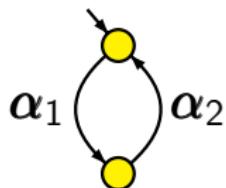
Example: construction of \mathcal{T}_{red}

LTL3.4-43

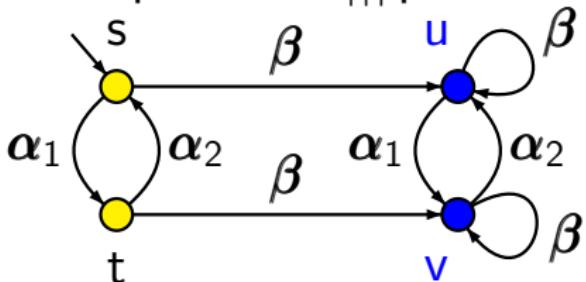
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



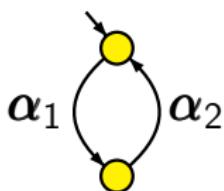
DFS(s)

ample(s) = $\{\alpha_1\}$

DFS(t)

ample(t) = $\{\alpha_2\}$

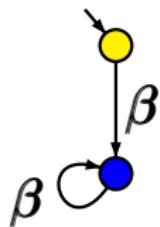
backward edge $t \rightarrow s$



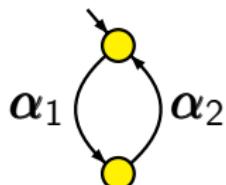
Example: construction of \mathcal{T}_{red}

LTL3.4-43

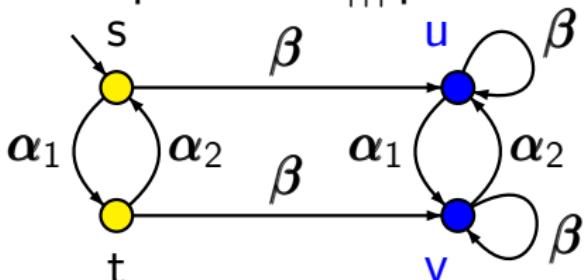
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



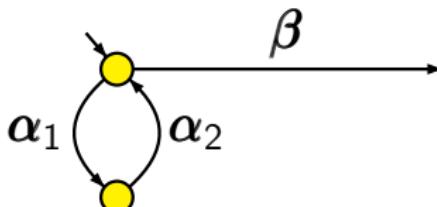
$\text{DFS}(s)$

$\text{ample}(s) = \{\alpha_1\} \cup \{\beta\}$

$\text{DFS}(t)$

$\text{ample}(t) = \{\alpha_2\}$

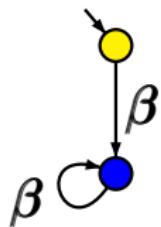
backward edge $t \rightarrow s$



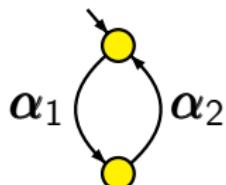
Example: construction of \mathcal{T}_{red}

LTL3.4-43

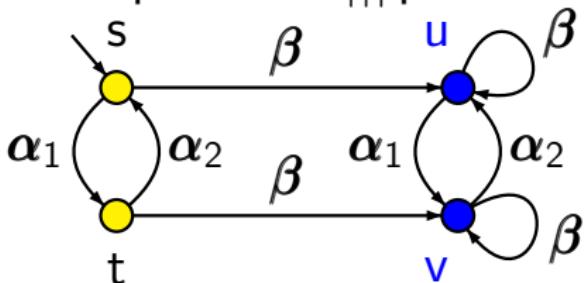
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



$\text{DFS}(s)$

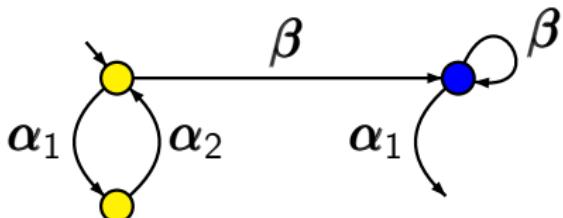
$\text{ample}(s) = \{\alpha_1\} \cup \{\beta\}$

