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Equivalences and preorders GRAMS.5-10
finite trace
inclusion

trace

inclusion

trace bisimulation
equivalence equivalence ~
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

LTL trace

inclusion

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

LTL trace

inclusion

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

stutter tl’aci stutter bis. equiv.
equivalence = with div. x4V
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Logical characterizations GRA5 519

prop. inclusion

trace
LTL trace bisimulation CTL*
equivalence equivalence ~ CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace}

prop. inclusion
[ simulation ]

preorder <
trace
LTL trace bisimulation CTL*
equivalence equivalence ~ CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion
5|muIat|on
preorder < -<

trace
LTL |ncIu5|on

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

simulation
preorder <

trace
inclusion

LTL for TS without

terminal states

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > H s qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

simulation
preorder j] VCTL*

trace
inclusion

LTL for TS without

terminal states

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > H s qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:

11/122



Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL

s1 X7 s iff for all formulas ® € L:
5 | ®impliess; E @
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL

s1 X7 s iff for all formulas ® € L:
5 | ®impliess; E @
T

observation: IL cannot be closed under negation
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The universal fragment VCTL* of CTL* GRMS.5-16

CTL* formulas in positive normal form, without 3
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Syntax of VCTL* GRM5.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,
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Syntax of VCTL* GRM5.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

eventually: Q¢ ef trueU ¢
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Syntax of VCTL*

GRMb5.5-16

VCTL* state formulas:
& = true | false | a | —a |
dIAD, | OV D, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

eventually: Q¢ ef trueU ¢

always: Oy def oW false
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
s e ¢ iff s Fverix Vo
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
s e ¢ iff s Fverix Vo

but VOVa cannot be expressed in LTL
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The universal fragments of CTL* and CTL  cuwssar

syntax of VCTL*:
¢ = true|false|a|ﬂa|¢1A¢2|¢1V¢2|V<p

¢ = ®|lpiApa|erVeer|Ov|eiUpa| o1 W,

VCTL: sublogic of VCTL*

e no Boolean operators for paths formulas

e the arguments of the temporal modalities
(), U and W are state formulas

22/122



The universal fragments of CTL* and CTL  cuwssar

syntax of VCTL*:
¢ = true|false|a|ﬂa|<|>1/\<l>2|¢1v¢2|V<p

¢ = ®|lpiApa|erVeer|Ov|eiUpa| o1 W,

VCTL: sublogic of VCTL*

syntax of VCTL:
¢ = true | false | a | -a | P, Ay | b, VvV, |
VOO | V(91U ) | V(01 W dy)




Logical characterization of simulation GRAS.5-19A
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Logical characterization of simulation GRAS.5-19A
Let 7 be a finite TS without terminal states. Then,

for all states s; and s, in 7, the following statements
are equivalent:
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Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 27 &

26/122



Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 21 %
(2) for all VCTL state formulas &:
if s = ® then s, = ®
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Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 21 %
(2) for all VCTL state formulas &:
if s = ® then s, = ®

(3) for all VCTL* state formulas ®:
if s, = ® then 5 = @
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VCTL and simulation GRMB.5-18

Ti:
{a}

4 {a}
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VCTL and simulation GRMB.5-18

Ti:

ta} AP = {a}
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VCTL and simulation GRMB.5-18

Ti:
{a}

eg., T £ VO(VO—a v VOa)
T E YO(VO~a v VOa)




VCTL and simulation GRMB.5-18

Ti:

{a} 2
2 {a} =
eg., T £ VO(VO—a v VOa)

T E YO(VO~a v VOa)
T VO(VO-a v VOa)
T E VO(VO-a v VOa)




VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*

(1) = (3): holds for arbitrary (possibly infinite) TS
without terminal states

35/122



VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*

(1) = (3): holds for arbitrary (possibly infinite) TS
without terminal states

;

proof by structural induction

36/122



VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:

(i) for all VCTL* state formulas ® and states s;, s):
if ss X7 s and 5; |=® then 5 = @
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:

(i) for all VCTL* state formulas ® and states s;, s):
if ss X7 s and 5; |=® then 5 = @

(ii) for all VCTL* path formulas ¢ and paths 7y, m5:
if 1 <7 m and m | ¢ then m =
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(2) = (1):
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(2) = (1): show that

R = {(s1,%) : forall VCTL formulas ®:
5 ® implies s = ¢}

iIs a simulation.
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) a1 21
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s; = ®

(2) = (1): show that for finite TS:

R = {(s1,%) : forall VCTL formulas ®:
5 ® implies s = ¢}

iIs a simulation.
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The existential fragment ICTL* of CTL*  cussa
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The existential fragment ICTL* of CTL*  cussa

dual to VCTL¥*, i.e., CTL* formulas in PNF, without V
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The existential fragment ICTL* of CTL*  cussa

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\I12|\I11V\I12|Elcp
3CTL* path formulas:

o = V|p1A@|e1Ver|Op|er1Uez| o1 W,
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The existential fragment ICTL* of CTL*  cussa

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\I12|\I11V\I12|Elcp
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL
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Duality Of VCTL* and HCTL* GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -V
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Duality Of VCTL* and HCTL* GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -W  (and vice versa)
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Duality of VCTL* and JCTL*

GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -W  (and vice versa)

For each VCTL formula ® there is a ACTL formula W
st. ® = -W  (and vice versa)
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Logical characterization of simulation GRAS.5-20A

50/122



Logical characterization of simulation GRAS.5-20A

If s; and s, are states in a finite TS then the following
statements are equivalent:
(1) s1=3rs
(2) for all VCTL formulas ®:
if s = ® then s =&

(3) for all VCTL* formulas ®:
if s, = ® then 5 = @
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Logical characterization of simulation GRAS.5-20A

If s; and s, are states in a finite TS then the following
statements are equivalent:

(1) s=2r=
(2V) for all VCTL formulas ®:
if s = ® then s =&
(3V) for all VCTL* formulas ®:
if s, = ® then 5 = @
(23) for all ICTL formulas W:
ifs1 E WV thens, EW

(33) for all ICTL formulas W:
if s1 | W then 5, W
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Example: VCTL/3CTL and simulation Gms.5-21

2 gia}

Z {a}
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Example: VCTL/3CTL and simulation Gms.5-21

A {a}
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Example: VCTL/3CTL and simulation Gms.5-21

T ¥ YO(VO-a Vv YOa)
T | YO(VO—a Vv VQOa)

VCTL formula
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Example: VCTL/3CTL and simulation

' gia}

Z {a}

T ¥ YO(VO-a Vv YOa)
T | YO(VO—a Vv VQOa)

