© JPK

A Quick Tour on LTL Model Checking
Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

October 22, 2006

Model checking

Course topics

e Linear-time and computation tree temporal logic (summary)

— syntax, semantics, model-checking algorithms, expressiveness

e Equivalences and abstraction

— bisimulation, simulation, minimisation algorithms
— stutter-bisimulation, stutter trace-equivalence, divergence

e Partial-order reduction

— independence, ample set method, branching-time POR

© JPK 1

Model checking

Course topics

e Reduced binary decision diagrams

— Boolean functions, operations, CTL model checking with ROBDDs

e Timed automata

— semantics, region equivalence, timed reachability, zone automata, DBMs

e Probabilistic model checking

— Markov chains, probabilistic CTL, model-checking algorithms

© JPK 2

Model checking

Course organization

e Lectures: twice per week (AH4/AH1, Mon + Thu; check web-page!)

e Exercises: once per week (AHL, Fri)

— marked exercises (50% of points needed + one example on board)
— assistent: Tingting Han and lvan Zapreev

e Course material:

— draft book “Principles of Model Checking” (Baier & Katoen)
— find flaws? please report them on WIKI-page
— one set of exercises waived if you find most flaws in some chapter

e Exam: exam at end of WS 2006/07

© JPK 3

Model checking

Model checking overview

requirements
© @ ““not biased towards the

most probable scenarios

Y Y
Formalizing Modeling

Y Y

property .
gl Comom ol

"~ | Model Checking [
Y

_ satisfied > violated +
counterexample

insufficient
memory

N
. . location
Simulation ——= S

© JPK 4

Model checking

Transition system

A transition system TS is a tuple (5, Act, —, I, AP, L) where

e S is a set of states

e Actis a set of actions

e — C S x Act x S'is a transition relation
e /| C Sis asetofinitial states

e AP is a set of atomic propositions

e L:S —2"isa labeling function

S and Act are either finite or countably infinite

Notation: s <~ s’ instead of (s, o, s') € —

© JPK 5

Model checking

Paths

e An Iinfi nite path fragment = is an infinite state sequence:

SpS182... suchthats; € Post(s;_1) foralli > 0

e Notations for path fragment 7 = sgs1 5. . .

— first(w) = s = 7[0]; let w[j] = s; denote the j-th state of =
— j-thprefix w[..j] = so s1...s; and j-th suffix =[j..] = s, 541 ...

e A path of TS is an initial, maximal path fragment

— a maximal path fragment is either finite ending in a terminal state, or infinite
— a path fragmentis initial if sg € I

e Paths(s) is the set of maximal path fragments 7 with first(7) = s

© JPK 6

Model checking

A mutual exclusion algorithm

© JPK .

Model checking TR=

Traces

e Actions are mainly used to model the (possibility of) interaction

— synchronous or asynchronous communication

e Here, focus on the states that are visited during executions

— the states themselves are not “observable”, but just their atomic propositions

e Consider sequences of the form L(sg) L(s1) L(s2) ...

— just register the (set of) atomic propositions that are valid along the execution
a1

— instead of execution sy —% s, Sy ...
= this is called a trace

e For a transition system without terminal states:

— traces are infinite words over the alphabet 2AP e, they are in <2AP)

© JPK 8

Model checking

Traces

e Let TS = (S,Act, —,I,AP, L) be a transition system without terminal
states

e The trace of path fragment = = sg s1... IS trace(w) = L(sg) L(s1) ...

— thetrace of @ = sgs1...syistrace(m) = L(so) L(s1) ... L(syp).
e The set of traces of a set II of paths: trace(Il) = { trace(r) | # € IT }
e Traces(s) = trace(Paths(s)) Traces(TS) = (J,,; Traces(s)

o Tracesj,(s) = trace(Pathsg,(s)) Tracesg,(TS) = (J,.; Traces,(s)

© JPK 9

Model checking

Linear-time properties

e Linear-time properties specify the traces that a TS must exhibit

— LT-property specifies the admissible behaviour of the system
— later, a logical formalism will be introduced for specifying LT properties

e Alinear-time property (LT property) over AP is a subset of (24P)"