$\text{DFS}(t)$

$\text{ample}(t) = \{\alpha_2\}$

backward edge $t \rightarrow s$

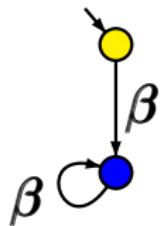
$\text{DFS}(u) \dots$



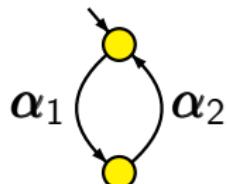
Example: construction of \mathcal{T}_{red}

LTL3.4-43

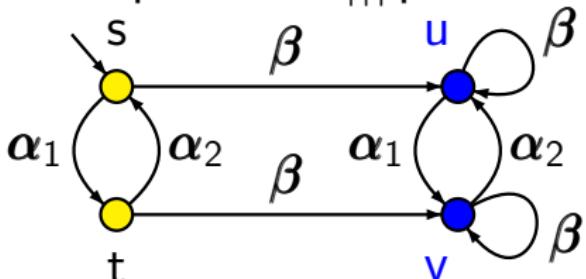
process 1



process 2



$\mathcal{T} = \text{process 1} \parallel \parallel \text{process 2}$



$\text{DFS}(s)$

$\text{ample}(s) = \{\alpha_1\} \cup \{\beta\}$

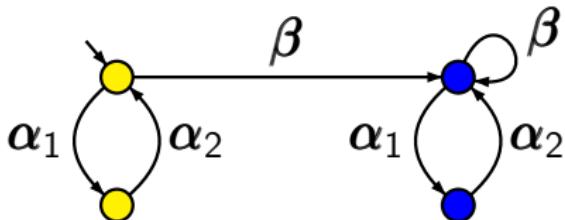
$\text{DFS}(t)$

$\text{ample}(t) = \{\alpha_2\}$

backward edge $t \rightarrow s$

$\text{DFS}(u) \dots$

$\text{DFS}(v) \dots$



Computing the ample set for state s

LTL3.4-44

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) holds

and all actions of A are stutter actions

THEN $ample(s) := A$ **FI**

UNTIL all processes have been considered

or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ **FI**

REPEAT

select a process P_i not considered before

A := action set of $P_i \cap Act(s)$

IF $A \neq \emptyset$ and (A2) holds

and all actions of **A** are stutter actions

THEN $ample(s) := A$ **FI**

UNTIL all processes have been considered
or $ample(s)$ is defined;

IF $ample(s)$ is not yet defined

THEN $ample(s) := Act(s)$ **FI**

Checking the dependence condition (A2)?

LTL3.4-44

(A1) nonemptiness condition

(A2) dependence condition:

for each execution fragment in \mathcal{T}

$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$

such that β_n is *dependent* from $\text{ample}(s)$ there is
some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

(A4) cycle condition

Checking the dependence condition (A2)?

LTL3.4-44

(A1) nonemptiness condition

(A2) dependence condition:

for each execution fragment in \mathcal{T}

$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

(A4) cycle condition

checking (A2) is as hard as the **reachability problem**

Checking the dependence condition (A2)?

LTL3.4-44

- (A1) nonemptiness condition
- (A2) dependence condition:

for each execution fragment in \mathcal{T}

$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

- (A3) stutter condition
- (A4) cycle condition

checking (A2) is as hard as the **unreachability problem**

given: finite transition system \mathcal{T} , $a \in AP$

question: does $\mathcal{T} \not\models \exists \Diamond a$ hold?

Checking the dependence condition (A2)?

LTL3.4-44

(A1) nonemptiness condition

(A2) dependence condition: \leftarrow global condition

for each execution fragment in \mathcal{T}

$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$

such that β_n is *dependent* from $\text{ample}(s)$ there is some $i < n$ with $\beta_i \in \text{ample}(s)$

(A3) stutter condition

(A4) cycle condition

checking (A2) is as hard as the **unreachability problem**

given: finite transition system \mathcal{T} , $a \in AP$

question: does $\mathcal{T} \not\models \exists \Diamond a$ hold?