T = 30302 A 302)
T 3I0E0-a A 30a)

VCTL formula

ACTL formula

GRM5.5-21



Characterizations of simulation equivalence ...
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Characterizations of simulation equivalence ...

for finite TS without terminal states:
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

LT iff h handD 2Ty
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Ty 2T iff h handTa X Ty
iff 7Ty, T satisfy the same VCTL* formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Ty 2T iff h handTa X Ty
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas
iff 7y, T satisfy the same 3CTL formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas

iff 7y, T satisfy the same 3CTL formulas
T

.. even holds for VCTL*\ yw, YCTL\yw,
ElCTL*\U,w, EICTL\U,W
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Simulation equivalence GRM5.5-23

T T

@ ={a}
® ={b}
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Simulation equivalence GRM5.5-23

T T

12
O

2 (3}
® =)
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Simulation equivalence GRM5.5-23

T T

@ ={a}
® ={b}

12

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,
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Simulation equivalence GRM5.5-23

T T

~ @ ={a}
76 ® ={b}

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,
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Simulation equivalence GRM5.5-23

T T

~ @ ={a}
76 ® ={b}

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,

but by CTL:
T = YO@BOa A 30ODb)
T E YO@EOa A 30Db)
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

70/122



Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
JCTL equivalence

= simulation equivalence
VCTL* equivalence
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
JCTL equivalence

= simulation equivalence
VCTL* equivalence

and LTL is a sublogic of VCTL*
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas

wrong
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas

wrong, as trace equivalence does not imply
simulation equivalence
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes,asTh AT,
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?

no
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?

no, ash <7
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Does there exist ...? GRMB.5-26

T

T

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?
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Does there exist ...? GRMB.5-26

T g2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no
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Does there exist ...? GRMB.5-26

T g2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1
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Does there exist ...? GRMB.5-26

4 S1 % 52

t v b V2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1

simulation for (71, %): {(s1,%), (v1,%), (t1, )}
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Does there exist ...? GRMB.5-26

4 S1 % 52

t v b V2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1
simulation for (71, %): {(s1,%), (v1,%), (t1, )}

simulation for (72, T1):
{(52) 51)7 (52) V1)7 (V27 Vl)) (tl7 t2)}
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, asTh £ T,
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?

no
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?

no, as 71, 7, are simulation equivalent
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Simulation quotient GRMS.5-28
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, Sp, AP, L) be a TS.

simulation quotient 7 /~:

transition system that arises from 7" by collapsing
all simulation equivalent states
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation

e state space S/~ «— :
equivalence classes
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

e initial states: S§ = {[s] : s € So}

e state space S/~ «—

[s]={s'€S:s~r5'}
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation

e state space S/~ «— :
equivalence classes

e initial states: S§ = {[s] : s € So}

e labeling: AP' = AP and L'([s]) = L(s)

[s]={s'€S:s~rs'}
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

initial states: S) = {[s] : s € So}

state space S/~ «—

labeling: AP’ = AP and L'([s]) = L(s)
—_— S’

[]—>~ [s']

transition relation:
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, So, AP, L) be a TS. Then:

T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

initial states: S) = {[s] : s € So}

state space S/~ «—

labeling: AP’ = AP and L'([s]) = L(s)

— ¢
[]—>~[5']

action labels: irrelevant

transition relation:
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Similarity of 7 and 7/~ GrG.5-288
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7 /~,T): ?
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Example: simulation quotient GRMS.5-28

T
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Example: simulation quotient GRMS.5-28

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent

n = W,
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent

h ~w, w=u,w butw 2 wu,w
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

h v b 13 W
ty, t», t3 are simulation equivalent
are simulation equivalent

i, »2
w =X u,th, butw % u,wm

n = W,

51 =9
113 /122



GRMbH.5-28A

Example: simulation quotient

T T/~

S1 S {517 52}
n w us {U]_, U2} {W}
(5] Vi [5) t3 V2 {Vl, V2} {t17 b, t3}

ty, t», t3 are simulation equivalent
are simulation equivalent

i, »2
w =X u,th, butw % u,wm

n = W,

51 =9
114 /122



Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

simulation for (7,7 /=~2):
{(s,[s]) : sis a state in T }
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

simulation for (7,7 /=~2):

{(s,[s]) : sis a state in T }
but {([s],s): s isastatein T }

is not a simulation for (7 /~,T)
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1, %2}, %) € R
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1,%},5) € R and {s1, 5} —~ {w}
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1,%},5) € R and {s1, 5} —~ {w}
there is no transition s, —» w' in T st. ({w}h,w) ER
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Similarity of 7 and 7/~ G5, 5-28¢

Let T = (S, Act, —, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

N _ s — ¢
where the transitions are given by 6] — [5]

T and T /~ are simulation equivalent, i.e.,

T <XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7 /~,T): ?
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Similarity of 7 and 7/~ G5, 5-28¢

Let T = (S, Act, —, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

N _ s — ¢
where the transitions are given by 6] — [5]

T and T /~ are simulation equivalent, i.e.,

T <XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7/~,T): {([s],t):s =27 t}
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Heterogeneous/homogeneous model checking cus.s-s0

123 /122



Heterogeneous/homogeneous model checking cus.s-s0

system T system T system T

AN N 7

{ model checking: } model checking:

does T = ® hold ? does T correctly

implement 77 ?
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Heterogeneous/homogeneous model checking cus.s-s0

system 7~

AN

formula

model checking:
does T |= & hold ?

trace inclusion checking

trace equivalence checking

system 7

system 7"

N

/

model checking:

does 7 correctly
implement 77 ?
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Heterogeneous/homogeneous model checking cus.s-s0

system 7~

AN

formula

model checking:
does T |= & hold ?

trace inclusion checking
trace equivalence checking

system 7

system 7"

N

/

model checking:

does 7 correctly
implement 77 ?

PSPACE-complete
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Heterogeneous/homogeneous model checking cus.s-s0

system T formula ®| | |system T system 7"

AN

N

model checking:

model checking:
does T |= & hold ?

does 7 correctly
implement 77 ?

trace inclusion checking

trace equivalence checking

PSPACE-complete

bisimulation equivalence checking
“does T ~ T hold ?"
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Heterogeneous/homogeneous model checking cus.s-s0

system T formula ®| | |system T system 7"
model checking: model checking:
does 7 |= & hold 7 does T correctly
implement 77 ?

trace inclusion checking
trace equivalence checking PSPACE-complete

bisimulation equivalence checking «—| O(m - log n)
“does T ~ 7" hold ?"

