

A Quick Tour on LTL Model Checking

Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 22, 2006

Course topics

- **Linear-time and computation tree temporal logic (summary)**
 - syntax, semantics, model-checking algorithms, expressiveness
- **Equivalences and abstraction**
 - bisimulation, simulation, minimisation algorithms
 - stutter-bisimulation, stutter trace-equivalence, divergence
- **Partial-order reduction**
 - independence, ample set method, branching-time POR

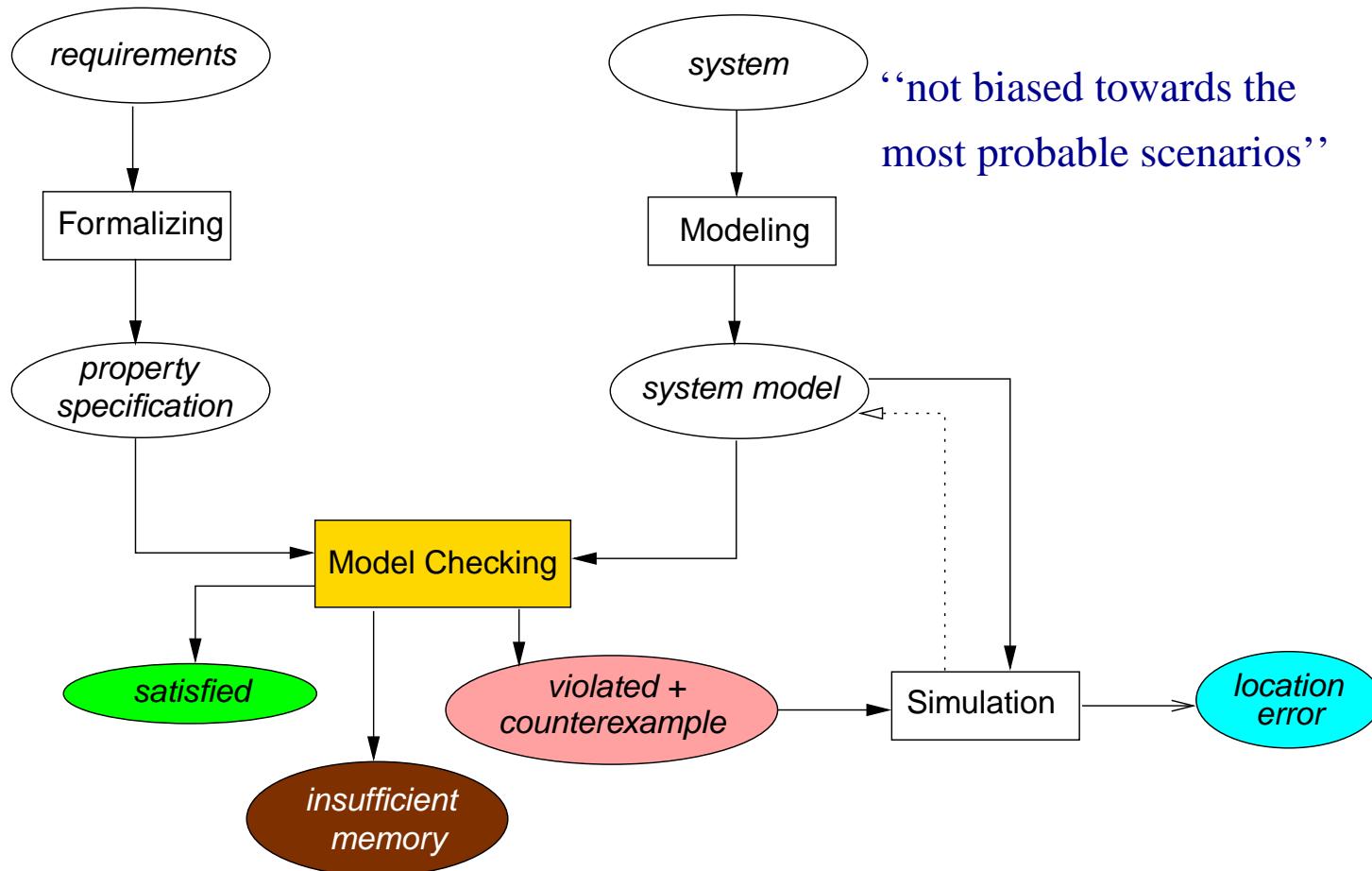
Course topics

- Reduced binary decision diagrams
 - Boolean functions, operations, CTL model checking with ROBDDs
- Timed automata
 - semantics, region equivalence, timed reachability, zone automata, DBMs
- Probabilistic model checking
 - Markov chains, probabilistic CTL, model-checking algorithms

