
A Quick Tour on LTL Model Checking
Lecture #1 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

October 22, 2006

c© JPK

Model checking

Course topics

• Linear-time and computation tree temporal logic (summary)

– syntax, semantics, model-checking algorithms, expressiveness

• Equivalences and abstraction

– bisimulation, simulation, minimisation algorithms
– stutter-bisimulation, stutter trace-equivalence, divergence

• Partial-order reduction

– independence, ample set method, branching-time POR

c© JPK 1

Model checking

Course topics

• Reduced binary decision diagrams

– Boolean functions, operations, CTL model checking with ROBDDs

• Timed automata

– semantics, region equivalence, timed reachability, zone automata, DBMs

• Probabilistic model checking

– Markov chains, probabilistic CTL, model-checking algorithms

c© JPK 2

Model checking

Course organization

• Lectures: twice per week (AH4/AH1, Mon + Thu; check web-page!)

• Exercises: once per week (AH1, Fri)

– marked exercises (50% of points needed + one example on board)
– assistent: Tingting Han and Ivan Zapreev

• Course material:

– draft book “Principles of Model Checking” (Baier & Katoen)
– find flaws? please report them on WIKI-page
– one set of exercises waived if you find most flaws in some chapter

• Exam: exam at end of WS 2006/07

c© JPK 3

Model checking

Model checking overview

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient
memory

counterexample
Simulation location

error

system

violated +

Model Checking

requirements

Formalizing Modeling

system model
property

specification

c© JPK 4

Model checking

Transition system

A transition system TS is a tuple (S,Act,→, I,AP, L) where

• S is a set of states

• Act is a set of actions

• −→ ⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−→ s′ instead of
`
s, α, s′

´
∈ −→

c© JPK 5

Model checking

Paths

• An infinite path fragment π is an infinite state sequence:

s0 s1 s2 . . . such that si ∈ Post(si−1) for all i > 0

• Notations for path fragment π = s0 s1 s2 . . .:

– first(π) = s0 = π[0]; let π[j] = sj denote the j-th state of π
– j-th prefix π[..j] = s0 s1 . . . sj and j-th suffix π[j..] = sj sj+1 . . .

• A path of TS is an initial, maximal path fragment

– a maximal path fragment is either finite ending in a terminal state, or infinite
– a path fragment is initial if s0 ∈ I

• Paths(s) is the set of maximal path fragments π with first(π) = s

c© JPK 6

Model checking

A mutual exclusion algorithm

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

c© JPK 7

Model checking

Traces

• Actions are mainly used to model the (possibility of) interaction

– synchronous or asynchronous communication

• Here, focus on the states that are visited during executions

– the states themselves are not “observable”, but just their atomic propositions

• Consider sequences of the form L(s0)L(s1)L(s2) . . .

– just register the (set of) atomic propositions that are valid along the execution
– instead of execution s0

α0−−→ s1
α1−−→ s2 . . .

⇒ this is called a trace

• For a transition system without terminal states:

– traces are infinite words over the alphabet 2AP, i.e., they are in
“
2AP

”ω

c© JPK 8

Model checking

Traces

• Let TS = (S,Act,→, I,AP, L) be a transition system without terminal
states

• The trace of path fragment π = s0 s1 . . . is trace(π) = L(s0)L(s1) . . .

– the trace of bπ = s0 s1 . . . sn is trace(bπ) = L(s0)L(s1) . . . L(sn).

• The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }

• Traces(s) = trace(Paths(s)) Traces(TS) =
⋃

s∈I Traces(s)

• Tracesfin(s) = trace(Pathsfin(s)) Tracesfin(TS) =
⋃

s∈I Tracesfin(s)

c© JPK 9

Model checking

Linear-time properties

• Linear-time properties specify the traces that a TS must exhibit

– LT-property specifies the admissible behaviour of the system
– later, a logical formalism will be introduced for specifying LT properties

• A linear-time property (LT property) over AP is a subset of
(
2AP

)ω

– finite words are not needed, as it is assumed that there are no terminal states

• TS (over AP) satisfies LT-property P (over AP):

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its “observable” behaviors are admissible

c© JPK 10

Model checking

Linear temporal logic

modal logic over infinite sequences [Pnueli 1977]