= Ffstates
m = #ttransitions

128 /122
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Heterogeneous/homogeneous model checking cus.s-s0

system 7~ formula ¢

AN

model checking:
does T |= & hold ?

trace inclusion checking
trace equivalence checking

bisimulation equivalence checking «+—

“does T ~ T’ hold ?”

system T system 7"
model checking:

does T correctly
implement 77 ?

—| PsPa

CE-complete

O(m - log n)

refinement checking via simulation

“does T < 7" hold ?"
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Heterogeneous/homogeneous model checking cus.s-s0

system T system T system T

AN N

model checking: model checking:
does T |= & hold ?

does 7 correctly
implement 77 ?

trace inclusion checking

: : «—/| PSPACE-complete
trace equivalence checking

bisimulation equivalence checking «—| O(m - log n)
“does T ~ 7" hold ?"

refinement checking via simulation «— O(m - n)
“does T <7 hold ?"
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Refinement checking via simulation GRAS.5-31

given: 2 finite transition system 7; and 75
over the same set of propositions AP

question: does 7; <X 75 hold ?
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Refinement checking via simulation GRAS.5-31

given: 2 finite transition system 7; and 75
over the same set of propositions AP

question: does 7; <X 75 hold ?

132/122



Refinement checking via simulation GRAS.5-31

given: 2 finite transition system 7; and 75
over the same set of propositions AP

question: does 7; <X 75 hold ?

O O composite
system
T T T=TWT
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Refinement checking via simulation GRAS.5-31

given: 2 finite transition system 7; and 75
over the same set of propositions AP

question: does 7; <X 75 hold ?

O O composite
system
T T T=TWT

e compute the simulation preorder <7 on T
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Refinement checking via simulation GRAS.5-31

given: 2 finite transition system 7; and 75
over the same set of propositions AP

question: does 7; <X 75 hold ?
composite
system
T=T1WT

e compute the simulation preorder <7 on T

e check whether for all initial states s of Tq
there is an initial state s, of 75 s.t. 51 X7 %
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Computing the simulation preorder <71 GRAMS.5-32

given: finite TS T = (S, Act, —, S, AP, L)
possibly with terminal states

goal:  compute the simulation preorder <7
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Computing the simulation preorder <71 GRAMS.5-32
given: finite TS T = (S, Act, —, S, AP, L)
possibly with terminal states
goal:  compute the simulation preorder <7

~~ simulation equivalence classes

~» simulation quotient 7/~
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Computing the simulation preorder <71 GRAMS.5-32
given: finite TS T = (S, Act, —, S, AP, L)
possibly with terminal states
goal:  compute the simulation preorder <7

~~ simulation equivalence classes

~» simulation quotient 7/~

method: iterative refinement of relation RC S x S
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Computing the simulation preorder <71 GRAMS.5-32

R = {(51,52) €ESXS : L(s)=L(s) };
WHILE 7R is no simulation DO

choose (s1,%) € R s.t. 5§ — s;, but there is
no transition s, — s with (s1,s3) € R

o ® = R\ {n2)

return R
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Computing the simulation preorder <71 GRAMS.5-32

R = {(51,52) €ESXS : L(s)=L(s) };
WHILE 7R is no simulation DO

choose (s1,%) € R s.t. 5§ — s;, but there is
no transition s, — s with (s1,s3) € R

o R = R\ {(,9)
R is the coarsest simulation on T
and therefore R = <1

return R «—
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Computing the simulation preorder <71 GRAMS.5-32

R = {(51,52) €ESXS : L(s)=L(s) };
WHILE 7R is no simulation DO

choose (s1,%) € R s.t. 5§ — s;, but there is
no transition s, — s with (s1,s3) € R

o ® = R\ {n2)

return R

#iterations: O(|S[?)
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Computing the simulation preorder <71

GRM5.5-32A

R = {(51,52) €ESXS : L(s)=L(s) };
WHILE 7R is no simulation DO

choose (s1,%) € R s.t. 5§ — s;, but there is
no transition s, — s with (s1,s3) € R

o ® = R\ {n2)

return R

#iterations: O(|S[?)

representation of R by simulator sets

SimR(sl) = {5265 : (Sl,SQ)ER}
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Example: computation of < GRMS.5-33

S1 2 53

ur
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
th Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}

v ty t Sim(t)) = Sim(t;) ={t, t}
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th Ay, as uy — v, tp A Sim(v)
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th ﬁ Up, as th — V, U 7L) Slm(V) Slm(l.ll) = {Ul}
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th ﬁ Up, as th — V, U 7L) Slm(V) Slm(l.ll) = {Ul}

s1 A s3, as sy — Uy, s3 7/ Sim(uy)
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th ﬁ Up, as th — V, U 7L) Slm(V) Slm(l.ll) = {Ul}

s1 A S3,ass — U, S35 Sim(ul) Sim(sl) = {51,52}
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(s;) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th ﬁ Up, as th — V, U 7L) Slm(V) Slm(l.ll) = {Ul}

s1 A S3,ass — U, S35 Sim(ul) Sim(sl) = {51,52}

) ﬁ S3,as S — U, S3 74) Sim(ul)
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Example: computation of < GRMS.5-33

s S S3 |n|t|a||y
Sim(si) = {51752) 53}
e Sim(uy) = Sim(w) = {u, w}
Sim(v) = {v}
v t 2 Sim(t) = Sim(t2) ={t1, 2}

th ﬁ Up, as th — V, U 7L> Slm(V) Slm(l.ll) = {Ul}

s1 A S3,ass — U, S35 Sim(ul) Sim(sl) = {51,52}

S A 83, as s — Uy, 53/ Sim(uy) | Sim(sy) = {s1, 5}
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Computing the simulation preorder <71 GRMS.5-34
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(s)) = {s2€S:L(s1) = L()}
WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s;, s»

D Sim(s;) := Sim(s) \ {s2}

return {(s1, 52) : 52 € Sim(s;)}
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(s)) = {s2€S:L(s1) = L()}
WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s;, s»

D Sim(s;) := Sim(s) \ {s2}

return {(s1, 52) : 52 € Sim(s;)}
s1

S1

/)
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(s)) = {s2€S:L(s1) = L()}
WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s;, s»

D Sim(s;) := Sim(s) \ {s2}

return {(s1, 52) : 52 € Sim(s;)}

. sint)

/)
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(s)) = {s2€S:L(s1) = L()}
WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s;, s»

D Sim(s;) := Sim(s) \ {s2}

return {(s1, 52) : 52 € Sim(s;)}
S1 Sim(s;)
V=€t
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s; € S DO

choose such states s;, s»

D Sim(s;) := Sim(sy) \ {52} «—

return {(s1, ) : 52 € Sim(s;)}

Sim(s;) = {s2€S:L(s1) = L(=)}

WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

s1 AT &

: sint4)
o= st
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(sy) = {€5:L(s)) = ()}

WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s, s
D Sim(s) := Sim(sy) \ {s2} complexit};:
return {(s1, 52) : 52 € Sim(s;)} O(m-|SP)

51 Sim(s;) m = Ftedges
9 <@ Post(sp) > |S]
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Computing the simulation preorder <71 GRMS.5-34

FOR ALL s € S DO
Sim(sy) = {€5:L(s)) = ()}

WHILE ds; € S Js, € Sim(s;) 3s; € Post(s;)
s.t. Post(sy) N Sim(s)) = & DO

choose such states s, s
D Sim(sl) = Sim(sl) \ {52} complexit}2/:
return {(s1, 52) : 52 € Sim(s;)} O(m-|S]?)