Algorithmic difficulty of checking (A2)

LTL3.4-44

show that the unreachability problem

given: finite transition system \mathcal{T}
 $\mathbf{a} \in \text{AP}$

question: does $\mathcal{T} \not\models \exists \Diamond \mathbf{a}$ hold?

is **polynomially reducible** to the problem of checking (A2)

Algorithmic difficulty of checking (A2)

LTL3.4-44

show that the unreachability problem

given: finite transition system \mathcal{T}
 $\mathbf{a} \in \text{AP}$

question: does $\mathcal{T} \not\models \exists \Diamond \mathbf{a}$ hold?

is **polynomially reducible** to the **problem of checking** (A2)

given: finite transition system \mathcal{T}' , ample sets for \mathcal{T}'

question: does (A2) hold?

i.e., does for each execution fragment in \mathcal{T}'

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from *ample(s)*
there is some $i < n$ with $\beta_i \in \text{ample}(s)$?

Algorithmic difficulty of checking (A2)

LTL3.4-44

show that the unreachability problem

given: finite transition system \mathcal{T} and initial state s_0
 $a \in AP$

question: does $s_0 \not\models \exists \Diamond a$ hold?

is **polynomially reducible** to the problem of checking (A2)

given: finite transition system \mathcal{T}' , ample sets for \mathcal{T}'

question: does (A2) hold?

i.e., does for each execution fragment in \mathcal{T}'

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that β_n is *dependent* from *ample(s)*
there is some $i < n$ with $\beta_i \in \text{ample}(s)$?

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability
problem

\leq_{poly}

problem of
checking (A2)

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
---------------------------	----------------------	-----------------------------

finite TS \mathcal{T} + state s_0 finite TS \mathcal{T}'
+ atomic prop. a \rightsquigarrow + ample sets

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
---------------------------	----------------------	-----------------------------

finite TS \mathcal{T} + state s_0 finite TS \mathcal{T}'
+ atomic prop. a \rightsquigarrow + ample sets
s.t. $s_0 \not\models \exists \Diamond a$ iff (A2) holds

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
------------------------	----------------------	--------------------------

finite TS \mathcal{T} + state s_0
+ atomic prop. a \rightsquigarrow finite TS \mathcal{T}'
+ ample sets
s.t. $s_0 \not\models \exists \Diamond a$ iff (A2) holds

\mathcal{T}' results from \mathcal{T} by adding two fresh actions α, β s.t.

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
------------------------	----------------------	--------------------------

finite TS \mathcal{T} + state s_0
+ atomic prop. a \rightsquigarrow finite TS \mathcal{T}'
+ ample sets
s.t. $s_0 \not\models \exists \Diamond a$ iff (A2) holds

\mathcal{T}' results from \mathcal{T} by adding two fresh actions α, β s.t.

- α are β are dependent

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
------------------------	----------------------	--------------------------

finite TS \mathcal{T} + state s_0
+ atomic prop. a \rightsquigarrow finite TS \mathcal{T}'
+ ample sets
s.t. $s_0 \not\models \exists \Diamond a$ iff (A2) holds

\mathcal{T}' results from \mathcal{T} by adding two fresh actions α, β s.t.

- α are β are dependent
- α is independent from all actions in \mathcal{T}

Algorithmic difficulty of checking (A2)

LTL3.4-44

unreachability problem	\leq_{poly}	problem of checking (A2)
------------------------	----------------------	--------------------------

finite TS \mathcal{T} + state s_0
+ atomic prop. a \rightsquigarrow finite TS \mathcal{T}'
s.t. $s_0 \not\models \exists \Diamond a$ iff (A2) holds

\mathcal{T}' results from \mathcal{T} by adding two fresh actions α, β s.t.

