
Nachname: Mat-Nr:

Aufgabe 1: Multiple Choice (7 P.)

Kreuzen Sie die richtige Antwort an. Jede richtige Antwort ist einen Punkt wert, für jede falsche Antwort wird ein
Punkt abgezogen. Eine unbeantwortete Frage ist 0 Punkte wert. Die minimale Anzahl der zu erreichenden Punkte
ist 0.

(a) Für eine Sprache L gelte: ∃k ∈ IN so daß für jedes w ∈ L mit |w| > k gilt: es gibt eine Zerlegung w = xyz

mit | xy |≤ k und | y |> 0 und ∀i gilt xyiz ∈ L. Daraus folgt, daß L regulär ist. 2Ja 2Nein

Antwort: Nein. Das ist das Pumpinglemma verkehrtherum, aber die Aussage gilt dann nicht.

(b) Ist G eine kontextfreie Grammatik, so gilt: L(G) ist nicht regulär. 2Ja 2Nein

Antwort: Nein. Rechts- und linklineare Grammatiken sind auch kontextfrei, d.h. i.A erzeugen nicht alle
kontextfreien Grammatiken nicht-reguläre Sprachen.

(c) Ist G eine kontextfreie Grammatik, so gilt: Gibt es einen regulären Ausdruck α mit L(α) = L(G), so gibt es
eine linkslineare Grammatik G′ mit L(G) = L(G′). 2Ja 2Nein

Antwort: Jawohl, die Linkslinearen Grammatiken erkennen genau die regulären Sprachen, und durch α ist
L(G) regulär.

(d) Ist G eine kontextfreie Grammatik, so gilt: Gibt es keinen DEA M mit L(M) = L(G), so ist G nicht
linkslinear.

2Ja 2Nein

Antwort: Korrekt, denn wäre G linkslinear, wäre L(G) regulär, also gäbe es einen DEA M mit L(M) = L(G).

(e) Ist L eine reguläre, ε-freie Sprache und G eine Grammatik mit L = L(G), dann läßt sich G im Allgemeinen
nicht mit dem aus der Vorlesung bekannten Algorithmus in Greibach-Normalform bringen.

2Ja 2Nein

Antwort: Stimmt. Es gibt Typ-x-Grammatiken mit x = 0, 1, die nicht von Typ x = 2, 3 sind, die aber
dennoch reguläre Sprachen beschreiben. Für diese Grammatiken ist die Greibach-Normalform aber nicht
definiert, und der Algorithmus funktioniert darum nicht.

(f) Jede nicht-deterministische, kontextfreie Sprache ist immer inhärent mehrdeutig.
2Ja 2Nein

Antwort: Nein. Wes. Mehrdeutigkeit und Nichtdeterminismus haben nichts miteinander zu tun. Betrachte
z.B. Σ = {a1, . . . , an} und L = {wwR | w ∈ Σ∗}. Diese Sprache ist nichtdeterministisch, aber G = {S →
aiSai|ε, 1 ≤ i ≤ n}, ist eine eindeutige Grammatik mit L(G) = L.

(g) Kann man für eine gegebene kontextfreie Grammatik G, mit L(G) deterministisch, und eine durch einen
endlichen Automaten gegebene reguläre Sprache L1 entscheiden, ob L(G) = L1 ist?

2Ja 2Nein

Antwort: Ja. Das Leerheitsproblem für deterministisce kontextfreie Sprachen ist entscheidbar. Wenn L(G)∩
L1 = ∅ = L(G) ∩ L1, dann ist L(G) = L1.
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Aufgabe 2: Pumpinglemma für Kontextfreie Sprachen (3+5 P.)

(a) Zitieren Sie das Pumpinglemma für Kontextfreie Sprachen (nicht den Beweis).

(b) Zeigen Sie mit Hilfe des Pumpinglemmas für kontextfreie Sprachen, daß die Sprache L2 = {an
2

bn} ⊆ {a, b}∗

nicht kontextfrei ist.

Lösung

(a) Sei L eine cfl. Dann gibt es eine natürliche Zahl k sodaß sich jedes wort z mit |z| ≥ k (0.5 Pkt.) wie folgt
zerlegen lässt: z = uvwxy (0.5 Pkt.) und

(i) |vx| ≥ 1 (0.5 Pkt.)

(ii) |vwx| ≤ n (0.5 Pkt.)

(iii) uviwxiy ∈ L für alle i ≥ 0 (1 Pkt.).

(b) (klug gewähltes Wort: 1 Punkt) Wähle z.B. z = ak
2

bk. Mögliche Faktorisierungen: v = a · · · a, x = a · · · a
oder v = a · · ·a, x = b · · · b oder v = b · · · b, x = b · · · b. (Jede angegebene Faktorisierung je einen halben
Punkt, maximal 2 Punkte). Einzige sinnvolle Faktorisierung ist v = a · · · a, x = b · · · b. (Beweis, daß sich
diese Faktorisierung nicht pumpen läßt: 2 Punkte)

2
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Aufgabe 3: Ardens Lemma (5 P.)