51 Sim(s;) m = Ftedges
9 <@ Post(sp) > |S]
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O(m - |S[?)-algorithm for computing <7 s
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O(m - |S[?)-algorithm for computing <7 s

reformulation of the algorithm to compute X7
by means of
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O(m - |S[?)-algorithm for computing <7 s

reformulation of the algorithm to compute X7
by means of

e counters 4(s, ) for |Post(s) N Sim(s})|
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O(m - |S[?)-algorithm for computing <7 s
reformulation of the algorithm to compute X7

by means of

e counters 4(s, ) for |Post(s) N Sim(s})|

e aset V that organizes all pairs (s], 52)
where (s, 5) =0
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD

0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D

0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}

0D



FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D

V= {(s1, %) : (s1, %2) = 0}
WHILE V # & DO

0D



FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}
WHILE V # @ DO

choose (s1,5) € V and remove (s;, s,) from V

0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}
WHILE V # @ DO

choose (s1,5) € V and remove (s;, s,) from V

FOR ALL s; € Pre(s]) with s, € Sim(s;) DO

Sim(sy) := Sim(s) \ {s2}

0D
0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}
WHILE V # @ DO
choose (s1,5) € V and remove (s;, s,) from V
FOR ALL s; € Pre(s]) with s, € Sim(s;) DO
Sim(s) := Sim(s) \ {s2}
FOR ALL w € Pre(s;) DO

0D
0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}
WHILE V # @ DO

choose (s1,5) € V and remove (s;, s,) from V

FOR ALL s; € Pre(s]) with s, € Sim(s;) DO
Sim(s) := Sim(s) \ {s2}
FOR ALL w € Pre(s;) DO
0(s1, ) :=0(51, ) — 1

0D
0D

170 /122



FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V:i=A{(s1,%) : é(s1, ) = 0}
WHILE V # @ DO

choose (s1,5) € V and remove (s;, s,) from V

FOR ALL s; € Pre(s]) with s, € Sim(s;) DO
Sim(s) := Sim(s) \ {s2}
FOR ALL w € Pre(s;) DO
0(s1, ) :=0(51, ) — 1

IF 6(s1,u2) =0 THEN insert (s, ) in V FI
0D
0D
0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
V= {(s1, %) : §(s1, %) = 0}
WHILE V # @ DO
choose (s1,5) € V and remove (s1,s) from V
FOR ALL s; € Pre(s;) with s, € Sim(s;) DO
Sim(sy) := Sim(s1) \ {2}
FOR ALL w, € Pre(s;) DO
0(s1, ) :=0(s1, ) — 1
DIF 0(s1, u2) =0 THEN insert (s1,p) in V FI

g
o

0D
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D
Vi=A{(s1,%) : 6(s1, ) = 0}
WHILE V # @ DO

choose (s1,5) € V and remove (s1,s) from V

FOR ALL s; € Pre(s;) with s, € Sim(s;) DO

Sim(sy) := Sim(s1) \ {2}

FOR ALL w, € Pre(s;) DO
0(s1, ) :=0(s1, ) — 1

in total:

O(m-|S])

IF 6(s1, ) =0 THEN insert (s3, ) in V FI
D

0D

g
o
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D

Vi={(s1, ) : 8(s1, ) = 0}
WHILE V # & DO

choose (s1,5) € V and remove (s1,s) from V
FOR ALL s; € Pre(s;) with s, € Sim(s;) DO
Sim(s1) := Sim(s1) \ {52}

()]
(-}
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D

Vi={(s1, ) : 8(s1, ) = 0}
WHILE V # & DO

choose (s1,5) € V and remove (s1,s) from V
FOR ALL s; € Pre(s;) with s, € Sim(s;) DO

Sim(s1) := Sim(s1) \ {s2} cost per iteration
O(m)

()]
(-}
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FOR ALL s, € SDO Sim(sy) :={s: L(s1) = L(s,)} OD
FOR ALL s{,5 DO (s}, s;) := |Post(s,) N Sim(s{)| 0D

Vi=A{(s1,%) : §(s1, ) = 0}

WHILE V # @ DO «—| Htiterations < |S[?

choose (s1,5) € V and remove (s1,s) from V
FOR ALL s; € Pre(s;) with s, € Sim(s;) DO

Sim(s1) := Sim(s1) \ {s2} cost per iteration
O(m)

()]
(-}
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke

relies on the following observations:
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke

relies on the following observations:

e suppose s; — s; and sp — sj are transitions s.t.
sy € Sim(s) and s, € Sim(sy).
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke

relies on the following observations:

e suppose s; — s; and sp — sj are transitions s.t.
sy € Sim(s) and s, € Sim(sy).

e suppose that s will be removed from Sim(s;).
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke

relies on the following observations:

e suppose s; — s; and sp — sj are transitions s.t.
sy € Sim(s) and s, € Sim(sy).

e suppose that s will be removed from Sim(s;).

Then: if Post(s;) N Sim(s;) = {s5} then 51 A s
and s can be removed from Sim(s;).
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An O(m - |S]|)-algorithm for computing <7 s

. algorithm by Henzinger, Henzinger, and Kopke

relies on the following observations:

e suppose s; — s; and sp — sj are transitions s.t.
sy € Sim(s) and s, € Sim(sy).

e suppose that s will be removed from Sim(s;).

