

Advanced Model Checking
 Summer term 2012

– Series 6 –

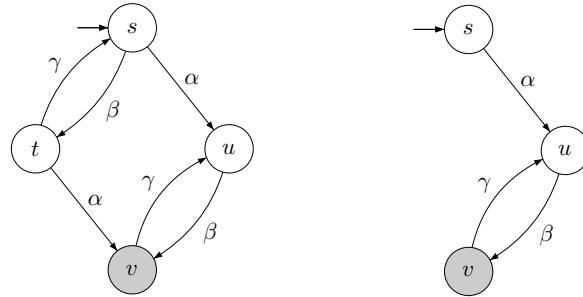
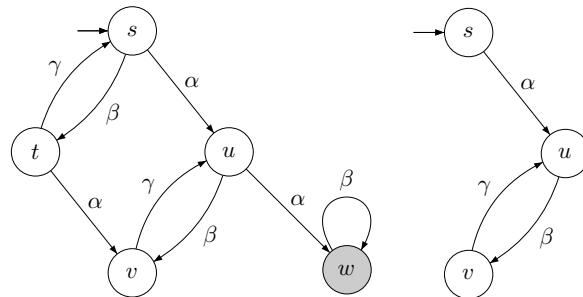
Hand in on June 6 before the exercise class.

Exercise 1

(3 points)

Figure 1 shows on its left a transition system TS and on its right a reduced system \hat{TS} that results from choosing $ample(s) = \{\alpha\}$. Check whether TS and \hat{TS} are stutter trace equivalent. If they are not, indicate which of the conditions (A1) – (A4) is (are) violated.

Answer the same question for the transition system in the reduction shown in Figures 2 and 3, where different colors indicate different state labels.


 Abbildung 1: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

 Abbildung 2: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

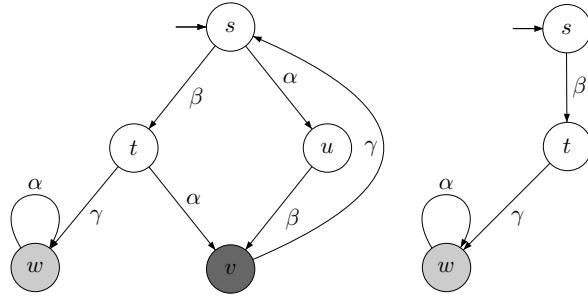
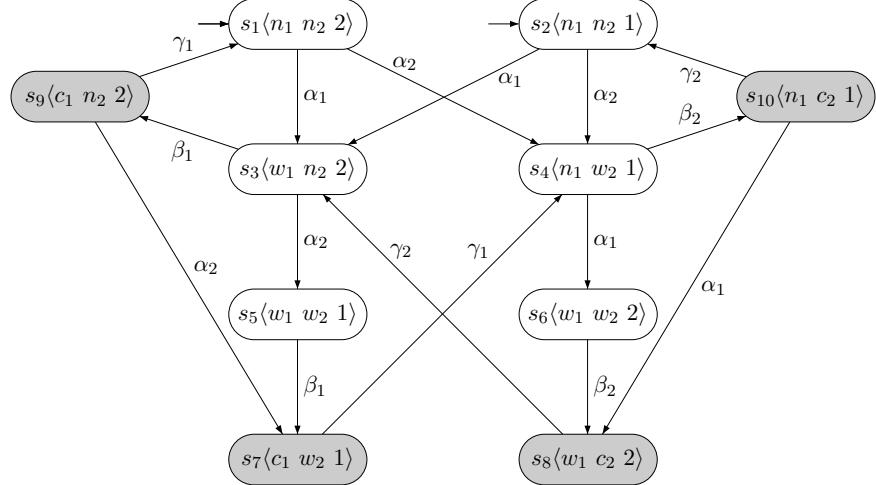


Abbildung 3: Transition system TS (left) and \hat{TS} (right) for the Exercise 1

Exercise 2 (3 points)

Consider the transition system TS_{Pet} for the Peterson mutual exclusion algorithm.

(For more details of the algorithm, cf. page 45-47 of the book.)



Questions:

- Which actions are independent?
- Apply the partial order reduction approach to TS_{Pet} with “small” ample sets according to Algorithm 38 (page 622 of the book) for checking the invariant “always $\neg(crit_1 \wedge crit_2)$ ”, where $AP = \{crit_1, crit_2\}$. Note that c_i in the figure is an abbreviation for $crit_i$.

Exercise 3 (2 points)

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i + 1, \dots, n$ be action-deterministic transition systems such that $Act_i \cap Act_j \cap Act_k = \emptyset$ if $1 \leq i < j < k \leq n$. We consider the parallel composition with synchronization over common actions, i.e. the transition system

$$TS = TS_1 \parallel TS_2 \parallel \dots \parallel TS_n.$$

For each states $s = \langle s_1, \dots, s_n \rangle$ of TS , let $Act_i(s) = Act_i \cap Act(s)$ be the set of actions of TS_i that are enabled in s .

Question:

Show that the dependency condition (A2) holds if for each state s of TS the following conditions (i) and (ii) holds:

- (i) If $ample(s) \neq Act(s)$, then $ample(s) = Act_i(s)$ for some $i \in \{1, \dots, n\}$.
- (ii) If $ample(s) = Act_i(s) \neq Act(s)$, then $ample(s) \cap (\bigcup_{1 \leq j \leq n, j \neq i} Act_j) = \emptyset$.

Exercise 4 (2 points)

For two transition systems TS (left) and \widehat{TS} (right) find the ample sets $ample(\cdot)$ which reduce TS to \widehat{TS} satisfy conditions (A1)-(A5).