- α are β are dependent
- α is independent from all actions in \mathcal{T}
- β is enabled exactly in the states t with $t \models a$

finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$s_0 \not\models \exists \Diamond a$

iff (A2) holds

finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$$s_0 \not\models \exists \Diamond a$$

iff (A2) holds

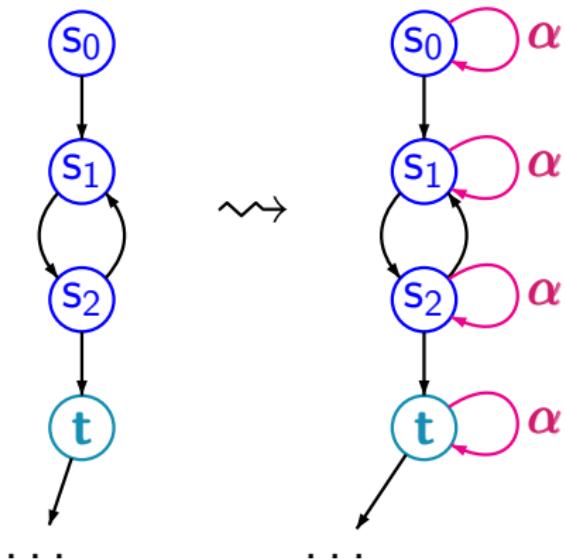
finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$$s_0 \not\models \exists \Diamond a$$

iff (A2) holds



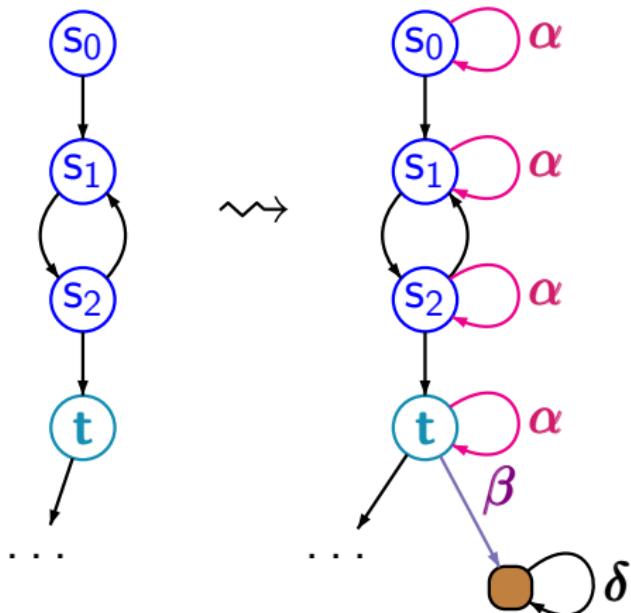
finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$$s_0 \not\models \exists \Diamond a$$

iff (A2) holds



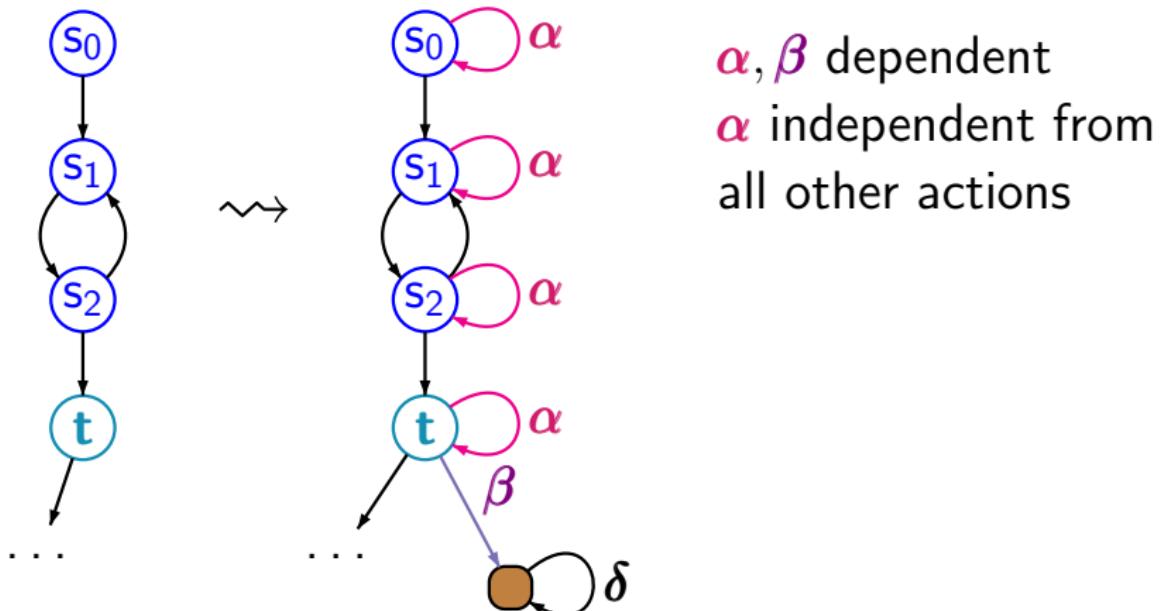
finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$$s_0 \not\models \exists \Diamond a$$