Then: if Post(s;) N Sim(s;) = {s}} then s A 5

and s can be removed from Sim(s;).
T

idea: collect all such states s, in Remove(s;)
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simy4(sy)) \ Pre(Sim(sy))

from Sim(s;).
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simya(s;)) \ Pre(Sim(s;))
from Sim(sy). l.e., we put
Simyig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s])
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simya(s;)) \ Pre(Sim(s;))
from Sim(sy). l.e., we put
Simgig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s;)

s

Simo,d(s{)
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simya(s;)) \ Pre(Sim(s;))
from Sim(sy). l.e., we put
Simyig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s])
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simya(s;)) \ Pre(Sim(s;))
from Sim(sy). l.e., we put
Simyig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s])
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simya(s;)) \ Pre(Sim(s;))
from Sim(sy). l.e., we put
Simgig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s;)

Remove(s;)
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simy4(sy)) \ Pre(Sim(sy))

from Sim(sy). l.e., we put

Simgig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s;)

=\ Sim(s,
Simo,d(s{)

Remove(s;)
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simy4(sy)) \ Pre(Sim(sy))

from Sim(sy). l.e., we put

Simgig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s;)

o)
.'

Remove(s;)

Post(s,)
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Idea of the HHK-algorithm GRMS.5-364

If s) is removed from Sim(s;) then regard all direct
predecessors s of s; and remove all states in

Remove(s;) = Pre(Simy4(sy)) \ Pre(Sim(sy))

from Sim(sy). l.e., we put

Simgig(sy) := Sim(s;)
Sim(s1) := Sim(s;) \ Remove(s;) for s; € Pre(s;)

o)
.'

Remove(s;)

s1 AT 9
Post(s,)
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoa(sy) =S
Sim(s)) == {s, € S : L(s)) = L(s}) }

0D
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HHK-algorithm (first version) GRS.5-365
FOR ALL states s; DO
Simoi(sy) ;== S
Sim(sy) := {sy € S: L(s)) = L(s3) }

0D
WHILE 3 state s; with Sim(s]) # Sim(s;) DO
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(sy) .= {s € S : L(s]) = L(5) }

0D

WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(sy) .= {s € S : L(s]) = L(5) }

0D

WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;

Remove(sy) := Pre(Simyi4(sy)) \ Pre(Sim(s}));
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(sp) == { € S : L(s}) = L(5) }

0D

WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;
Remove(s;)) := Pre(Simy4(sy)) \ Pre(Sim(s}));
FOR ALL s € Pre(s]) DO
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(s}) == {s} € S: L(s}) = L(s}) }
0D
WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;
Remove(s;)) := Pre(Simy4(sy)) \ Pre(Sim(s}));
FOR ALL s € Pre(s]) DO
Sim(s;) := Sim(s;) \ Remove(s;)
0D ;
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(s}) == {s} € S: L(s}) = L(s}) }
0D
WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;
Remove(s;)) := Pre(Simy4(sy)) \ Pre(Sim(s}));
FOR ALL s € Pre(s]) DO
Sim(s;) := Sim(s;) \ Remove(s;)
0D ;
Simgg(sy) := Sim(s;)
0D
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO
Simoi(sy) ;== S
Sim(s}) == {s} € S: L(s}) = L(s}) }
0D
WHILE 3 state s; with Sim(s]) # Sim(s;) DO
choose such a state s{;
Remove(s;)) := Pre(Simy4(sy)) \ Pre(Sim(s}));
FOR ALL s € Pre(s]) DO
Sim(s;) := Sim(s;) \ Remove(s;)
0D ;
Simgg(sy) := Sim(s;)
0D

return {(s1,3) : s5 € Sim(s)}
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HHK-algorithm (first version) GRS.5-365

FOR ALL states s; DO if s is terminal then so is s
Simoi(sy) ;== S )
Sim(sy) :== {s} € S : L(s}) = L(s) and .7 }

0D

WHILE 3 state s; with Sim(s{) # Sim(s;) DO
choose such a state s{;

Remove(s;)) := Pre(Simy4(sy)) \ Pre(Sim(s}));
FOR ALL s € Pre(s]) DO
Sim(s;) := Sim(s;) \ Remove(s;)
0D ;
Simgg(sy) := Sim(s;)
0D

return {(s1,3) : s5 € Sim(s)}
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HHK-algorithm (first version) GrS.5-360

FOR ALL states s; DO
Simgi(sy) = "undefined”
Sim(sy) :== {s) € s: L(s}) = L(s}) and ... }
0D
WHILE 3 state s; with Sim(s]) # Simy4(s]) DO
choose such a state s]
IF Simgg(s)) = "undefined”
THEN Remove(s;) := S \ Pre(Sim(s}))
ELSE Remove(s;) := Pre(Sim,4(s;)) \ Pre(Sim(s;))
FI
FOR ALL s € Pre(s;) DO
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Example: HHK-algorithm GRMS.5-37

S1 S 53

us
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Example: HHK-algorithm GRMS.5-37
S1 S s3 initially:
Simgig(t) = L for all states t

Sim(s1) = {s1, %, 3}
v ws Wy
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Example: HHK-algorithm GRMS.5-37
S1 S s3 initially:
Simgig(t) = L for all states t

Sim(s1) = {s1, %, 3}
v ws Wy

choose state s; = v with Simgg(v) # Sim(v):
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Example: HHK-algorithm GRMS.5-37
S1 S s3 initially:
Simgig(t) = L for all states t

Sim(s1) = {s1, s, s3}
v ws Wy

choose state s; = v with Simgg(v) # Sim(v):
Remove(v) = S \ Pre(Sim(v)) =S\ {1}
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Example: HHK-algorithm GRMS.5-37

S1 S s3 initially:
f Simgig(t) = L for all states t
2 .
Sim(sy) = {s1, 2, s3}
v ws Wo

choose state s; = v with Simgg(v) # Sim(v):

Remove(v) = S\ Pre(Sim(v)) =S\ {u}
Sim(uvy) := Sim(u) \ Remove(v) = {u}
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Example: HHK-algorithm GRMS.5-37

S1 S s3 initially:
Simgig(t) = L for all states t
Sim(s1) = {s1, %, s3}

v ws Wy
choose state s; = v with Simgg(v) # Sim(v):
Remove(v) = S \ Pre(Sim(v)) =S\ {1}
Sim(uvy) := Sim(u) \ Remove(v) = {u}

1

up — v can't be simulated by any
of the states in Remove(v)
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Example: HHK-algorithm GRM5 537
S1 S s3 initially:
Simgig(t) = L for all states t
Sim(sy) = {s1, %, s3}
v wy wy :
choose state s; = v with Simgg(v) # Sim(v):

Remove(v) = S\ Pre(Sim(v)) =S\ {u}
Sim(uvy) := Sim(u) \ Remove(v) = {u}
Simgig(v) := Sim(v) = {v}
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Example: HHK-algorithm GRMS.5-37

S1 S s3 initially:
f Simgig(t) = L for all states t
2 .
Sim(sy) = {s1, 2, s3}
v ws Wo

choose state s; = v with Simgg(v) # Sim(v):

