

Difference Bound Matrices

Lecture #20 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 31, 2011

Symbolic reachability analysis

- Use a **symbolic** representation of timed automata configurations
 - needed as there are infinitely many configurations
 - example: state regions $\langle \ell, [\eta] \rangle$

- For set z of clock valuations and edge $e = \ell \xleftarrow{g:\alpha, D} \ell'$ let:

$$Post_e(z) = \{ \eta' \in \mathbb{R}_{\geq 0}^n \mid \exists \eta \in z, d \in \mathbb{R}_{\geq 0}. \eta + d \models g \wedge \eta' = \text{reset } D \text{ in } (\eta + d) \}$$

$$Pre_e(z) = \{ \eta \in \mathbb{R}_{\geq 0}^n \mid \exists \eta' \in z, d \in \mathbb{R}_{\geq 0}. \eta + d \models g \wedge \eta' = \text{reset } D \text{ in } (\eta + d) \}$$

- Intuition:

- $\eta' \in Post_e(z)$ if for some $\eta \in z$ and delay d , $(\ell, \eta) \xrightarrow{d} \dots \xrightarrow{e} (\ell', \eta')$
- $\eta \in Pre_e(z)$ if for some $\eta' \in z$ and delay d , $(\ell, \eta) \xrightarrow{d} \dots \xrightarrow{e} (\ell', \eta')$

Zones

- Clock constraints are *conjunctions* of constraints of the form:
 - $x \prec c$ and $x - y \prec c$ for $\prec \in \{ <, \leq, =, \geq, > \}$, and $c \in \mathbb{Z}$
- A *zone* is a set of clock valuations satisfying a clock constraint
 - a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of g : $\llbracket g \rrbracket = \{ \eta \in \text{Eval}(C) \mid \eta \models g \}$
- The *state zone* of $s = \langle \ell, \eta \rangle$ is $\langle \ell, z \rangle$ with $\eta \in z$
- For *zone* z and edge e , $\text{Post}_e(z)$ and $\text{Pre}_e(z)$ are *zones*

state zones will be used as symbolic representations for configurations

Operations on zones

- Future of z :
 - $\vec{z} = \{ \eta + d \mid \eta \in z \wedge d \in \mathbb{R}_{\geq 0} \}$
- Past of z :
 - $\overleftarrow{z} = \{ \eta - d \mid \eta \in z \wedge d \in \mathbb{R}_{\geq 0} \}$
- Intersection of two zones:
 - $z \cap z' = \{ \eta \mid \eta \in z \wedge \eta \in z' \}$
- Clock reset in a zone:
 - reset D in $z = \{ \text{reset } D \text{ in } \eta \mid \eta \in z \}$
- Inverse clock reset of a zone:
 - $\text{reset}^{-1} D \text{ in } z = \{ \eta \mid \text{reset } D \text{ in } \eta \in z \}$

Symbolic successors and predecessors

Recall that for edge $e = \ell \xleftarrow{g:\alpha, D} \ell'$ we have:

$$Post_e(z) = \{ \eta' \in \mathbb{R}_{\geq 0}^n \mid \exists \eta \in z, d \in \mathbb{R}_{\geq 0}. \eta + d \models g \wedge \eta' = \text{reset } D \text{ in } (\eta + d) \}$$

$$Pre_e(z) = \{ \eta \in \mathbb{R}_{\geq 0}^n \mid \exists \eta' \in z, d \in \mathbb{R}_{\geq 0}. \eta + d \models g \wedge \eta' = \text{reset } D \text{ in } (\eta + d) \}$$