iff (A2) holds



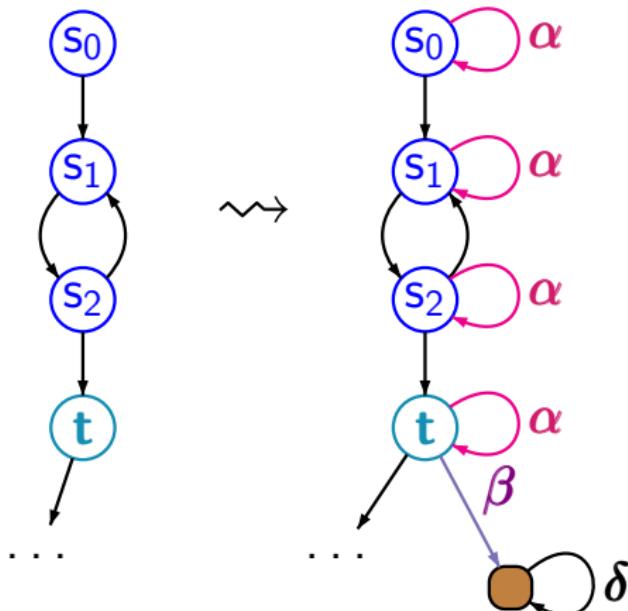
finite TS \mathcal{T} + state s_0
+ atomic prop. a

finite TS \mathcal{T}'
+ ample sets

s.t.

$$s_0 \not\models \exists \Diamond a$$

iff (A2) holds



α, β dependent
 α independent from
all other actions

$\text{ample}(s_0) = \{\alpha\}$
 $\text{ample}(u) = \text{Act}(u)$
for all other states u

Local criterion for condition (A2)

LTL3.4-45

idea: replace the **global** dependency condition (A2) by
a **stronger local** condition

Local criterion for condition (A2)

LTL3.4-45

idea: replace the **global** dependency condition (A2) by a **stronger local** condition that can be derived from the **syntactic description** for the **processes P_i** of the given parallel system

$$P_1 \parallel \dots \parallel P_n$$

Local criterion for condition (A2)

LTL3.4-45

idea: replace the **global** dependency condition (A2) by a **stronger local** condition that can be derived from the **syntactic description** for the **processes P_i** of the given parallel system

$$P_1 \parallel \dots \parallel P_n$$

e.g., the P_i 's are given as **program graphs** of a channel system.

Local criterion for condition (A2)

LTL3.4-45

idea: replace the **global** dependency condition (A2) by a **stronger local** condition that can be derived from the **syntactic description** for the **processes P_i** of the given parallel system

$$P_1 \parallel \dots \parallel P_n$$

e.g., the P_i 's are given as **program graphs** of a channel system. Then: each state s has the form

$$s = \langle \ell_1, \dots, \ell_n, \eta, \xi \rangle$$

where ℓ_i is a location of process P_i , η a variable evaluation, ξ a channel evaluation

Local criterion for condition (A2)

LTL3.4-45

Let Act_i denote the set of actions of process P_i .

Local criterion for condition (A2)

LTL3.4-45

Let Act_i denote the set of actions of process P_i .

