Reduced Ordered Binary Decision Diagrams
Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

June 4, 2012

© JPK

Advanced model checking

Symbolic CTL model checking

e EXplicit representation of transition system: state explosion problem
e ldea: reformulate model-checking in a symbolic way

e Concept: represent sets of states and transitions symbolically

e Approach: binary encoding of states + switching functions for sets

e Compact representation of switching functions by binary decision
diagrams

e Alternative: conjunctive normal form (basis for SAT-based model
checking)

© JPK 1

Advanced model checking

Basic approach

e let TS = (5,—,I,AP, L) be a “large” finite transition system
— the set of actions is irrelevant here and has been omitted, i.e., -C S x S

e Forn > [log|S|], letinjective functionenc: S — {0,1 }"

— note: enc(S) = {0, 1}" is no restriction, as all elements { 0,1 }" \ enc(S)
can be treated as the encoding of pseudo states that are unreachable

e Identify the states s € S = enc™!({0,1 }") with enc(s) € {0,1}"
e And T C S by its characteristic function xp: {0,1}"* — {0,1}
— thatis xr(enc(s)) = lifandonlyifs € T

e And — C S x S by the Boolean function A : {0,1}?" — {0,1}

— such that A (enc(s),enc(s’)) = lifandonlyif s — s’

© JPK 2

Advanced model checking

Switching functions

e LetVar = {z,...,z2,} be afinite set of Boolean variables, m > 0

e An evaluation is a function n : Var — { 0,1}

— let Eval(z, . . ., z,) denote the set of evaluations for zy, . . ., 2z,
— shorthand [z; = by, ..., 2 = by] forn(z) = by, ..., n(z2m) = by
e f:Eval(Var) — {0,1} is a switching function for Var = {z,..., 2z}

e Logical operations and quantification are defined as expected

- fi() A f2(r) = min{ fi(-), f2(-) }
- f1() vV f2() = max{ f1(-), f2(*) }
- dz. f Nz=0 V f(:)]:=1, and

(+)
— Vz. f(*) M=o A F()]=1

(-
(-

© JPK 3

Advanced model checking

Polynomial-size data structure impossible

e There is no poly-size data structure for all switching functions

— |Bval(z, ..., zn)| = 2™, so #functions Eval(z, ..., 2,) — {0,1 }is 22"

e Suppose there is a data structure that can represent K,, switching
functions by at most 2”*~1! bits

m—1 : m— m—
e ThenK,, < Y7, 20 = 22" 11 < 22" '+l

e But then there are at least

22m B 22m—1+1 _ 22m—1+1. (22m_2m—1_1 B 1) _ 22m—1+1. (22m—1_1 B 1)

switching functions whose representation needs more than 2™~ bits

© JPK 4

Advanced model checking

Representing switching functions

e Truth tables

— very space inefficient: 2" entries for n variables
— satisfiability and equivalence check: easy; boolean operations also easy
— ... but have to consider exponentially many lines (so are hard)

e ... In Disjunctive Normal Form (DNF)

— satisfiability is easy: find a disjunct that does have complementary literals
— negation and conjunction complicated
— equivalence checking (f = ¢?) is coNP-complete

e ... In Conjunctive Normal Form (CNF)

— satisfiability problem is NP-complete (Cook’s theorem)
— negation and disjunction complicated

© JPK 5

Advanced model checking

Representing switching functions

representation | compact? sat equi A Vv =
propositional
formula often hard hard | easy easy easy
DNF | sometimes easy hard | hard easy hard
CNF | sometimes hard hard | easy hard hard
(ordered)
truth table never hard hard | hard hard hard