Course organization

- **Lectures:** twice per week (AH4/AH1, Mon + Thu; check web-page!)
- **Exercises:** once per week (AH1, Fri)
 - marked exercises (50% of points needed + one example on board)
 - assistant: Tingting Han and Ivan Zapreev
- **Course material:**
 - draft book “Principles of Model Checking” (Baier & Katoen)
 - find flaws? please report them on WIKI-page
 - one set of exercises waived if you find most flaws in some chapter
- **Exam:** exam at end of WS 2006/07

Model checking overview



Transition system

A *transition system* TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of **states**
- Act is a set of **actions**
- $\rightarrow \subseteq S \times Act \times S$ is a **transition relation**
- $I \subseteq S$ is a set of **initial states**
- AP is a set of **atomic propositions**
- $L : S \rightarrow 2^{AP}$ is a **labeling function**

S and Act are either finite or countably infinite

Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \rightarrow$

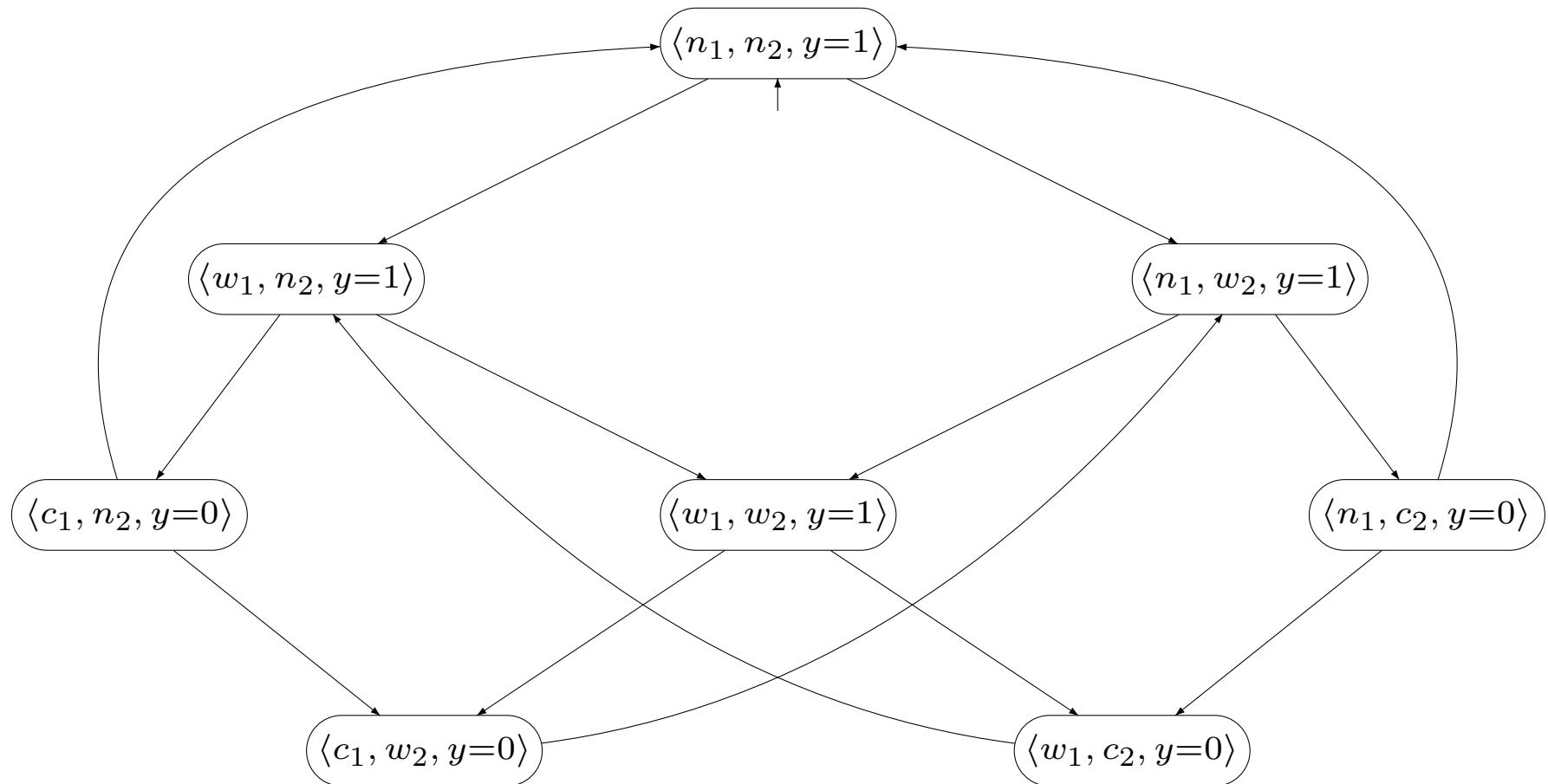
Paths

- An *infinite path fragment* π is an infinite state sequence:

$s_0 s_1 s_2 \dots$ such that $s_i \in \text{Post}(s_{i-1})$ for all $i > 0$

- Notations for path fragment $\pi = s_0 s_1 s_2 \dots$:
 - *first*(π) = $s_0 = \pi[0]$; let $\pi[j] = s_j$ denote the j -th state of π
 - j -th prefix $\pi[..j] = s_0 s_1 \dots s_j$ and j -th suffix $\pi[j..] = s_j s_{j+1} \dots$
- A *path* of TS is an initial, maximal path fragment
 - a *maximal* path fragment is either finite ending in a terminal state, or infinite
 - a path fragment is *initial* if $s_0 \in I$
- $\text{Paths}(s)$ is the set of maximal path fragments π with *first*(π) = s

A mutual exclusion algorithm



Traces

- Actions are mainly used to model the (possibility of) interaction
 - synchronous or asynchronous communication
- Here, focus on the states that are visited during executions
 - the states themselves are not “observable”, but just their atomic propositions
- Consider sequences of the form $L(s_0) L(s_1) L(s_2) \dots$
 - just register the (set of) atomic propositions that are valid along the execution
 - instead of execution $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \dots$
⇒ this is called a *trace*
- For a transition system without terminal states:
 - traces are infinite words over the alphabet 2^{AP} , i.e., they are in $(2^{AP})^\omega$

Traces

- Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system **without terminal states**
- The *trace* of path fragment $\pi = s_0 s_1 \dots$ is $trace(\pi) = L(s_0) L(s_1) \dots$
 - the trace of $\widehat{\pi} = s_0 s_1 \dots s_n$ is $trace(\widehat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$.
- The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$
- $Traces(s) = trace(Paths(s))$ $Traces(TS) = \bigcup_{s \in I} Traces(s)$
- $Traces_{fin}(s) = trace(Paths_{fin}(s))$ $Traces_{fin}(TS) = \bigcup_{s \in I} Traces_{fin}(s)$

Linear-time properties

- Linear-time properties specify the traces that a TS must exhibit
 - LT-property specifies the admissible behaviour of the system
 - later, a logical formalism will be introduced for specifying LT properties
- A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^\omega$
 - finite words are not needed, as it is assumed that there are no terminal states
- TS (over AP) *satisfies* LT-property P (over AP):

$$TS \models P \quad \text{if and only if} \quad \text{Traces}(TS) \subseteq P$$

- TS satisfies the LT property P if all its “observable” behaviors are admissible

Linear temporal logic

modal logic over infinite sequences [Pnueli 1977]

- **Propositional logic**

- $a \in AP$ atomic proposition
- $\neg\phi$ and $\phi \wedge \psi$ negation and conjunction

- **Temporal operators**

- $\bigcirc \phi$ neXt state fulfills ϕ
- $\phi U \psi$ ϕ holds Until a ψ -state is reached

- **Auxiliary temporal operators**

- $\diamond \phi \equiv \text{true} U \phi$ eventually ϕ
- $\square \phi \equiv \neg \diamond \neg \phi$ always ϕ

Derived operators

$$lcl\phi \wedge \psi \equiv \neg(\neg\phi \vee \neg\psi)$$

$$\phi \Rightarrow \psi \equiv \neg\phi \vee \psi$$

$$\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \wedge (\psi \Rightarrow \phi)$$

$$\phi \oplus \psi \equiv (\phi \wedge \neg\psi) \vee (\neg\phi \wedge \psi)$$

$$\mathbf{true} \equiv \phi \vee \neg\phi$$

$$\mathbf{false} \equiv \neg\mathbf{true}$$

$$\diamond \phi \equiv \mathbf{true} \mathbf{U} \phi \quad \text{"sometimes in the future"}$$

$$\Box \phi \equiv \neg \diamond \neg \phi \quad \text{"from now on for ever"}$$

Example properties expressed in LTL

Semantics over words

The LT-property induced by LTL formula φ over AP is:

$Words(\varphi) = \left\{ \sigma \in (2^{AP})^\omega \mid \sigma \models \varphi \right\}$, where \models is the smallest relation satisfying:

$$\sigma \models \text{true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$$

$$\sigma \models \varphi_1 \wedge \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \dots \models \varphi$$

$$\sigma \models \varphi_1 \mathbf{U} \varphi_2 \quad \text{iff} \quad \exists j \geq 0. \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, 0 \leq i < j$$

Semantics over paths and states

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP .

- For infinite path fragment π of TS :

$$\pi \models \varphi \quad \text{iff} \quad \text{trace}(\pi) \models \varphi$$

- For state $s \in S$:

$$s \models \varphi \quad \text{iff} \quad \forall \pi \in \text{Paths}(s). \pi \models \varphi$$

- TS satisfies φ , denoted $TS \models \varphi$, if $\text{Traces}(TS) \subseteq \text{Words}(\varphi)$

Semantics for transition systems

 $TS \models \varphi$

iff (* transition system semantics *)

 $Traces(TS) \subseteq Words(\varphi)$

iff (* definition of \models for LT-properties *)

 $TS \models Words(\varphi)$

iff (* Definition of $Words(\varphi)$ *)

 $\pi \models \varphi \text{ for all } \pi \in Paths(TS)$

iff (* semantics of \models for states *)

 $s_0 \models \varphi \text{ for all } s_0 \in I$.

Equivalence

LTL formulas ϕ, ψ are *equivalent*, denoted $\phi \equiv \psi$, if:

$$\text{Words}(\phi) = \text{Words}(\psi)$$

Important equivalences

Duality:

$$\begin{aligned}\neg \Box \phi &\equiv \Diamond \neg \phi \\ \neg \Diamond \phi &\equiv \Box \neg \phi \\ \neg \bigcirc \phi &\equiv \bigcirc \neg \phi\end{aligned}$$

Idempotency:

$$\begin{aligned}\Box \Box \phi &\equiv \Box \phi \\ \Diamond \Diamond \phi &\equiv \Diamond \phi \\ \phi \mathbf{U} (\phi \mathbf{U} \psi) &\equiv \phi \mathbf{U} \psi\end{aligned}$$

Absorption:

$$\begin{aligned}\Diamond \Box \Diamond \phi &\equiv \Box \Diamond \phi \\ \Box \Diamond \Box \phi &\equiv \Diamond \Box \phi\end{aligned}$$

Distribution:

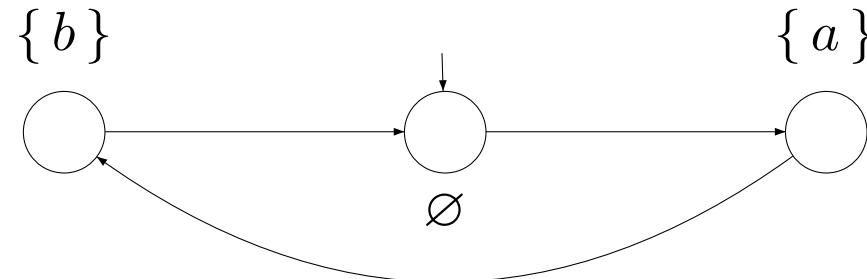
$$\bigcirc (\phi \mathbf{U} \psi) \equiv (\bigcirc \phi) \mathbf{U} (\bigcirc \psi)$$

Expansion:

$$\begin{aligned}\phi \mathbf{U} \psi &\equiv \psi \vee (\phi \wedge \bigcirc (\phi \mathbf{U} \psi)) \\ \Diamond \phi &\equiv \phi \vee \bigcirc \Diamond \phi \\ \Box \phi &\equiv \phi \wedge \bigcirc \Box \phi\end{aligned}$$

Distributive laws

$$\diamond(a \wedge b) \not\equiv \diamond a \wedge \diamond b \quad \text{and} \quad \square(a \vee b) \not\equiv \square a \vee \square b$$



LTL model-checking problem

Given finite transition system TS and LTL-formula φ :
yields “yes” if $TS \models \varphi$, and “no” (plus a counterexample) if $TS \not\models \varphi$

Automata for LTL formulas

Büchi automata

A *nondeterministic Büchi automaton* (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an *alphabet*
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a *transition function*
- $F \subseteq Q$ is a set of *accept* (or: final) states

The *size* of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

NBA and ω -regular languages

The class of languages accepted by NBA
agrees with the class of ω -regular languages