• Propositional logic

– a ∈ AP atomic proposition
– ¬φ and φ ∧ ψ negation and conjunction

• Temporal operators

– ©φ neXt state fulfills φ
– φUψ φ holds Until a ψ-state is reached

• Auxiliary temporal operators

– 3φ ≡ true Uφ eventually φ
– 2φ ≡ ¬3 ¬φ always φ

c© JPK 11

Model checking

Derived operators

lclφ ∧ ψ ≡ ¬ (¬φ ∨ ¬ψ)

φ ⇒ ψ ≡ ¬φ ∨ ψ

φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)

φ⊕ ψ ≡ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

true ≡ φ ∨ ¬φ

false ≡ ¬ true

3φ ≡ true Uφ “sometimes in the future”

2φ ≡ ¬3 ¬φ “from now on for ever”

c© JPK 12

Model checking

Example properties expressed in LTL

c© JPK 13

Model checking

Semantics over words

The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{

σ ∈
(
2AP)ω

| σ |= ϕ
}

,where |= is the smallest relation satisfying:

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ©ϕ iff σ[1..] = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j > 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, 0 6 i < j

c© JPK 14

Model checking

Semantics over paths and states

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal
states, and let ϕ be an LTL-formula over AP.

• For infinite path fragment π of TS:

π |= ϕ iff trace(π) |= ϕ

• For state s ∈ S:

s |= ϕ iff ∀π ∈ Paths(s). π |= ϕ

• TS satisfies ϕ, denoted TS |= ϕ, if Traces(TS) ⊆ Words(ϕ)

c© JPK 15

Model checking

Semantics for transition systems

TS |= ϕ

iff (* transition system semantics *)

Traces(TS) ⊆ Words(ϕ)

iff (* definition of |= for LT-properties *)

TS |= Words(ϕ)

iff (* Definition of Words(ϕ) *)

π |= ϕ for all π ∈ Paths(TS)

iff (* semantics of |= for states *)

s0 |= ϕ for all s0 ∈ I .

c© JPK 16

Model checking

Equivalence

LTL formulas φ,ψ are equivalent, denoted φ ≡ ψ, if:

Words(φ) = Words(ψ)

c© JPK 17

Model checking

Important equivalences

Duality: ¬2φ ≡ 3 ¬φ
¬3φ ≡ 2 ¬φ

¬ © φ ≡ © ¬φ

Idempotency: 22φ ≡ 2φ

3 3φ ≡ 3φ

φU (φUψ) ≡ φUψ

Absorption: 3 2 3φ ≡ 23φ

23 2φ ≡ 3 2φ

Distribution: © (φUψ) ≡ (©φ)U (©ψ)

Expansion: φUψ ≡ ψ ∨ (φ ∧ © (φUψ))
3φ ≡ φ ∨ © 3φ

2φ ≡ φ ∧ © 2φ

c© JPK 18

Model checking

Distributive laws

3(a∧ b) 6≡ 3a ∧ 3b and 2(a ∨ b) 6≡ 2a ∨ 2b

∅

{ a }{ b }

c© JPK 19

Model checking

LTL model-checking problem

Given finite transition system TS and LTL-formula ϕ:

yields “yes” if TS |= ϕ, and “no” (plus a counterexample) if TS 6|= ϕ

c© JPK 20

Model checking

Automata for LTL formulas

c© JPK 21

Model checking

Büchi automata

A nondeterministic Büchi automaton (NBA) A is a tuple (Q,Σ, δ, Q0, F) where:

• Q is a finite set of states with Q0 ⊆ Q a set of initial states

• Σ is an alphabet

• δ : Q× Σ → 2Q is a transition function

• F ⊆ Q is a set of accept (or: final) states

The size of A, denoted |A|, is the number of states and transitions in A:

|A| = |Q| +
X

q∈Q

X

A∈Σ

| δ(q,A) |

c© JPK 22

Model checking

NBA and ω-regular languages

The class of languages accepted by NBA

agrees with the class of ω-regular languages

(1) any ω-regular language is recognized by an NBA

(2) for any NBA A, the language Lω(A) is ω-regular

c© JPK 23

Model checking

ω-regular expressions

1. ∅ and ε are regular expressions over Σ

2. if A ∈ Σ then A is a regular expression over Σ

3. if E, E1 and E2 are regular expressions over Σ
then so are E1 + E2, E1.E2 and E∗