Sei Σ ein Alphabet. Seien A, B, K, L1, L2 ⊆ Σ∗. Eine Verallgemeinerung von Ardens Lemma besagt: Wenn

AK ∪ B ⊆ K, dann istA∗B ⊆ K,

bzw. wenn
KA ∪ B ⊆ K, dann ist BA∗ ⊆ K.

Beweisen Sie mit diesem Satz die folgenden Aussage:

(L1 ∪ L2)
∗ ⊆ L∗

1(L2L
∗

1)
∗.

Hinweis: Wählen Sie geeignete A, B und K und beweisen Sie, daß die Vorraussetzung des verallgemeinerten Lemma
von Arden erfüllt ist.

Lösung

(Korrektes Patternmatching (K = L∗

1(L2L
∗

1)
∗, A = L1 + L2, B = {ε}) 2 Punkte Beweis dass vorraussetzung

Lemma stimmt 3 Punkte)
Setze K = L∗

1(L2L
∗

1)
∗, A = L1 ∪ L2 und B = {ε}, beweise, daß {ε} ∪ (L1 ∪ L2)K ⊆ K.

L1K ⊆ K

L2K ⊆ K also

(L1 ∪ L2)K ⊆ K

Ardens Lemma liefert den Rest.
2
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Aufgabe 4: Getränkeautomaten (4+10 P.)

In den folgenden beiden Aufgaben sollen Sie das Verhalten eines Getränkeautomaten m.H. von endlichen bzw.
Kellerautomaten modellieren. Das Verhalten wird in Prosa beschrieben, wobei reale Aktionen am Getränkeauto-
maten durch die Symbole des Alphabets abstrakt beschrieben werden sollen, z.B. Münzeneinwerfen durch M? 1,
Ausgabe von Kaffee durch Kaffee!1, usw. Die Zuordnung von Aktionen zu Symbolen wird im Text in Klammern
verdeutlicht.
Hinweis: Die Prosa-Spezifikation der Getränkeautomaten ist notwendigerweise unvollständig. Falls Ihr Automat
mehr kann als angegeben, ist das in Ordnung, solange es der Spezifikation nicht widerspricht.

Kommentieren Sie Ihre Lösungen.

(a) Ein Getränkeautomat mit Münzeinwurf hat die folgenden Eigenschaften:

• Für eine Münze (M? ) bekommt man Tee.

• Für zwei Münzen (M? ) bekommt man Kaffee.

• Der Automat kann nur zwei Münzen aufnehmen, danach ist der Münzschacht geschlossen.

• Jede Münze kann nur genau einmal für ein Getränk verwendet werden, und ist nach Benutzung aus dem
Getränkeautomaten verschwunden.

• Es gibt zwei Knöpfe, um Kaffee (KK?) oder Tee (KT ?) anzufordern. Befindet sich genug Geld im
Automaten, wird auf Knopfdruck das entsprechende Getränk (Tee! bzw. Kaffee!) ausgegeben.

• Sind die Münzen im Automaten aufgebraucht, geht der Automat in den Startzustand zurück.

Modellieren Sie den Getränkeautomaten als einen (nicht notwendigerweise vollständigen) deterministischen
minimalen endlichen Automaten, so daß die erkannte Sprache die Wörter aller vollständigen korrekten Ver-
kaufstransaktionen ist. Benutzen Sie das Alphabet

Σ = {M? , KK?, KT ?,Tee!,Kaffee!}.

1! und ? werden benutzt um zwischen Eingaben und Ausgaben des Getränkeautomaten zu unterscheiden. Sonst haben ! und ? keine

weitere Bedeutung.
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(b) Wir betrachten nun einen ähnlichen Getränkeautomaten, mit den folgenden Änderungen:

• Der Automat kann nun eine beliebige Anzahl von Münzen (M? ) aufnehmen. Je nach Knopfdruck und
Münzvorrat wird das entsprechende Getränk (Tee! bzw. Kaffee!) ausgegeben.

• Wenn der Knopf Kε? einmal gedrückt wird, werden alle unverbrauchten Münzen, eine nach der anderen,
wieder zurückgegeben (M! ). Wärend der Ausgabe von Münzen nimmt der Automat keine weiter Münzen
an.

Definieren Sie einen Kellerautomaten über das Eingabealphabet Σ ∪ {Kε?,M!} und einem Stackalphabet Γ
Ihrer Wahl, der das beschriebene Verhalten modelliert. Die Sprache, die erkannt werden soll, ist wieder die
Menge aller vollständigen korrekten Verkaufstransaktionen inklusive Rückgabe überzähliger Münzen.