Remove(v) = S\ Pre(Sim(v)) =S\ {u}
Sim(uvy) := Sim(u) \ Remove(v) = {u}
Simgig(v) := Sim(v) = {v}

choose next state s;
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Example: HHK-algorithm GRMS.5-37

S1 S s3 initially:
f Simgig(t) = L for all states t
2 .
Sim(sy) = {s1, 2, s3}
v ws Wo

choose state s; = v with Simgg(v) # Sim(v):
Remove(v) = S \ Pre(Sim(v)) =S\ {1}
Sim(u) = Sim(u) \ Remove(v) = {u;}
Simgig(v) := Sim(v) = {v}

choose next state s; = s with Simy4(s1) # Sim(s):

no change in Sim(...), as Pre(s;) = @

210/122



Example: HHK-algorithm GRAS.5-38

S1 L) s3 initially:
Simig(t) = L for all states t
Sim(sy) = {s1, %, s3}
v wy wy :
s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}
s, = si: Simy4(s;) = Sim(s;) = {s1, 52, s3}
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Example: HHK-algorithm GRAS.5-38

S1 L) s3 initially:
Simig(t) = L for all states t
1)) .
Sim(sy) = {s1, 2, s3}
v ws Wy :

s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}
s1 = si: Simga(si) = Sim(s;) = {s1, 5, s3}

choose next state s; = uy with Simgy(uy) # Sim(w):
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Example: HHK-algorithm GRAS.5-38

S1 L) s3 initially:
Simig(t) = L for all states t
Sim(sy) = {s1, %, s3}
v wy wy :
s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}
s, = si: Simy4(s;) = Sim(s;) = {s1, 52, s3}

choose next state s; = uy with Simgy(uy) # Sim(w):
Remove(u) = S \ Pre(Sim(wt)) =
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Example: HHK-algorithm GRAS.5-38

S1 L) s3 initially:
Simig(t) = L for all states t
Sim(sy) = {s1, %, s3}
v wy wy :
s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}
s, = si: Simy4(s;) = Sim(s;) = {s1, 52, s3}

choose next state s; = uy with Simgy(uy) # Sim(w):
Remove(u) = S\ Pre(Sim(u1)) = S\ {s1, 2}
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Example: HHK-algorithm GRAS.5-38

S1 L) s3 initially:
Simig(t) = L for all states t
1)) .
Sim(sy) = {s1, 2, s3}
"4 wi wy :

s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}

s, = si: Simyyg(s;) = Sim(s;) = {s1, 5, 53}

choose next state s; = uy with Simgy(uy) # Sim(w):
Remove(u) = S\ Pre(Sim(u1)) = S\ {s1, 2}
Sim(s1) := Sim(s1) \ Remove(u) = {s1, 52}
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Example: HHK-algorithm GRAS.5-38
S1 L) s3 initially:
Simig(t) = L for all states t

Sim(s1) = {s1, s, s3}
v ws Wy :

s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}

s, = si: Simyyg(s;) = Sim(s;) = {s1, 5, 53}

choose next state s; = uy with Simgy(uy) # Sim(w):
Remove(u) = S\ Pre(Sim(u1)) = S\ {s1, 2}
Sim(s1) := Sim(s1) \ Remove(u) = {s1, 52}

sy — uy can't be simulated by any state t € Remove(u)
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Example: HHK-algorithm GRAS.5-38
S1 L) s3 initially:
Simig(t) = L for all states t

Sim(s1) = {s1, s, s3}
"4 wi wy :

s; = v: Sim(u) = {w}, Simgyg(v) = Sim(v) = {v}

s, = si: Simy4(s;) = Sim(s;) = {s1, 52, s3}

choose next state s; = uy with Simgy(uy) # Sim(w):
Remove(u) = S\ Pre(Sim(u1)) = S\ {s1, 2}
Sim(s1) := Sim(s1) \ Remove(u) = {s1, 52}
Sim(sp) := Sim(s,) \ Remove(uy) = {s1, 52}
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Example: HHK-algorithm GRAB.5-39

S1 S 53

initially:
- Sim(s;) = {s1, 2, s3}
v wi wh Sim(uz) = {ul, u2}

v: Sim(u) = {w}, Simyy(v) = Sim(v) = {v}
u: Sim(s;) = {s1, 2}, i=1,2, Simyg(tn) = Sim(uy) = {u}

choose state 57 = wy:
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Example: HHK-algorithm GRAB.5-39

51 2 B Jnitially:
- Sim(sy) = {s1, 2, 3}
v wi wh 5im(u2) = {ul, u2}

v: Sim(u) = {w}, Simyy(v) = Sim(v) = {v}
u: Sim(s;) = {s1, 2}, i=1,2, Simyg(tn) = Sim(uy) = {u}
choose state 57 = wy:

Remove(u,) = S\ Pre(Sim(uw,))
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Example: HHK-algorithm GRAB.5-39

S1 S 53

initially:
- Sim(s;) = {s1, 2, s3}
v wi wh Sim(uz) = {ul, u2}

v: Sim(u) = {w}, Simyy(v) = Sim(v) = {v}
u: Sim(s;) = {s1, 2}, i=1,2, Simyg(tn) = Sim(uy) = {u}
choose state 57 = wy:

Remove(u,) = S\ Pre(Sim(w,)) = S\ {s1, s, 3}
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Example: HHK-algorithm GRAB.5-39

S1 S 53

initially:
- Sim(s;) = {s1, 2, s3}
v wi wh Sim(uz) = {ul, u2}

v: Sim(u) = {w}, Simyy(v) = Sim(v) = {v}
u: Sim(s;) = {s1, 2}, i=1,2, Simyg(tn) = Sim(uy) = {u}
choose state 57 = wy:

Remove(u,) = S\ Pre(Sim(w,)) = S\ {s1, s, 3}
Sim(s;) := Sim(s,) \ Remove(w,) = {s1, 5}, i=1,2
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Example: HHK-algorithm GRAB.5-39