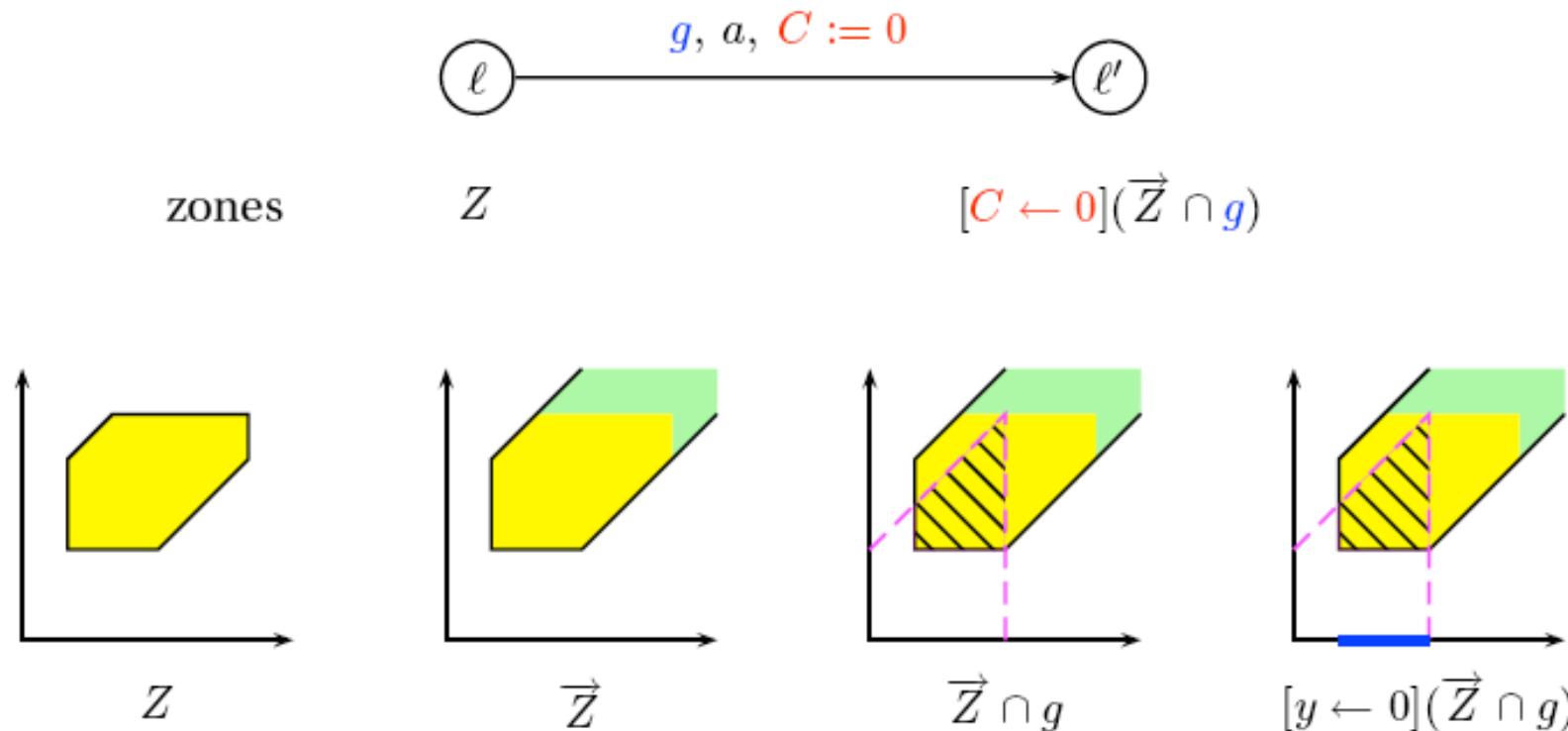
This can also be expressed symbolically using operations on zones:

$$Post_e(z) = \text{reset } D \text{ in } (\vec{z} \cap \llbracket g \rrbracket)$$

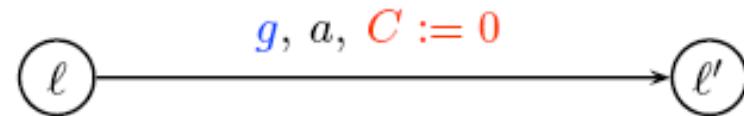
and

$$Pre_e(z) = \overleftarrow{\text{reset}^{-1} D \text{ in } (z \cap \llbracket D = 0 \rrbracket)} \cap \llbracket g \rrbracket$$