E+ is an abbreviation for the regular expression E.E∗

An ω-regular expression G over Σ has the form:

G = E1.F
ω
1 + . . .+ En.F

ω
n for n > 0

where Ei, Fi are regular expressions over Σ such that ε /∈ L(Fi), for all 0 < i 6 n

c© JPK 24

Model checking

NBA are more expressive than DBA

For finite automata, NFA and DFA are equally expressive

but for NBA this is no longer true:

There is no DBA that accepts Lω((A + B)∗Bω)

c© JPK 25

Model checking

Observation

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ∩
(
(2AP)ω \ Words(ϕ)

)
= ∅

if and only if Traces(TS) ∩ Words(¬ϕ)
︸ ︷︷ ︸

Lω(A¬ϕ)

= ∅

if and only if TS ⊗A¬ϕ |= 32

∧

q∈F

¬q

︸ ︷︷ ︸
¬F

LTL model checking is reduced to checking whether
an accept state is visited in TS ⊗ A¬ϕ infinitely often

c© JPK 26

Model checking

Synchronous product

For transition system TS = (S,Act,→, I,AP, L) without terminal states
and A = (Q,Σ, δ,Q0, F) an NBA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS ⊗A = (S′,Act,→ ′, I ′,AP′
, L′) where

• S′ = S ×Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)
−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

without loss of generality it may be assumed that TS ⊗ A has no terminal states

c© JPK 27

Model checking

Cycle detection

Let TS be a finite transition system without terminal states over AP,

TS 6|= 32Φ

if and only if

∃s ∈ Reach(TS). s 6|= Φ ∧ s is on a cycle in TS

c© JPK 28

Model checking

Nested depth-first search

• Idea: perform the two depth-first searches in an interleaved way

– the outer DFS serves to encounter all reachable ¬Φ-states
– the inner DFS seeks for backward edges leading to a ¬Φ-state

• Nested DFS

– on full expansion of ¬Φ-state s in the outer DFS, start inner DFS
– in inner DFS, visit all states reachable from s that are unvisited in the inner DFS

so far
– no backward edge to s? continue the outer DFS (look for next ¬Φ state)

• Counterexample generation: DFS stack concatenation

– stack U for the outer DFS = path fragment from s0 ∈ I to s (in reversed order)
– stack V for the inner DFS = a cycle from state s to s (in reversed order)

c© JPK 29

Model checking

Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system
TS ⊗ A¬ϕ

TS ⊗ A¬ϕ |= Ppers(A¬ϕ)

LTL-formula ¬ϕ

Büchi automaton A¬ϕ

Generalised Büchi automaton G¬ϕ

System

‘Yes’

c© JPK 30

Model checking

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ϕ (over AP) there exists an

NBA Aϕ over 2AP such that:

(a) Words(ϕ) = Lω(Aϕ)

(b) Aϕ can be constructed in time and space O
“
|ϕ|·2|ϕ|

”

⇒ every LTL-formula expresses an ω-regular property!

c© JPK 31

Model checking

NBA are more expressive than LTL

There is no LTL formula ϕ with Words(ϕ) = P for the LT-property:

P =
{

A0A1A2 . . . ∈
(

2{ a }
)ω

| a ∈ A2i for i > 0
}

But there exists an NBA A with Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!

c© JPK 32

Model checking

Complexity for LTL model checking

The time and space complexity of LTL model checking is in O
“
|TS|·2|ϕ|

”

c© JPK 33

Model checking

On-the-fly LTL model checking

• Idea: find a counter-example during the generation of Reach(TS)
and A¬ϕ

– exploit the fact that Reach(TS) and A¬ϕ can be generated in parallel

⇒ Generate Reach(TS ⊗A¬ϕ) “on demand”

– consider a new vertex only if no accepting cycle has been found yet
– only consider the successors of a state in A¬ϕ that match current state in TS

⇒ Possible to find an accepting cycle without generating A¬ϕ entirely

• This on-the-fly scheme is adopted in e.g. the model checker SPIN

c© JPK 34