— finite words are not needed, as it is assumed that there are no terminal states
e TS (over AP) satisfi es LT-property P (over AP):
TS =P ifandonlyif Traces(TS) C P

— TS satisfies the LT property P if all its “observable” behaviors are admissible

© JPK 10

Model checking

Linear temporal logic

modal logic over infinite sequences [Pnueli 1977]

e Propositional logic

— a € AP atomic proposition
— n¢pand o A Y negation and conjunction

e Temporal operators

-O¢ neXt state fulfills ¢
- Uy ¢ holds Until a -state is reached

e Auxiliary temporal operators

- OC¢p=truelUo eventually ¢
—0¢g=-2C-9 always ¢

© JPK 11

Model checking

lelp N
¢ =
¢ =Y

¢ DY
true
false
O

Ho

Derived operators

(o VvV 29)
¢V Y

(=) N (Y= 9)

(@ N =) V (29 A 9P)

¢V ¢

—frue

trueU ¢ “sometimes in the future”
RO N) “from now on for ever”

© JPK

12

Model checking

Example properties expressed in LTL

© JPK

13

Model checking

Semantics over words

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {0 S (2Ap)w A= go},where = is the smallest relation satisfying:

o = true

o E a iff ae Ay (i.e., Ag E a)

o FE piApy iff o= prando =

o = - iff ooy

o = Oy Iff of[l.]=A14A45... = ¢

o E iUy iff 3520.0j..] FEy2 and oli..] E 1, 0< 1<

© JPK 14

Model checking

Semantics over paths and states

Let TS = (5,Act,—,I,AP, L) be a transition system without terminal
states, and let ¢ be an LTL-formula over AP.

e For infinite path fragment = of TS:
TE iff trace(n) = ¢

e For state s € S:

s Iff Vm e Paths(s). m = ¢

e TS satisfies o, denoted TS = ¢, if Traces(TS) C Words(y)

© JPK 15

Model checking

Iff

Iff

Iff

Iff

Semantics for transition systems

TS E ¢

(* transition system semantics *)
Traces(TS) C Words(y)

(* definition of |= for LT-properties *)
TS = Words(p)

(* Definition of Words(y) *)

7 = for all 7 € Paths(TS)

(* semantics of |~ for states *)

so Epforall so el

© JPK

16

Model checking

Equivalence

LTL formulas ¢, ¢ are equivalent, denoted ¢ = v, if:

Words(¢) = Words())

© JPK

17

Model checking

Important equivalences

Duality: -0¢
RS
~0O¢
OO¢
OO ¢

o U (oU)

SO0 ¢
OCO¢

O(eU)

pUp
G
Do

ldempotency:

Absorption:

Distribution:

Expansion:

O -9
O -9
O ¢

Do
O
U

00 ¢
OO

(O©@)U(O)

(¢ A O (9UY))
O
O

> < <
O <o >

W
¢ ¢
¢ ¢

© JPK

18

Model checking

Distributive laws

Sland) # Ga AN <Ob and O(a V b) # Oa VvV Ob

© JPK

19

Model checking

LTL model-checking problem

Given finite transition system TS and LTL-formula :

yields “yes” if TS |= ¢, and “no” (plus a counterexample) if TS = ¢

© JPK

20

Model checking

Automata for LTL formulas

© JPK

21

Model checking

Blchi automata

A nondeterministic Buichi automaton (NBA) A is a tuple (Q, X2, 3, Qq, F') where:
e () Is a finite set of states with ()¢ C @) a set of initial states

e X IS an alphabet

e §:(Q x X — 29 s a transition function

e FC ()is aset of accept (or: final) states

The size of A, denoted |.A|, is the number of states and transitions in A:

Al = QI+ > > 18(a,A)]

q€Q Aex

© JPK

22

Model checking

NBA and w-regular languages

The class of languages accepted by NBA

agrees with the class of w-regular languages

(1) any w-regular language is recognized by an NBA

(2) for any NBA A, the language L., (.A) is w-regular

© JPK

23

Model checking

w-regular expressions

1. @ and e are regular expressions over
2. if A € X then A is a regular expression over X