51 2 B Jnitially:
- Sim(sy) = {s1, 2, 3}
v wi wh Sim(uz) = {ul, u2}

v: Sim(u) = {w}, Simyy(v) = Sim(v) = {v}
u: Sim(s;) = {s1, 2}, i=1,2, Simyg(tn) = Sim(uy) = {u}
choose state 57 = wy:
Remove(u,) = S\ Pre(Sim(w,)) = S\ {s1, s, 3}
Sim(s;) := Sim(s,) \ Remove(w,) = {s1, 5}, i=1,2
Sim(s3) := Sim(s3) \ Remove(w,) = {s1, 5, 53}
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HHK-algorithm (second version) GRG.5-40
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HHK-algorithm (second version) GRG.5-40

e an O(m - |S|)-algorithm for computing <7
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HHK-algorithm (second version) GRG.5-40

e an O(m - |S|)-algorithm for computing <7

e relies on the techniques sketched so far
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HHK-algorithm (second version) GRG.5-40

e an O(m - |S|)-algorithm for computing <7
e relies on the techniques sketched so far

e but avoids the explicit use of the “old”
simulator sets Simy4(s),
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HHK-algorithm (second version) GRG.5-40

an O(m - |S|)-algorithm for computing <1
relies on the techniques sketched so far

but avoids the explicit use of the “old”
simulator sets Simy4(s),

adds dynamically elements to Remove(s)
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Loop invariant of the HHK-algorithm GRAS.5-40-100P
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Loop invariant of the HHK-algorithm GRAS.5-40-100P

(1) Sim(s;) 2 {s; € S: 5 =1 5}
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Loop invariant of the HHK-algorithm GRAS.5-40-100P

(1) Sim(s)) 2 {s; € S: 5 21 5}
(2) Remove(s]) C S\ Pre(Sim(s;)),
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Loop invariant of the HHK-algorithm GRAS.5-40-100P

(1) Sim(s)) 2 {s; € S: 5 21 5}
(2) Remove(s]) C S\ Pre(Sim(s;)),
i.e., for all s, € Remove(s;):

Post(s;) N Sim(s])) = @
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Loop invariant of the HHK-algorithm GRAS.5-40-100P

(1) Sim(s;) 2 {s; € S: 5 =1 5}
(2) Remove(s]) C S\ Pre(Sim(s;)),
i.e., for all s, € Remove(s;):

Post(s;) N Sim(s])) = @

hence: if s — s] then 5; A7 5
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Loop invariant of the HHK-algorithm GRAS.5-40-100P

(1) Sim(s;) 2 {s; € S: 5 =1 5}
(2) Remove(s;) C S\ Pre(Sim(sy)),
i.e., for all s, € Remove(s;):

Post(s;) N Sim(s])) = @
hence: if s — s then 51 A1 5,
(3) if s, € Sim(s;) and s; — s] then

e either Post(s,) N Sim(s}) # &
e or s, € Remove(s)
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Loop invariant of the HHK-algorithm  cuus 5401002

(1) Sim(s) 2 { €5 :5 =1 %}
(2) Remove(s;) C S\ Pre(Sim(sy))
(3) if s, € Sim(s1) and s; — s] then
e cither Post(s,) N Sim(s;) # @
e or s, € Remove(s;)
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Loop invariant of the HHK-algorithm  cuus 5401002

(1) Sim(s) 2 { €5 :5 =1 %}
(2) Remove(s;) C S\ Pre(Sim(sy))
(3) if s, € Sim(s1) and s; — s] then
e cither Post(s,) N Sim(s;) # @
e or s, € Remove(s;)

if Remove(s]) = @ for all states s; then by (3):
s € Sim(s1) A s; — s = Post(s,) N Sim(s]) # &
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Loop invariant of the HHK-algorithm  cuus 5401002

(1) Sim(s) 2 { €5 :5 =1 %}
(2) Remove(s;) C S\ Pre(Sim(sy))
(3) if s, € Sim(s1) and s; — s] then
e cither Post(s,) N Sim(s;) # @
e or s, € Remove(s;)

if Remove(s]) = @ for all states s] then by (3):
s € Sim(s1) A s; — s = Post(s,) N Sim(s]) # &
hence: {(s1,s5) : s, € Sim(s])} is a simulation
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Loop invariant of the HHK-algorithm

GRMS5.5-40-LOOP2

(1)
(2)

Sim(s;) 2 {s, € 5: 5 21 %}
Remove(s;) C S\ Pre(Sim(s}))
if s € Sim(s;) and s; — s then
e cither Post(s,) N Sim(s;) # @
e or s, € Remove(s;)

if Remove(s]) = @ for all states s] then by (3):

s € Sim(s1) A s; — s = Post(s,) N Sim(s]) # &

hence: {(s1,s5) : s, € Sim(s])} is a simulation

since =7 is the coarsest simulation, (1) yields:

s € Sim(sy) iff 5 X1 5
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HHK-algorithm (second version) GRS 5408

238 /122



HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sy) :={s; € 5 : L(s1) = L(s)}
0D
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO

Sim(sy) :={s; € 5 : L(s1) = L(s)}
0D Remove(sy) := S\ Pre(Sim(s}))
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO

Sim(sy) :={s; € 5 : L(s1) = L(s)}
0D Remove(sy) := S\ Pre(Sim(s}))

WHILE there exists a state s; with Remove(s]) # @ DO
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO

Sim(sy) :={s; € 5 : L(s1) = L(s)}
0D Remove(sy) := S\ Pre(Sim(s}))

WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO

Sim(sy) :={s; € 5 : L(s1) = L(s)}
0D Remove(sy) := S\ Pre(Sim(s}))

WHILE there exists a state s; with Remove(s]) # @ DO

choose such a state s|
FOR ALL s, € Remove(s;) DO
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sy) := {s; € 5 : L(s1) = L(s)}
oD Remove(sy) := S\ Pre(Sim(s;))
WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sp) := {s; € S : L(s1) = L()}
oD Remove(s;) := S\ Pre(Sim(sy))
WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
IF s, € Sim(s;) THEN
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sp) := {s; € S : L(s1) = L()}
oD Remove(sy) := S\ Pre(Sim(s;))
WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
IF s, € Sim(s,) THEN
Sim(s;) := Sim(s1) \ {2}
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sp) := {s; € S : L(s1) = L()}
oD Remove(sy) := S\ Pre(Sim(s;))
WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
IF s, € Sim(s;) THEN
Sim(s) := Sim(s1) \ {s2}
Remove(s;) := Remove(s;) U

op 15 € Pre(s) : Post(s) N Sim(s1) = @} FI
0D
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HHK-algorithm (second version) GRG.5-408

FOR ALL states s; DO
Sim(sp) := {s; € S : L(s1) = L()}
oD Remove(sy) := S\ Pre(Sim(s;))
WHILE there exists a state s; with Remove(s]) # @ DO
choose such a state s|
FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
IF s, € Sim(s;) THEN
Sim(s) := Sim(s1) \ {s2}
Remove(s;) := Remove(s;) U

op 15 € Pre(s) : Post(s) N Sim(s1) = @} FI
0D
pg Remove(s)) := 2
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U