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA A , the language $\mathcal{L}_\omega(A)$ is ω -regular

ω -regular expressions

1. \emptyset and ε are regular expressions over Σ
2. if $A \in \Sigma$ then \underline{A} is a regular expression over Σ
3. if E , E_1 and E_2 are regular expressions over Σ
then so are $E_1 + E_2$, $E_1.E_2$ and E^*

E^+ is an abbreviation for the regular expression $E.E^*$

An ω -regular expression G over Σ has the form:

$$G = E_1.F_1^\omega + \dots + E_n.F_n^\omega \quad \text{for } n > 0$$

where E_i, F_i are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $0 < i \leq n$

NBA are more expressive than DBA

For finite automata, NFA and DFA are equally expressive
but for NBA this is no longer true:

There is no DBA that accepts $\mathcal{L}_\omega((A + B)^* B^\omega)$

Observation

$TS \models \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$

if and only if $Traces(TS) \cap ((2^{AP})^\omega \setminus Words(\varphi)) = \emptyset$

if and only if $Traces(TS) \cap \underbrace{Words(\neg\varphi)}_{\mathcal{L}_\omega(\mathcal{A}_{\neg\varphi})} = \emptyset$

if and only if $TS \otimes \mathcal{A}_{\neg\varphi} \models \Diamond \Box \underbrace{\bigwedge_{q \in F} \neg q}_{\neg F}$

LTL model checking is reduced to checking whether an accept state is visited in $TS \otimes \mathcal{A}_{\neg\varphi}$ infinitely often

Synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ an NBA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L') \quad \text{where}$$

- $S' = S \times Q$, $AP' = Q$ and $L'(\langle s, q \rangle) = \{ q \}$
- \rightarrow' is the smallest relation defined by:
$$\frac{s \xrightarrow{\alpha} \textcolor{red}{t} \wedge q \xrightarrow{L(\textcolor{red}{t})} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle \textcolor{red}{t}, p \rangle}$$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \wedge \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$

without loss of generality it may be assumed that $TS \otimes \mathcal{A}$ has no terminal states

Cycle detection

Let TS be a finite transition system without terminal states over AP ,

$$TS \not\models \diamond \square \Phi$$

if and only if

$$\exists s \in \text{Reach}(TS). s \not\models \Phi \wedge s \text{ is on a cycle in } TS$$

Nested depth-first search

- Idea: perform the two depth-first searches in an *interleaved* way
 - the outer DFS serves to encounter all reachable $\neg\Phi$ -states
 - the inner DFS seeks for backward edges leading to a $\neg\Phi$ -state
- *Nested DFS*
 - on full expansion of $\neg\Phi$ -state s in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s that are *unvisited* in the inner DFS so far
 - no backward edge to s ? continue the outer DFS (look for next $\neg\Phi$ state)
- *Counterexample generation*: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

Overview of LTL model checking



Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists an

NBA \mathcal{A}_φ over 2^{AP} such that:

- (a) $Words(\varphi) = \mathcal{L}_\omega(\mathcal{A}_\varphi)$
- (b) \mathcal{A}_φ can be constructed in time and space $\mathcal{O}(|\varphi| \cdot 2^{|\varphi|})$

⇒ every LTL-formula expresses an ω -regular property!

NBA are more expressive than LTL

There is **no** LTL formula φ with $Words(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \dots \in \left(2^{\{a\}}\right)^\omega \mid a \in A_{2i} \text{ for } i \geq 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = P$

⇒ *there are ω -regular properties that cannot be expressed in LTL!*

Complexity for LTL model checking

The time and space complexity of LTL model checking is in $\mathcal{O}(|TS| \cdot 2^{|\varphi|})$

On-the-fly LTL model checking

- Idea: find a counter-example *during* the generation of $\text{Reach}(\text{TS})$ and $\mathcal{A}_{\neg\varphi}$
 - exploit the fact that $\text{Reach}(\text{TS})$ and $\mathcal{A}_{\neg\varphi}$ can be generated in parallel
- ⇒ Generate $\text{Reach}(\text{TS} \otimes \mathcal{A}_{\neg\varphi})$ “on demand”
 - consider a new vertex only if no accepting cycle has been found yet
 - only consider the successors of a state in $\mathcal{A}_{\neg\varphi}$ that match current state in TS
- ⇒ Possible to find an accepting cycle *without generating $\mathcal{A}_{\neg\varphi}$ entirely*
- This **on-the-fly** scheme is adopted in e.g. the model checker SPIN