Zone successor: example

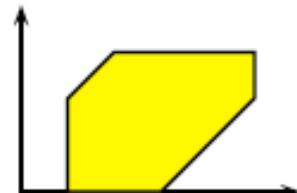
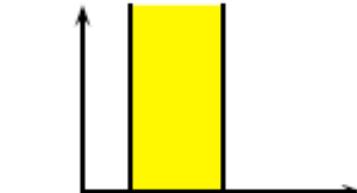


Zone predecessor: example



$$\overleftarrow{[C \leftarrow 0]^{-1}(Z \cap (C = 0)) \cap g}$$

Z



$$\overleftarrow{[C \leftarrow 0]^{-1}(Z \cap (C = 0)) \cap g}$$

Abstract forward reachability

Let γ associate sets of valuations to sets of valuations

Abstract forward symbolic transition system of TA is defined by:

$$\frac{(\ell, z) \Rightarrow (\ell', z') \quad z = \gamma(z)}{(\ell, z) \Rightarrow_{\gamma} (\ell', \gamma(z'))}$$

Iterative forward reachability analysis computation schemata:

$$T_0 = \{ (\ell_0, \gamma(z_0)) \mid \forall x \in C. z_0(x) = 0 \}$$

$$T_1 = T_0 \cup \{ (\ell', z') \mid \exists (\ell, z) \in T_0 \text{ such that } (\ell, z) \Rightarrow_{\gamma} (\ell', z') \}$$

$$\dots \quad \dots$$

$$T_{k+1} = T_k \cup \{ (\ell', z') \mid \exists (\ell, z) \in T_k \text{ such that } (\ell, z) \Rightarrow_{\gamma} (\ell', z') \}$$

$$\dots \quad \dots$$

with inclusion check and termination criteria as before

Criteria on the abstraction operator

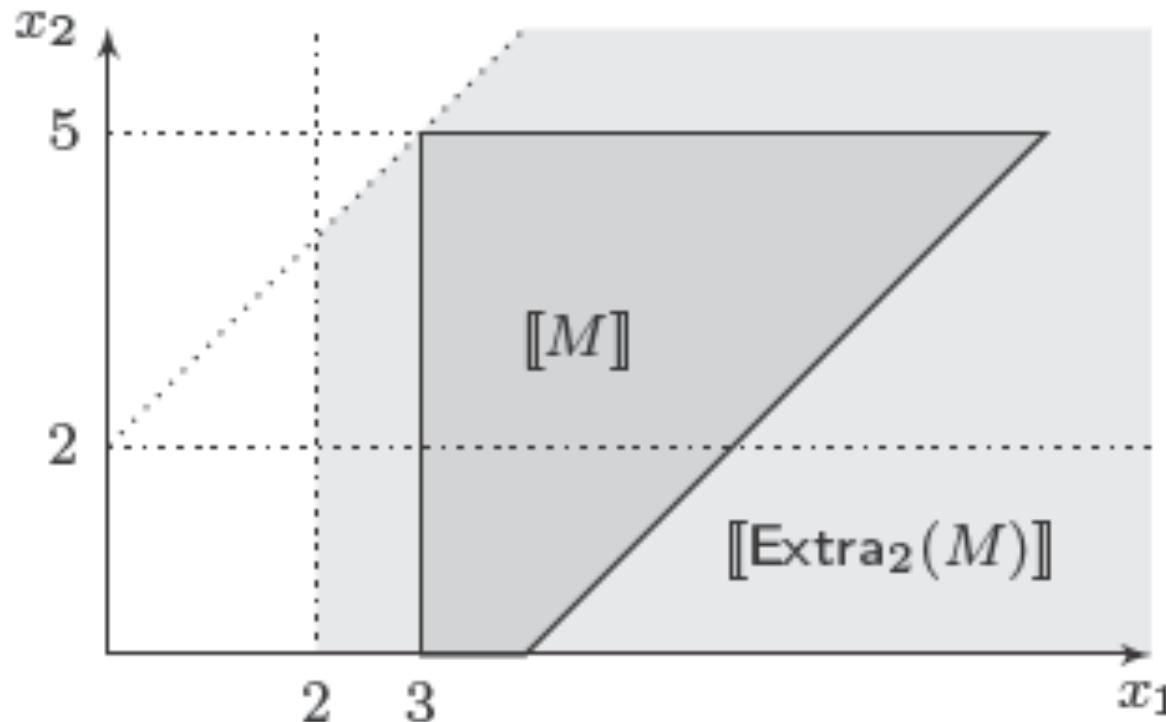
- **Finiteness:** $\{ \gamma(z) \mid \gamma \text{ defined on } z \}$ is finite
- **Correctness:** γ is sound wrt. reachability
- **Completeness:** γ is complete wrt. reachability
- **Effectiveness:** γ is defined on zones, and $\gamma(z)$ is a zone

