© JPK

Timed CTL Model Checking
Lecture #17 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

June 25, 2012

Advanced model checking

Timelock, time-divergence and Zenoness

e A path is time-divergent if its execution time is infinite

: d d
ExecTime(sg —2 s1 —— ...) = Zdi = o0
i=0

e TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

e TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions

© JPK 1

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

@:::true’a’g‘q)/\cb’ ﬂq)’ﬂgp’Vgp

where a € AP, g € ACC(C) and ¢ is a path-formula defined by:

p =0 O
where J C IR-(is an interval whose bounds are naturals

abbreviate [c, c0) by £ > ¢, (¢1, c2] by ¢1 < x < ¢4 etc.

© JPK

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:
J0/® = -vo/ =@ and vO'® = 307 -0
JO07 @ asserts that for some path during the interval J, ® holds

VO’ ® requires this to hold for all paths

Standard O and <-operator are obtained as follows:

OPp=000°% and O& =00 @

© JPK

Advanced model checking

Timed properties in TCTL

© JPK 4

Advanced model checking

Semantics of TCTL

For state s = (¢,n) in TS(TA) the satisfaction relation = is defined by:

s [= true
skEa iff ae L({)
SFEg iff nEg

sE P iff notsp=®
sEPATY iff (sE=®)and (s = V)
s = do iff 7= ¢ forsome 7 € Pathsg,(s)

s = Vo iff 7= ¢ forall m € Pathsg,(s)

path quantification over time-divergent paths only

© JPK 5

Advanced model checking

The = relation
For infinite path fragments in TS(TA) performing co many actions let:

Sog——=> S]] —=> S9g——— ... Withdo,dl,dg...EO

denote the equivalence class containing all infinite path fragments
Induced by execution fragments of the form:

dg d’go aq d} dll€1 Qg d; d];Q a3
So — ... sot+dy — S — ... > s1+d] —> S9=... D sotdy —>
time passage of time passage of time passage of
dg time-units d time-units do time-units

where k; € IN, d; € IR.o and «; € Act such that Zf;l d{ — d,.

do dy :
For m € sp=—=s1=—= ... we have EzxecTime(m) =) .. di

© JPK 6

Advanced model checking

Semantics of TCTL

. . do dy
For time-divergent path 7 € so—— s;=—= ..., we have:

rEO/U iff 3i>0.s;+d ¥ for some d € [0, d;] with
1—1
Z d.+deJ and
k=0

where for s; = (¢;,n;) and d > 0 we have s;+d = ({;, n;+d)

© JPK

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C' and locations Loc

e For TCTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {selLocxEval(lC)|sE o}

e TA satisfies TCTL-formula & iff & holds in all initial states of TA:
TAE=® ifandonlyif V¢, e Locg. (£g,n0) = P

where ng(z) =0forallz € C

© JPK 8

Advanced model checking

Characterizing timelock

e TCTL semantics is also well-defined for TA with timelock

e A state contains a timelock whenever no time-divergent paths
emanate from it

e A state is timelock-free if and only if it satisfies J0true

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent path
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TA is timelock-free iff Vs € Reach(TS(TA)): s = JOtrue

e Timelocks can thus be checked by a timed CTL formula

© JPK 9

Advanced model checking

TCTL model checking

e TCTL model-checking problem: TA = @ for non-Zeno TA

TAE® iff TS(TA) = @
N— . ~~ o/

timed automaton infinite transition system

e |ldea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RTS(TA)
— dependence on & is ignored for the moment . . .

e Transform TCTL formula ¢ into an “equivalent” CTL-formula o

® Then TA |:TCTL (D |ff \RTS(TA) |:CTL (/IS

finite transition system

© JPK 10

Advanced model checking

Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula ¢ (both over AP and C)
Output: TA = &

$:= eliminate the timing parameters from &;

determine the equivalence classes under =;

construct the region transition system TS = RTS(TA);
apply the CTL model-checking algorithm to check TS = ®;
TA = @ ifand only if TS = @

how does clock equivalence look like?

© JPK 11

Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # [0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA

e Formally: for any state s of TS(TA) it holds:

s k=307 iff s{z:=0} E3IO((zeJ)AD)

~
state in TS(TA @ z)

— where TA @ z is TA (over C) extended with z ¢ C

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK 12

Advanced model checking

Correctness

Let TA = (Loc, Act, C', —, Locy, Inv, AP, L). For clock z &€ C, let
TA® 2z = (Loc,Act,CU{z},—, Locg,Inv,AP,L).
For any state s of TS(TA) it holds that:

1L s =300 iff s{z:=0} E30((z€J)AY)

. Vv
state in TS(TA @ z)

2. s VO it s{z:=0} EVO((zeJ)AD)

state in TS(TA @ z)

© JPK

13

Advanced model checking

Clock equivalence =

(A) Equivalent clock valuations satisfy the same clock constraints g:

/

n=n = (mEg iff 7' E=g)

(B) Time-divergent paths of equivalent states are “equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK 14

Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK 15

Advanced model checking

Clock equivalence: definition

Clock valuations n, " € Eval(C) are equivalent, denoted n = 7/, if either:
o forallz € C: n(z) > ¢, iff n'(z) > ¢y, OF

e forany z,y € C with n(x) < ¢, and n(y) < ¢, it holds:
- [n(z)] = [n'(z)] and frac(n(z)) = 0iff frac(n’(x)) = 0, and

— frac(n(x)) < frac(n(y)) it frac(n'(x)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK 16

Advanced model checking

Regions

e The clock region of n € Eval(C), denoted [n], is defined by:

m = {n ekval(C) |n=7n}

e The state region of s = (¢,n) € TS(TA) is defined by:

[s] = (&) = {&n) [0 €nl}

© JPK =

Advanced model checking

Example c;=2, c,=1

© JPK 18

Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

Cllx [ee < | Bval(C)/= | < [C'#29 5 [T (20 + 2)

~~

zeC number of regions zeC

where for the upper bound it is assumed that ¢, > 1 forany x € C

the number of state regions is |Loc| times larger

© JPK 19

Advanced model checking

Proof

© JPK 20

Advanced model checking

Preservation of atomic properties

1. For n,n" € Eval(C) such that n = '

nkEg ifandonlyif 7' = gforany g e ACC(TAU D)

2. For s, s’ € TS(TA) such that s = ¢’

slk=a ifandonlyif s =aforanyac AP’

where AP’ includes all propositions in TA and atomic clock constraints in TA and &

© JPK 21

Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’

© JPK

22

Advanced model checking

Proof

© JPK 23

Advanced model checking

Region automaton: intuition

e Region automaton = quotient of TS(TA) under =
e State regions are states in quotient transition system under =

e Transitions in region automaton “mimic” those in TS(TA)

e Delays are abstract

— the exact delay is not recorded, only that some delay took place
— if any clock x exceeds c,, delays are self-loops

e Discrete transitions correspond to actions

© JPK 24

Advanced model checking

A simple example

@) z22:a

reset(x)

© JPK 25

Advanced model checking

Unbounded and successor regions

e Clock region ro, = {1 € Eval(C) | Vx € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted »’ = succ(r), if either:

1. r=randr =17’ or
2. 1 £ 1o, v A1 and Vn € r:
3d € Rso. (n+der’ and YO<d <d.n+d €rur’)
e The successor region: succ({{,r)) = (¢, succ(r))

e Note: the location invariants are ignored so far!

© JPK 26

Advanced model checking

Example

© JPK p

Advanced model checking

Characterizing time convergence

For non-zeno TA and m = sg s1 $2... a path in TS(TA):

(a) wistime-convergent = d state region (/,r) such that for some j:

s; € ({,r) foralli>j

(b) If d state region (¢, r) with r # r., and an index j such that:
s; € ({,r) foralli>j
then 7 Is time-convergent

time-convergent paths are paths that only perform delays from some time instant on

© JPK 28

Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S, Act, —, I, AP, L) let:

RTS(TA, @) = (S',Actu {7}, —',I,AP’ L) with
o S'=5/=={[s]|seS}tand I’ ={]s] | s € I}, the state regions

o L'({t,r))=L() U{gcAP'\AP |r =g}

o, D :
¢ <275 ¢ r g resetDinr = Inv(Y)
(,r) =" (¢',reset D in r)

e —' is defined by:

r = Inv(¢) succ(r) = Inv(¢)

and (0.1 ' (0. succ(r))

© JPK 29

Advanced model checking

Example: simple light switch

x = 2 : switch_off

x%nQ

reset (x)

© JPK 30

Advanced model checking

Correctness theorem (aiur and bill, 1989

For non-Zeno timed automaton TA and TCTL formula &:

TAl=® iff RTS(TA, &) = &
e A& P J
TCTL semantics CTL semantics

© JPK

31

Advanced model checking

Proof

© JPK 32

Advanced model checking

Characterizng timelock freedom

Non-zeno TA is timelock-free iff no reachable state in RTS(TA) is terminal

timelocks can thus be checked by a reachability analysis of RTS(TA)

© JPK

33

Advanced model checking

off off off

r=1

wW=on Sw-on

on on on on
r=1 1<z<?2 r=2 r>2

© JPK 34

Advanced model checking

Time complexity

For timed automaton TA and TCTL formula &, the model-checking problem
TA = @ can be determined intime O (N+K) - | ®|),

where N and K are the number of states and transitions in RTS(TA, ®)

© JPK

35

Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. Model checking safety, reachability, or w-regular properties in TA is
PSPACE-complete

3. Model checking LTL and CTL against TA is PSPACE-complete
4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for TCTL is undecidable

all facts without proof

© JPK 36