© JPK

Advanced model checking

Thereis hope perhaps

Nevertheless there are data structures which yield compact representations

for many switching functions that appear in practical applications

for hardware circuits, ordered binary decision diagrams (OBDDSs) are successful

© JPK 7

Advanced model checking

Representing boolean functions

representation | compact? sat equ A Vv =

propositional

formula often hard hard easy easy easy

DNF | sometimes easy hard hard easy hard

CNF | sometimes hard hard easy hard hard
(ordered)

truth table never hard hard hard hard hard
reduced ordered

binary decision diagram often easy easy” | medium medium easy

* provided appropriate implementation techniques are used

© JPK 8

Advanced model checking

Binary decision tree

e The BDT for function f on Var = { 21, ..., z,, } has depth m

— outgoing edges for node at level ¢ stand for z; = 0 (dashed) and z; = 1 (solid)

e For evaluation s = [z = by, ..., 2z, = by, f(s) IS the value of the leaf

— reached by traversing the BDT from the root using branch z; = b, for at level ¢

e The subtree of node v at level ¢ for variable ordering z; < ... < 2,
represents

Jo = f‘21=b1,---,zz'—1=bi—1

— which is a switching function over { z;, . . ., z,, } and
— where z1 = by, ..., 2z_1 = b;_1 Is the sequence of decisions made along the
path from the root to node v

© JPK 9

Advanced model checking

Symbolic representation of a transition system

e oP

|

(o=

{a b}

Switching function: A(z1, g, =}, :E’%) = lifandonlyif s — s’

S S,

A(x1, T2, T, TY) = (mx1 A —xp A =z A T))
(mxy A —z2 A Ty A xY)
(mxz1 A 2 A] A —xy)

<< <KL

(x1 A x2 A] A x5)

© JPK 10

Advanced model checking

Transition relation as a BDT

@\

@".\0 &
% b W\ %

110]||0 1011

A BDT representing A for our example using ordering z; < z2 < x}] < 4

© JPK 11

Advanced model checking =

Considerations on BDTs

e BDTs are not compact

— a BDT for switching function f on n variables has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— a similar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change Iif the variable order changes

© JPK 12

Advanced model checking

Ordered Binary Decision Diagram
e OBDDs rely on compactification of BDT representations
e ldea: skip redundant fragments of BDT representations
e Collapse subtrees with all terminals having same value
e |dentify nodes with isomorphic subtrees
e This yields directed acyclic graphs with outdegree two
e Inner nodes are labeled with variables

e Leafs are labeled with function values (zero and one)

© JPK 13

Advanced model checking

Ordered Binary Decision Diagram
Let o be a variable ordering for Var where p = (21,..., 2n)

An o-OBDD is a tuple %8 = (V,V;, Vi, succy, succy, var, val, vy) with
e a finite set VV of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root (node) vg € V

e successor functions succg, succy; : V; -V

— such that each node v € V \ {v(} has at least one predecessor
— l.e., all nodes of the OBDD ‘B are reachable from the root

e a labeling functions var : V; — Varandval : Vo — {0,1}
satisfying for ¢ = (z1,...,2y,) and v € Vy:

var(v) =z A w € {succy(v),succy(v) } NV = var(w) = z; forj >

© JPK 14

Advanced model checking

Some example OBDDs

© JPK 15

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x} <

© JPK 16

Advanced model checking

Semantics of an OBDD

The semantics of ©-OBDD ‘B is the switching function fy where fu([z1 =
bi, ..., zn = by)]) is the value of the leaf that is reached when traversing 9 starting
in vy and branching according to the evaluation [z; = by, ..., 2z, = by

© JPK =

Advanced model checking

Intermezzo: OBDDs versus DFA

each OBDD ‘B is a deterministic automaton Ay with f;'(1) = L(Ax)

© JPK 18

Advanced model checking

Bottom-up characterization of fy

Let B be a p-OBDD. Switching function f, for node v € V' :

e If v € Vp, then f, is the constant switching function with value val(v)

o Ifv e Vywithvar(v) =z, then f, = (=2 A foucey(v)) V(2 A fsucey(v))

~—
Shannon expansion

Furthermore, fy = f,, for the root v, of B

© JPK 19

Advanced model checking

Consistent co-factors in OBDDs

e Let f be a switching function for Var
o Let o = (z,...,2,) avariable ordering for Var, i.e., z1 <, ... <, 2m
e Switching function g is a @-consistent cofactor of f if

9= fluy=by.....mp, forsomeie {0,1,...,m}

e Then it holds that:;

1. for each node v of an ©-OBDD 8, f, is a gp-consistent cofactor of f
2. for each p-consistent cofactor g of fy there isanode v € B with f, = ¢

© JPK

20

Advanced model checking

Reduced OBDDs

A ©-OBDD $B is reduced if for every pair (v, w) of nodes in *5:
v # w implies f, # f.