For state s :

$$\begin{aligned}Act_i(s) &= Act_i \cap Act(s) \\&= \text{set of actions of process } P_i \\&\quad \text{that are enabled in } s\end{aligned}$$

Local criterion for condition (A2)

LTL3.4-45

Let Act_i denote the set of actions of process P_i .

For state s :

$$\begin{aligned}Act_i(s) &= Act_i \cap Act(s) \\&= \text{set of actions of process } P_i \\&\quad \text{that are enabled in } s\end{aligned}$$

Provide local criteria such that $ample(s) = Act_i(s)$ fulfills the dependency condition (A2)

Let $s = \langle \ell_1, \dots, \ell_{i-1}, \ell_i, \ell_{i+1}, \dots, \ell_n, \dots \rangle$.
Suppose that

Let $s = \langle \ell_1, \dots, \ell_{i-1}, \ell_i, \ell_{i+1}, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from
 $Act_i(s)$

Let $s = \langle \ell_1, \dots, \ell_{i-1}, \ell_i, \ell_{i+1}, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from $Act_i(s)$, i.e., if $\gamma \in Act_j$ for some $j \neq i$, and $\alpha \in Act_i(s)$ then α and γ are independent

Let $s = \langle \ell_1, \dots, \ell_{i-1}, \ell_i, \ell_{i+1}, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from

$Act_i(s)$, i.e., if $\gamma \in Act_j$ for some $j \neq i$, and
 $\alpha \in Act_i(s)$ then α and γ are independent

(A2.2) there is no action γ of a process P_j where $j \neq i$

s.t.

Let $s = \langle \ell_1, \dots, \ell_{i-1}, \ell_i, \ell_{i+1}, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from

$Act_i(s)$, i.e., if $\gamma \in Act_j$ for some $j \neq i$, and
 $\alpha \in Act_i(s)$ then α and γ are independent

(A2.2) there is no action γ of a process P_j where $j \neq i$

s.t. γ can enable an action $\beta \in Act_i \setminus Act(s)$

from some state s' with location ℓ_i for process P_i

Let $s = \langle \dots, \ell_j, \dots, \ell_i, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from $Act_i(s)$, i.e., if $\gamma \in Act_j$ for some $j \neq i$, and $\alpha \in Act_i(s)$ then α and γ are independent

(A2.2) there is no action γ of a process P_j where $j \neq i$
s.t.

$$\langle \dots h_j \dots \ell_i \dots \rangle \xrightarrow{\gamma} \langle \dots k_j \dots \ell_i \dots \rangle \xrightarrow{\beta}$$

β ↗

for some $\beta \in Act_i \setminus Act(s)$

Let $s = \langle \dots, \ell_j, \dots, \ell_i, \dots, \ell_n, \dots \rangle$.

Suppose that

(A2.1) all actions of P_j , $j \neq i$, are independent from $Act_i(s)$, i.e., if $\gamma \in Act_j$ for some $j \neq i$, and $\alpha \in Act_i(s)$ then α and γ are independent

(A2.2) there is no action γ of a process P_j where $j \neq i$
s.t.

$$\langle \dots h_j \dots \ell_i \dots \rangle \xrightarrow{\gamma} \langle \dots k_j \dots \ell_i \dots \rangle \xrightarrow{\beta}$$

β ↗

for some $\beta \in Act_i \setminus Act(s)$

Then (A2) holds for $ample(s) = Act_i(s)$.

Heuristics for condition (A2)

LTL3.4-45

expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

Heuristics for condition (A2)

LTL3.4-45

: expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := Act_i(s)$

Heuristics for condition (A2)

LTL3.4-45

:

expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := Act_i(s)$

:

check if for all other processes P_j the following holds:

Heuristics for condition (A2)

LTL3.4-45

⋮ expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := \text{Act}_i(s)$

⋮

check if for all other processes P_j the following holds:

(A2.1) all actions of P_j are independent from A

Heuristics for condition (A2)

LTL3.4-45

:

expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := Act_i(s)$

:

check if for all other processes P_j the following holds:

(A2.1) all actions of P_j are independent from A

(A2.2) there is no action γ of P_j such that

Heuristics for condition (A2)

LTL3.4-45

⋮ expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := \text{Act}_i(s)$

⋮

check if for all other processes P_j the following holds:

(A2.1) all actions of P_j are independent from A

(A2.2) there is no action γ of P_j such that

$$\langle \dots h_j \dots \ell_i \dots \rangle \xrightarrow{\gamma} \langle \dots k_j \dots \ell_i \dots \rangle \xrightarrow{\beta}$$

$\beta \not\models$

for some $\beta \in \text{Act}_i \setminus A$

Heuristics for condition (A2)

LTL3.4-45

⋮ expansion of state $s = \langle \dots \ell_j \dots \ell_i \dots \rangle$

$A := \text{Act}_i(s)$

⋮

check if for all other processes P_j the following holds:

(A2.1) all actions of P_j are independent from A

(A2.2) there is no action γ of P_j such that

$$\langle \dots h_j \dots \ell_i \dots \rangle \xrightarrow{\gamma} \langle \dots k_j \dots \ell_i \dots \rangle \xrightarrow{\beta}$$

$\beta \cancel{|}$

for some $\beta \in \text{Act}_i \setminus A$

if yes then set $\text{ample}(s) := A$

⋮

Correct or wrong?

LTL3.4-46

Let $\mathcal{T}_1, \mathcal{T}_2$ be transition systems with $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$, and let **fair** be an **LTL** fairness assumption.

Remind: $\stackrel{\Delta}{=}$ denotes stutter trace equivalence.

E.g., $\mathcal{T}_1 = \mathcal{T}$, $\mathcal{T}_2 = \mathcal{T}_{\text{red}}$

Then, for all **LTL** $\setminus \bigcirc$ formulas φ :

$$\mathcal{T}_1 \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_2 \models_{\text{fair}} \varphi$$

Correct or wrong?

LTL3.4-46

Let $\mathcal{T}_1, \mathcal{T}_2$ be transition systems with $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$, and let **fair** be an **LTL** fairness assumption.

Remind: $\stackrel{\Delta}{=}$ denotes stutter trace equivalence.

E.g., $\mathcal{T}_1 = \mathcal{T}$, $\mathcal{T}_2 = \mathcal{T}_{\text{red}}$

Then, for all **LTL** $\setminus \circ$ formulas φ :

$$\mathcal{T}_1 \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_2 \models_{\text{fair}} \varphi$$

correct

Correct or wrong?

LTL3.4-46

Let $\mathcal{T}_1, \mathcal{T}_2$ be transition systems with $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$, and let **fair** be an **LTL** fairness assumption.

Remind: $\stackrel{\Delta}{=}$ denotes stutter trace equivalence.

E.g., $\mathcal{T}_1 = \mathcal{T}$, $\mathcal{T}_2 = \mathcal{T}_{\text{red}}$

Then, for all **LTL** \circ formulas φ :

$$\mathcal{T}_1 \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_2 \models_{\text{fair}} \varphi$$

correct, as we have:

$$\mathcal{T}_i \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_i \models \text{fair} \rightarrow \varphi$$

Correct or wrong?

LTL3.4-46

Let $\mathcal{T}_1, \mathcal{T}_2$ be transition systems with $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$, and let **fair** be an **LTL** fairness assumption.

Remind: $\stackrel{\Delta}{=}$ denotes stutter trace equivalence.

E.g., $\mathcal{T}_1 = \mathcal{T}$, $\mathcal{T}_2 = \mathcal{T}_{\text{red}}$

Then, for all **LTL** $\setminus\circlearrowleft$ formulas φ :

$$\mathcal{T}_1 \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_2 \models_{\text{fair}} \varphi$$

correct, as we have:

$$\mathcal{T}_i \models_{\text{fair}} \varphi \quad \text{iff} \quad \mathcal{T}_i \models \underbrace{\text{fair} \rightarrow \varphi}_{\text{LTL} \setminus \circlearrowleft \text{ formula}}$$