FI {s € Pre(s,) : Post(s) N Sim(s;) = &}
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}

s Sim(s])

FI
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}

Sim(sl)

Sim(s})

/)

FI
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}

Sim(s)
Sim(s)
2 é@j Post(s,)

FI
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}

Sim(s)
Sim(s})
R <@ Post(s,)

FI
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}
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HHK-algorithm (second version) arS.5-400

choose such a state s} with Remove(s}) # &
FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s)) DO
IF s, € Sim(s;) THEN
Sim(s;) := Sim(s1) \ {2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}

t At s
s = J st i
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Termination of the HHK-algorithm GRAS.5-40A
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Termination of the HHK-algorithm GRAS.5-40A

for each pair (s, s1) of states: s, is inserted in
(and removed from) Remove(s;) at most once
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Termination of the HHK-algorithm GRAS.5-40A

for each pair (s, s1) of states: s, is inserted in
(and removed from) Remove(s;) at most once

IEF s, € Sim(sy) THEN
Sim(s,) := Sim(s)) \ {s2};
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s,) = &}

FI
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Termination of the HHK-algorithm GRAS.5-40A

for each pair (s, s1) of states: s, is inserted in
(and removed from) Remove(s;) at most once

IEF s, € Sim(sy) THEN
Sim(s,) := Sim(s)) \ {s2};
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s,) = &}

FI

if s is inserted in Remove(s;) then there exists a state s,
s.t. ...
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Termination of the HHK-algorithm GRAS.5-40A

for each pair (s, s1) of states: s, is inserted in
(and removed from) Remove(s;) at most once

IEF s, € Sim(sy) THEN
Sim(s,) := Sim(s)) \ {s2};
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s,) = &}

FI

if s is inserted in Remove(s;) then there exists a state s,
st. s— s and ...
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Termination of the HHK-algorithm GRAS.5-40A

for each pair (s, s1) of states: s, is inserted in
(and removed from) Remove(s;) at most once

IEF s, € Sim(sy) THEN
Sim(s,) := Sim(s)) \ {s2};
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s,) = &}

FI

if s is inserted in Remove(s;) then there exists a state s,
s.t. s = 5 and Post(s) N Sim(s;) = {s,} immediately
before s, has been removed from Sim(s;)
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Complexity of the HHK-algorithm GRMS.5-41
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Complexity of the HHK-algorithm GRMS.5-41

show that the HHK-algorithm can be realized in time:

O(m-|5|)

where m = number of edges

S = state space
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Complexity of the HHK-algorithm

show that the HHK-algorithm can be realized in time:

O(m-|5|)

where m =

S

m

2

number of edges

state space

|51

GRMb5.5-41
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Complexity of the HHK-algorithm GRMS.5-41

show that the HHK-algorithm can be realized in time:

O(m-|5|)

where m = number of edges
S = state space
m > |S|

and AP is fixed
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Complexity of the initialization
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Complexity of the initialization

FOR ALL states s; DO
Remove(s;) := S\ Pre(Sim(s;))
Sim(sy) := { s} € S : L(s]) = L(s}) and
if 55 is terminal then so is s;  }
0D
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Complexity of the initialization

FOR ALL states s; DO
Remove(s;) := S\ Pre(Sim(s;))
Sim(sy) := { s} € S : L(s]) = L(s}) and
if 55 is terminal then so is s;  }
0D

time complexity: O(|S| - AP) = O(|S])

(as in the bisimulation algorithms)
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Complexity of the while-loop
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Complexity of the while-loop

WHILE there exists a state s; with Remove(s]) # @& DO
choose such a state s;

FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s;) DO

IF s, € Sim(s;) THEN
Sim(sy) := Sim(sy) \ {s2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = &}
FI

0D
0D

Remove(s;) := &
DO
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Complexity of the while-loop

WHILE there exists a state s; with Remove(s]) # @& DO
choose such a state s;

FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s;) DO

IF s € Sim(s;) THEN
Sim(sy) := Sim(sy) \ {s2}
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = 2}
FI
0D
0D

Remove(s;) := &
DO
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Complexity of the while-loop

WHILE there exists a state s; with Remove(s]) # @& DO
choose such a state s;

FOR ALL s, € Remove(s;) DO
FOR ALL s € Pre(s;) DO
IF s, € Sim(s,) THEN : )
SiM(Sl) = Slm(sl) \ {52} I(g(t,(;ta:Sl)
Remove(s;) := Remove(s;) U
{s € Pre(s,) : Post(s) N Sim(s;) = 2}
FI
0D
0D

Remove(s;) := &
DO

272 /122



Complexity of the while-loop

WHILE there exists a state s; with Remove(s]) # @& DO
choose such a state s;

FOR ALL s, € Remove(s;) DO
FOR ALL s; € Pre(s;) DO
IF s, € Sim(s;) THEN ) _
ol = T ) '(;(t;t_a; o
Remove(s;) := Remove(s;) U
{s € Pre(sy) : Post(s) N Sim(s;) = &}
FI
0D
0D

Remove(s;) := &
DO
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Complexity of the while-loop

WHILE there exists a state s; with Remove(s]) # @& DO
choose such a state s;

FOR ALL s € Remove(s;) DO | i, total: O(m-|S))
FOR ALL s; € Pre(s]) DO
IF s, € Sim(s;) THEN in total:

Sim(sy) := Sim(s1) \ {s2} O(m- |$|)
Remove(s;) := Remove(s;) U
{s € Pre(sy) : Post(s) N Sim(s;) = &}
FI
0D
0D

Remove(s;) := &
DO
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Summary: linear vs. branching time GRAS 542
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Summary: linear vs. branching time

l[inear time

GRMb5.5-42

branching time

temporal
logic

LTL

CTL

implementation
relation

trace equivalence
trace inclusion

bisimulation
simulation
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Summary: linear vs. branching time GRAS 542

linear time branching time
temporal LTL CTL
logic PSPACE-complete in P
implementation trace equivalence bisimulation
relation trace inclusion simulation
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Summary: linear

vs. branching time

GRMb5.5-42

linear time branching time
temporal LTL CTL
logic PSPACE-complete in P

implementation
relation

trace equivalence
trace inclusion

PSPACE-complete

bisimulation
simulation

in P
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Summary: linear

vs. branching time

GRMb5.5-42

linear time branching time
temporal LTL CTL
logic PSPACE-complete in P

implementation

trace equivalence

bisimulation

relation trace inclusion simulation
PSPACE-complete in P
bisimulation ~: O(m - log|S|)

stutter bisimulation = or =®: O(m-|S|)

O(m - |5])

simulation <:
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THE END