Lösung

Das problem an dieser Aufgabe ist, daß die Spezifikation nicht eindeutig ist. Somit gibt es verschiedene Akzep-
tanzmöglichkeiten: ein wort wird akzeptiert, wenn keine Münze mehr im Automat ist. Oder es wird akzeptiert, wenn
ein Getränk ausgegeben wurde. Insofern ist alles, was ungefähr korrekt aussieht, bepunktet worden. Punktabzug
z.B. wenn kein Tee angefordert werden kann, wenn sich nur eine Münze im Automat befindet.
Mögliche Lösungen:

(a)

M?

M?

Tee!

KT ?

KK?

Kaffee!

KT ?

Tee!

oder

M?

M?

Tee!

KT ?

KK?

Kaffee!

KT ?

KT ?

Tee!

Tee!

M?

(b) • korrekter kellerautomat 2 Pkt

• kan bel Anzahl Munzen aufnehmen 1 Pkt

• Gibt alle Muenzen nacheinander zurück auf keps 2 Pkt

• Check für 2 Münzen bei Kaffee korrekt 2 Pkt

• korrektes verhalten bei kaffee, wenn nur 1 Münze 2 Pkt

• korrektes verhalten bei tee 1 Pkt

Mögliche Lösung: Offensichtlich kann man beliebig viele Münzen einwerfen, und das wird schon als korrektes
Wort betrachtet. Auch das leere wort beschreibt korrektes verhalten.
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M, X |MX

M, M |ε

KT ?, M |ε

Tee!, X |X

Kε?, X |X ε, #|#

KK?, M |ε

ε, #|M#

Kaffee!, M |ε

Alternativ kann man als korrekte sequenz betrachten, was mit Kaffee!, Tee!, oder M! endet. Dafür muss man
also dann einen extra Zustand einführen, der als Endzustand fungiert.

2
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Aufgabe 5: Verkehrte Sprachen (5 P.)

Sei Σ ein Alphabet, und A = (Q, Σ, δ, Q0, F ) ein NEA. Ist L ⊆ Σ∗, so wird Sprache LR definiert durch LR =
{xnxn−1 · · ·x0 | x0 · · ·xn−1xn ∈ L}. Sei L = L(A). Wir definieren den (nicht notwendigerweise vollständigen) NEA
AR = (Q′, Σ, δ′, Q′

0, F
′), wobei

• Q′ = Q

• F ′ = Q0

• Q′

0 = F

• δ′(q, a) = {q′ | q ∈ δ(q′, a)}

Also alle Pfeile werden umgedreht, und Start- und Endzustandsmengen werden vertauscht.
Um zu beweisen Sie, daß L(AR) = LR, muss man zwei Richtungen zeigen:

(a) w ∈ L =⇒ wR ∈ L(AR)

(b) w ∈ L(AR) =⇒ wR ∈ L

Skizzieren2 Sie einen Beweis für eine der beiden Richtungen.

Lösung

Wer die Testklausur geschrieben hat war klar im Vorteil: diese Aufgabe ist nur eine Variation von Aufgabe 6 der
Testklausur.
Wir haben zwei Richtungen zu zeigen: L(AR) ⊆ LR und LR ⊆ L(AR).

LR ⊆ L(AR): Falls w = x0x1x2 . . . xn ∈ L (also wR ∈ LR), xi ∈ Σ für i = 0, . . . n, dann gibt es einen Pfad
q0q1q2 . . . qn+1 durch A mit qi+1 ∈ δ(qi, xi), und q0 ∈ Q0, und qn+1 ∈ F . Nach der Definition von A′ gilt
ausserdem: qi ∈ δ′(qi+1, xi), für i = 0, . . . n. Also gibt es für wR einen Pfad qn+1qn · · · q0 in AR mit qn+1 ∈ Q′

0

und q0 ∈ F . Also ist wR ∈ L(AR).

L(AR) ⊆ LR: Der Beweis geht genauso.

• w akzeptiert dann gibt es pfad in automat 2 Pkt

• umgekehrter pfad in Ar mit start und endzustand vertauscht 2 Pkt

• also wr ∈ L(Ar) 1 Pkt

2

2Skizzieren heisst hier, daß Sie eine Beweisidee angeben, aber keinesfalls den Beweis bis zum Schluss durchführen.
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Aufgabe 6: Restklassen-Automaten (4+6+11 P.)

Sei Σ = {0,1}. Wir interpretieren Wörter w ∈ Σ∗ als Binärzahlen, und berechnen Dezimalzahlen aus w wie folgt:

• [w] = 0 falls w = ε

• [w] = 0 falls w = 0

• [w] = 1 falls w = 1

• [x · w] = [x] + 2[w] falls x ∈ {0,1} und w ∈ Σ+.