k -Normalization [Daws & Yovine, 1998]

Let $k \in \mathbb{N}$.

- A k -bounded zone is described by a k -bounded clock constraint
 - e.g., zone $z = (x \geq 3) \wedge (y \leq 5) \wedge (x - y \leq 4)$ is not 2-bounded
 - but zone $z' = (x \geq 2) \wedge (y - x \leq 2)$ is 2-bounded
 - note that: $z \subseteq z'$
- Let $norm_k(z)$ be the smallest k -bounded zone containing zone z

Example of k -normalization



Facts about k -normalization [Bouyer, 2003]

- **Finiteness:** $norm_k(\cdot)$ is a finite abstraction operator
- **Correctness:** $norm_k(\cdot)$ is sound wrt. reachability
 - provided k is the maximal constant appearing in the constraints of TA
- **Completeness:** $norm_k(\cdot)$ is complete wrt. reachability
 - since $z \subseteq norm_k(z)$, so $norm_k(\cdot)$ is an over-approximation
- **Effectiveness:** $norm_k(z)$ is a zone
 - this will be made clear in the sequel when considering zone representations

Representing zones

- Let $\mathbf{0}$ be a clock with constant value 0; let $C_0 = C \cup \{ \mathbf{0} \}$
- Any zone z over C can be written as:
 - conjunction of constraints $x - y < n$ or $x - y \leq n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x - y \preceq n$ and $x - y \preceq m$ take only $x - y \preceq \min(n, m)$ \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints
- Example:

$$x - \mathbf{0} < 20 \wedge y - \mathbf{0} \leq 20 \wedge y - x \leq 10 \wedge x - y \leq -10 \wedge \mathbf{0} - z < 5$$

- Store each such constraint in a matrix
 - this yields a *difference bound matrix* [Berthomieu & Menasche, 1983]

Difference bound matrices

- Zone z over C is represented by DBM \mathbf{Z} of cardinality $|C+1| \cdot |C+1|$
 - for $C = \{x_1, \dots, x_n\}$, let $C_0 = \{x_0\} \cup C$ with $x_0 = 0$, and:
$$\mathbf{Z}(i, j) = (c, \prec) \quad \text{if and only if} \quad x_i - x_j \prec c$$
 - so, rows are used for lower, and columns for upper bounds on clock differences
- Definition of DBM \mathbf{Z} for zone z :
 - $\mathbf{Z}(i, j) := (c, \prec)$ for each bound $x_i - x_j \prec c$ in z
 - $\mathbf{Z}(i, j) := \infty$ (= no bound) if clock difference $x_i - x_j$ is unbounded in z
 - $\mathbf{Z}(0, i) := (0, \leqslant)$, i.e., $0 - x_i \leqslant 0$, or: all clocks are positive
 - $\mathbf{Z}(i, i) := (0, \leqslant)$, i.e., each clock is at most itself

Example

$$(x_1 \geq 3) \wedge (x_2 \leq 5) \wedge (x_1 - x_2 \leq 4)$$

$$\begin{array}{c|ccc} & x_0 & x_1 & x_2 \\ \hline x_0 & +\infty & -3 & +\infty \\ x_1 & +\infty & +\infty & 4 \\ x_2 & 5 & +\infty & +\infty \end{array}$$

