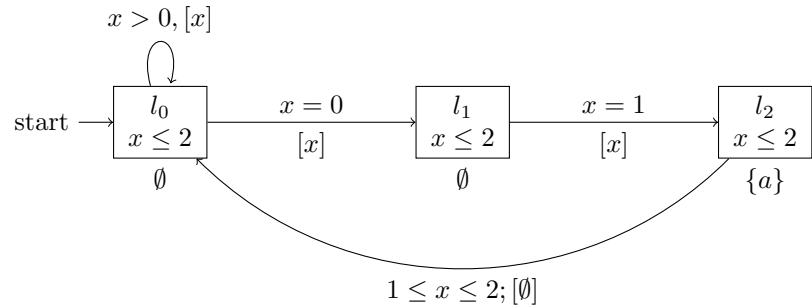


Advance Model Checking

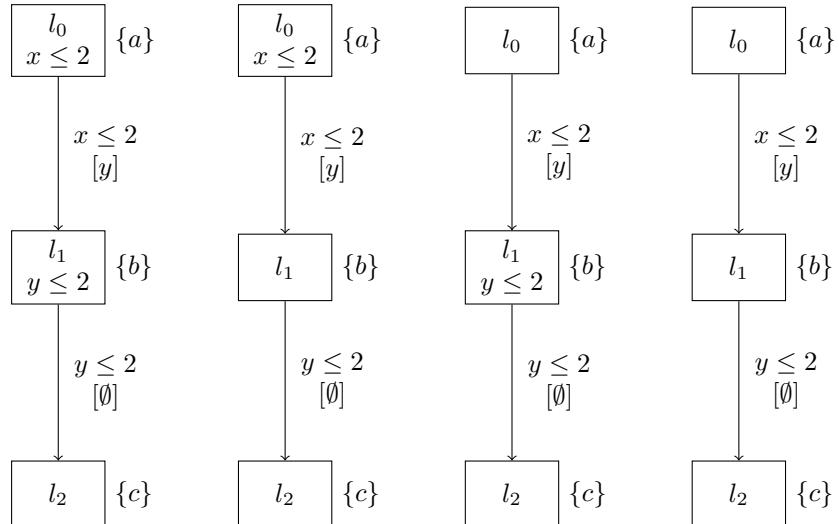

Ex-9: Submit on 4th of July.*

July 3, 2012

1 Region Graph Construction

(3 Points)

For the following TImed automaton TA:



1. Determine the region transition system $RTS(TA, \text{true})$.
2. Determine the set of states $Sat(\exists \lozenge^{<4} a)$.

2 Identify!

(2 Points)

Give TCTL formulas that identify the following timed automata.

**=

3 Stability

(3 Points)

Consider the transition system of a given timed automaton T . We have discrete transition between state as $\langle l, \eta \rangle \xrightarrow{t} \langle l', \eta' \rangle$ for $t = (l, g, X, l')$ where $\eta \models Inv(l) \wedge g, \eta' = resetX \text{ in } \eta$ and $\eta' \models Inv(l')$. We have a delay transition between states as $\langle l, \eta \rangle \xrightarrow{\delta} \langle l, \eta + \delta \rangle$ for $\delta \in \mathbb{R}_{\geq 0}$. We write $\langle l, \eta \rangle \xrightarrow{t, \delta} \langle l', \eta' \rangle$ for $\langle l, \eta \rangle \xrightarrow{\delta} \langle l, \eta + \delta \rangle \xrightarrow{t} \langle l', \eta' \rangle$.

We can construct the region automata R for T ¹. A transition in R $(l, r) \rightarrow (l', r')$, where l, l' are location of T , and r, r' are clock equivalent classes, is,

- **Pre-Stable:** If for every $\eta \in r$ there is a $\eta' \in r'$, $\delta \in \mathcal{R}_{\geq 0}$ s.t. $\langle l, \eta \rangle \xrightarrow{t, \delta} \langle l', \eta' \rangle$.
- **Post-Stable:** If for every $\eta' \in r'$ there is a $\eta \in r$, $\delta \in \mathcal{R}_{\geq 0}$ s.t. $\langle l, \eta \rangle \xrightarrow{t, \delta} \langle l', \eta' \rangle$.

Show that the transitions in the region automaton R are pre-stable but not necessarily post stable.

4 Distributive Property

(2 Points)

Prove or disprove,

$$\forall \Diamond^I \Phi \wedge \forall \Diamond^I \Psi = \forall \Diamond^I (\Phi \wedge \Psi)$$

Where I is an Interval.

5 Dead!

(Good Graces)

For an ordinary transition system, we have the following notion of fairness of runs and their logical characterization,

- **Unconditional Fairness:** $\Box \Diamond \Psi$.
- **Strong Fairness:** $\Box \Diamond \Phi \rightarrow \Box \Diamond \Psi$.
- **Weak Fairness:** $\Diamond \Box \Phi \rightarrow \Box \Diamond \Psi$.

where Φ stands for “some action is enabled” and Ψ means “Some action is taken”.

We define three kinds of dead lock state in timed automata,

- **Pure Action Lock:** A state cannot perform any action, but time can progress.
- **Timed Action Lock:** State can neither perform nor time can progress indefinitely.
- **Zeno time lock:** All infinite runs starting from the state are Zeno.

Find similar logical characterization for the above mentioned DEAD states. Give temporal formula to capture the various kind of dead locks.

¹ as per the construction in “The BOOK” pg 709 section 9.3,2