Beachten Sie, daß in dieser Interpretation die Ziffern in umgekehrter Reihenfolge zur gewöhnliche
Lesart betrachtet werden.

In den folgenden Aufgaben sollen Sie verschiedene endliche Automaten konstruieren. Wenden Sie dazu, wo nötig,
die Konstruktionen Ihrer Wahl an, wie z.B. für ∪,∩, ·̄, etc. Auch die Konstruktion der vorherigen Aufgabe für LR

kann sich als nützlich erweisen.

Erläutern Sie Ihre Konstruktionsschritte.

(a) Konstruieren Sie einen deterministischen, vollständigen, minimalen endlichen Automaten A1, der alle Wörter
w ∈ Σ∗ erkennt, so daß [w] durch 5 teilbar ist.
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(b) Konstruieren Sie einen deterministischen, vollständigen, minimalen endlichen Automaten A2, der alle Wörter
w ∈ Σ∗ erkennt, so daß [w] durch 4 teilbar ist.
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(c) Konstruieren Sie mit Hilfe von A1 und A2 einen deterministischen, vollständigen, minimalen endlichen Au-
tomaten A3, der alle Wörter w ∈ Σ∗ erkennt, so daß [w] durch 5 oder durch 4 teilbar ist.

Lösung

(a) Links ist der Automat für die most-significnt-bit-first -Interpretation (also der herkömlichen Interpretation)
von w. Diese ist einfacher zu konstruieren als der gewünschte Automat. Den Automaten A1 erhält man
dadurch, daß man alle Pfeile umdreht.

0

12

34

1

0

1

0

0

1

0
1

0

1

AR
1

0

12

34

1

0

1

0

0

1

0
1

0

1

A1

Glücklicherweise ist Automat A1 deterministisch und minimal, also sind wir schon fertig!

• Konstruktion von RKA gewohnt 2 Pkt

• umdrehen 2 Pkt

(b) Wir wenden denselben Trick an, also wir konstruieren zuerst AR
2 .

0

1

2

3

0

1
0

1

0

1

0

1
AR

2

0

1

2

3

0

1
0

1

0

1

0

1
A′

2

Die Konstruktion von A′

2 erfolgt wieder durch Umdrehen der Pfeile. A′

2 ist offensichtlich nicht determini-
stisch, und nicht vollständig. Darum müssen wir also den Automaten determinisieren, vervollständigen und
minimieren (man hätte auch erst AR

2 minimieren können, 1 und 3 sind äquivalent):
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{0}

Γ

{0, 2}

{0, 1, 2, 3}

0, 1

1 1

0

0

0, 1
A2

Offensichtlich ist ein Wort w nur genau dann durch 4 teilbar, wenn [w] = 0 oder w = 00w′. (Hätte man auch
gleich drauf kommen können).

• Konstruktion von RKA gewohnt 2

• umdrehen 2

• determinisierung 2

• Abkuerzung (alle wörter die aus 0en bestehen oder mit 00 anfangen) volle Punktzahl

(c) Wir nutzen aus, daß A ∪ B = A ∩ B (wir können natürlich auch die herkömliche Methode verwenden, aber
dann müssen wir noch determinisieren). Wir bilden also erst einen Automaten A1∩A2 und invertieren diesen
dann. Wir setzen A = {0, 1, 2, 3}.

(A, 0)

(A, 1)(A, 2)

(A, 3)(A, 4)

({0, 2}, 0) (Γ, 2)

({0}, 0)

0

0

1
0

1

1

0

0 10

1

1 (Γ, 0)

(Γ, 1)
1

0
1

(Γ, 3) (Γ, 4)

1
1 0

0

0

0

0

1

1

Es bietet sich an, den Automaten gleich hier zu minimieren, denn alle mit (A, ·) markierten Zustände sind
äquivalent:
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(A, 0) ({0, 2}, 0) (Γ, 2)

({0}, 0)

0

0
1

1 (Γ, 0)

(Γ, 1)
1

0
1

(Γ, 3) (Γ, 4)

1
1 0

0

0

0

0, 1

1

Der Automat ist nach wie vor deterministisch und vollständig. Der invertierte Automat is somit unser ge-
suchter Automat A3.

(A, 0) ({0, 2}, 0) (Γ, 2)

({0}, 0)

0

0
1

1 (Γ, 0)

(Γ, 1)
1

0
1

(Γ, 3) (Γ, 4)

1
1 0

0

0

0

0, 1

1

• vereinigungskonstruktion 2 Pkt

• determinisierung 3 Pkt

• minimierung 3 Pkt

• korrekt 3 Pkt

2
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