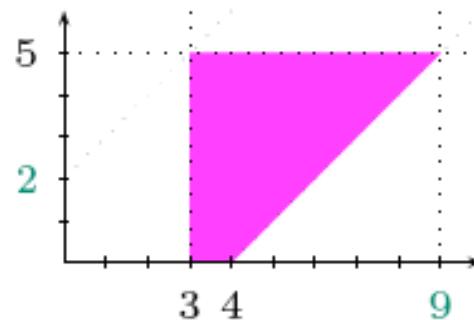
all clock constraints in the above DBM are of the form (c, \leq)

The need for canonicity

$$(x_1 \geq 3) \wedge (x_2 \leq 5) \wedge (x_1 - x_2 \leq 4)$$

$$\begin{array}{c|ccc} & x_0 & x_1 & x_2 \\ \hline x_0 & +\infty & -3 & +\infty \\ x_1 & +\infty & +\infty & 4 \\ x_2 & 5 & +\infty & +\infty \end{array}$$

⑥ Existence of a normal form



$$\begin{pmatrix} 0 & -3 & 0 \\ 9 & 0 & 4 \\ 5 & 2 & 0 \end{pmatrix}$$

Canonical DBMs

- A zone z is in *canonical form* if and only if:
 - no constraint in z can be strengthened without reducing $\llbracket z \rrbracket = \{ \eta \mid \eta \in z \}$
- For each zone z :
 - there exists a zone z' such that $\llbracket z \rrbracket = \llbracket z' \rrbracket$, and z' is in canonical form
 - moreover, z' is unique

how to obtain the canonical form of a zone?

Turning a DBM into canonical form

- Represent zone z by a *weighted digraph* $G_z = (V, E, w)$ where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j - x_i \preceq c$ is a constraint in z
 - $w(x_i, x_j) = (c, \preceq)$ whenever $x_j - x_i \preceq c$ is a constraint in z
- DBMs are thus (transposed) adjacency matrices of the weighted digraph
- Observe: deriving bounds = adding weights along paths
- Zone z is in *canonical form* if and only if DBM \mathbf{Z} satisfies:
 - $\mathbf{Z}(i, j) \leq \mathbf{Z}(i, k) + \mathbf{Z}(k, j)$ for any $x_i, x_j, x_k \in C_0$

Operations on DBM entries

Let $\preceq \in \{<, \leq\}$.

- **Comparison of DBM entries:**

- $(c, \preceq) < \infty$
- $(c, \preceq) < (c', \preceq')$ if $c < c'$

- **Addition of DBM entries:**

- $c + \infty = \infty$
- $(c, \leq) + (c', \leq) = (c+c', \leq)$
- $(c, <) + (c', \leq) = (c+c', <)$

Example

Computing canonical DBMs

Deriving the **tightest constraint** on a pair of clocks in a zone
is equivalent to finding the **shortest path** between their vertices

- apply **Floyd-Warshall**'s all-pairs shortest-path algorithm
- its worst-case time complexity lies in $\mathcal{O}(|C_0|^3)$
- efficiency improvement:
 - let all frequently used operations preserve canonicity

Minimal constraint systems

- A (canonical) zone may contain many *redundant* constraints
 - e.g., in $x - y < 2$, $y - z < 5$, and $x - z < 7$, constraint $x - z < 7$ is redundant
- Reduce memory usage \Rightarrow consider *minimal* constraint systems
 - e.g., $x - y \leq 0$, $y - z \leq 0$, $z - x \leq 0$, $x - 0 \leq 3$, and $0 - x < -2$ is a minimal representation of a zone in canonical form with 12 constraints
- For each zone: \exists a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
 - $x_i \xrightarrow{(n, \preceq)} x_j$ is *redundant* if a path from x_i to x_j has weight at most (n, \preceq)
 - fact: it suffices to consider alternative paths of length *two* only