3. If E, E; and E; are regular expressions over X
then so are E; + E5, E;.E; and E”

*

E™ is an abbreviation for the regular expression E.E

An w-regular expression G over X has the form:

G=E.F{+...+E,.F; forn>0

n

where E;, F; are regular expressions over X suchthate ¢ L(F;),forall0 < i < n

© JPK

24

Model checking

NBA are more expressive than DBA

For finite automata, NFA and DFA are equally expressive

but for NBA this is no longer true:

There is no DBA that accepts £, ((A + B)*B*)

© JPK

25

Model checking

TS E ¢

Observation

if and only if Traces(TS) C Words(y)
if and only if ~ Traces(TS) N ((2A7)« \ Words(y))

if and only if ~ Traces(TS) N Words(—~p) = &
Lu(Any)

fandonlyif TS®A., | o0 A g
qeF
- F

LTL model checking is reduced to checking whether
an accept state is visited in TS ® A, infinitely often

%)

© JPK

26

Model checking

Synchronous product

For transition system TS = (S, Act, —, I, AP, L) without terminal states
and A = (Q,%,5,Qo, F) an NBA with ¥ = 2P and Qo N F = &, let:

TS®A = (S Act,—', I’ AP'. L) where

e '=9xQ,AP =Qand L'({s,q)) = {q}

s—%yt A qﬂp

e —'Iis the smallest relation defined by:
(s,q) =" (t,p)

o I'={(s0,q) | so€ A Jqo € Qo. a0 ¢}

without loss of generality it may be assumed that TS ® A has no terminal states

© JPK 27

Model checking

Cycle detection

Let TS be a finite transition system without terminal states over AP,

TS = o0
If and only if

Js € Reach(TS).s = ® A sisonacyclein TS

© JPK 28

Model checking

Nested depth-first search

e Idea: perform the two depth-first searches in an interleaved way

— the outer DFS serves to encounter all reachable —®-states
— the inner DFS seeks for backward edges leading to a —®-state

e Nested DFS

— on full expansion of —®-state s in the outer DFS, start inner DFS

— ininner DFS, visit all states reachable from s that are unvisited in the inner DFS
so far

— no backward edge to s? continue the outer DFS (look for next —® state)

e Counterexample generation: DFS stack concatenation

— stack U for the outer DFS = path fragment from sg € I to s (in reversed order)
— stack V for the inner DFS = a cycle from state s to s (in reversed order)

© JPK 29

Model checking

Overview of LTL model checking

[Negation of property j
¥

Model of system

LTL-formula —¢

model checker

Generalised Bichi automaton Qmp

Transition system TS | Biichi automaton A—

-

Product transition system

v

TS® A-p = Ppers(A—.gp)

|/

(‘No’ (counter-example))

© JPK

30

Model checking

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ¢ (over AP) there exists an

NBA A, over 2AP such that:

(@) Words(p) = Lu(Ay)

(b) A, can be constructed in time and space O (|<p| -2""’)

= every LTL-formula expresses an w-regular property!

© JPK

31

Model checking

NBA are more expressive than LTL

There is no LTL formula ¢ with Words(y) = P for the LT-property:
P = {AoAlAQ... c (Q{CL})W ’ a € Ay fore > O}

But there exists an NBA A with £,(A) = P

= there are w-regular properties that cannot be expressed in LTL!

© JPK 32

Model checking

Complexity for LTL model checking

The time and space complexity of LTL model checking is in O (\TS\ -2"”')

© JPK

33

Model checking

On-the-fly LTL model checking

e |ldea: find a counter-example during the generation of Reach(TS)
and A,

— exploit the fact that Reach(TS) and A-, can be generated in parallel

= Generate Reach(TS ® A-,) “on demand”

— consider a new vertex only if no accepting cycle has been found yet
— only consider the successors of a state in A-,, that match current state in TS

= Possible to find an accepting cycle without generating A-., entirely

e This on-the-fly scheme is adopted in e.g. the model checker SPIN

© JPK 34