(A reduced ©-OBDD is abbreviated as -ROBDD)

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK 21

Advanced model checking

Example ROBDDs

© JPK 22

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x} <

© JPK 23

Advanced model checking

Transition relation as an ROBDD

@
@\”' g

.
.
' .
.
'
.
'
' (;)
‘
. . .
.
. . .
. . .
.
.
. . .
. . R .
N N .
'
'
'
'
'

'

(a) ordering =) < 1y < x| < T, (b) ordering x; <’ x| <" xy <’

© JPK 24

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and g a variable ordering for
Var. Then:

(a) For each switching function f for Var there exists a @-ROBDD B with
fo =1

(b) For any p-ROBDDs B and ¢ with fy = f¢, B and ¢ are isomorphic,
l.e., agree up to renaming of the nodes

© JPK 25

Advanced model checking

Proofs

© JPK 26

Advanced model checking

The importance of canonicity

e Absence of redundant vertices

— if fi does not depend on x;, ROBDD ‘B does not contain an x; node
e Test for equivalence: f(x1,...,x,) = g(x1,...,2,)7?

— generate ROBDDs ‘B ; and B, and check isomorphism
e Test for validity: for all 1, ..., x,, 1S f(x1,...,2,) = 17?

— generate ROBDD ‘5 ¢ and check whether it only consists of a 1-leaf
e Test for implication: f(x1,...,x,) — g(x1,...,25)?

— generate ROBDD B, A _, and check if it just consists of a O-leaf

e Test for satisfiability

— [is satisfiable if and only if 95 ; has a reachable 1-leaf

© JPK p

Advanced model checking

Minimality of ROBDDs

Let 2B be an ©-OBDD for f.
Then: B is reduced iff size(*8) < size(¢) for each ©-OBDD ¢ for f.

This follows from the fact that:

1. Each g-consistent cofactor of f is represented in any -OBDD for f by at least
one node, and

2. A ©-OBDD 9B for f is reduced iff there is a 1-to-1 correspondence between the
nodes in 5 and the p-consistent cofactors of ‘5.

© JPK 28

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a boolean expression, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— if succy(v) = succy (v) = w, delete v and redirect all its incoming edges to w

e Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
— and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK 29

Advanced model checking

How to reduce an OBDD?

Q\ C \ becomes

1 0/]0 1

(special case of) isomorphism rule

© JPK 30

Advanced model checking

How to reduce an OBDD?

v Qu
@ | oL

O O Q O becomes ©><©

iIsomorphism rule

© JPK 31

Advanced model checking

How to reduce an OBDD?

:: : :
.
.
.
.

becomes

elimination rule

© JPK 32

Advanced model checking

Example

© JPK 33

Advanced model checking

Soundness of reduction rules

If € arises from a ©-OBDD *8 by the elimination
or isomorphism rule, then:
¢is a u-OBDD with fy = fe

Elimination rule for v with var(v) = z, and w = succy(v) = succy (v):

fo = (_'Z/\fsuccg(v)) v (z/\fsuccl(v)) = (72 A fu) V A fu) = fu

Isomorphism rule for v, w with var(v) = var(w) = z v yields:

fo = (ﬁz A fSUCCO(v))V(z A fsuccl(v)) = (ﬁz A fsucco(w)) v (Z A fsuccl(w)) = fu

as each reduction rule decreases the # nodes, repeatedly applying them terminates

© JPK 34

Advanced model checking

Completeness of reduction rules

©-OBDD 45 is reduced if and only if

no reduction rule is applicable to B

© JPK 35