complexity in $\mathcal{O}(|C_0|^3)$; zero cycles require a special treatment

Example

DBM operations: checking properties

- *Nonemptiness*: is $\llbracket \mathbf{Z} \rrbracket \neq \emptyset$?
 - $\mathbf{Z} = \emptyset$ if $x_i - x_j \preceq c$ and $x_j - x_i \preceq' c'$ and $(c, \preceq) < (c', \preceq')$
 - search for negative cycles in the graph representation of \mathbf{Z} , or
 - mark \mathbf{Z} when upper bound is set to value $<$ its corresponding lower bound
- *Inclusion test*: is $\llbracket \mathbf{Z} \rrbracket \subseteq \llbracket \mathbf{Z}' \rrbracket$?
 - for DBMs in canonical form, test whether $\mathbf{Z}(i, j) \leq \mathbf{Z}'(i, j)$, for all $i, j \in C_0$
- *Satisfaction*: does $\mathbf{Z} \models g$?
 - check whether $\llbracket \mathbf{Z} \wedge g \rrbracket = \emptyset$

DBM operations: delays

- *Future*: determine $\overrightarrow{\mathbf{Z}}$

- remove the upper bounds on any clock, i.e.,

$$\overrightarrow{\mathbf{Z}}(i, 0) = \infty \quad \text{and} \quad \overrightarrow{\mathbf{Z}}(i, j) = \mathbf{Z}(i, j) \text{ for } j \neq 0$$

- \mathbf{Z} is canonical implies $\overrightarrow{\mathbf{Z}}$ is canonical

- *Past*: determine $\overleftarrow{\mathbf{Z}}$

- set the lower bounds on all individual clocks to $(0, \preceq)$

$$\overleftarrow{\mathbf{Z}}(i, 0) = \infty \quad \text{and} \quad \overleftarrow{\mathbf{Z}}(i, j) = \mathbf{Z}(i, j) \text{ for } j \neq 0$$

- \mathbf{Z} is canonical does not imply $\overleftarrow{\mathbf{Z}}$ is canonical

Final DBM operations

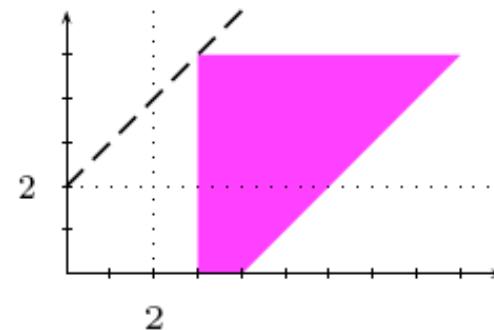
- *Conjunction*: $\llbracket \mathbf{Z} \rrbracket \wedge (x_i - x_j \preceq n)$
 - if $(n, \preceq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \preceq)$ else do nothing
 - put \mathbf{Z} into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only $\mathbf{Z}(i, j)$ changed)
- *Clock reset*: $x_i := d$ in \mathbf{Z}
 - $\mathbf{Z}(i, j) := (d, \leqslant) + \mathbf{Z}(0, j)$ and $\mathbf{Z}(j, i) := \mathbf{Z}(j, 0) + (-d, \leqslant)$
- *k-Normalization*: $norm_k(\mathbf{Z})$
 - remove all bounds $x - y \preceq m$ for which $(m, \preceq) > (k, \leqslant)$, and
 - set all bounds $x - y \preceq m$ with $(m, \preceq) < (-k, <)$ to $(-k, <)$
 - put the DBM back into canonical form (Floyd-Warshall)

k -Normalization of DBMs

Fix an integer k (* represents an integer between $-k$ and $+k$)

$$\left(\begin{array}{ccc} * & & >k \\ * & * & * \\ <-k & * & * \end{array} \right) \rightsquigarrow \left(\begin{array}{ccc} * & +\infty & * \\ * & * & * \\ -k & * & * \end{array} \right)$$

- ⑥ “intuitively”, erase non-relevant constraints



remove all upper bounds higher than k and lower all lower bounds exceeding $-k$ to $-k$