

Ample Set Conditions

Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 27, 2006

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \cong TS$
⇒ this preserves all stutter sensitive LT properties, such as LTL_{\Diamond}
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct TS during LTL_{\Diamond} model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Independence of actions

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be action-deterministic and $\alpha \neq \beta \in Act$

- α and β are *independent* if for any $s \in S$ with $\alpha, \beta \in Act(s)$:

$$\beta \in Act(\alpha(s)) \quad \text{and} \quad \alpha \in Act(\beta(s)) \quad \text{and} \quad \alpha(\beta(s)) = \beta(\alpha(s))$$

- α and β are *dependent* if α and β are not independent
- For $A \subseteq Act$ and $\beta \in Act \setminus A$:
 - β is independent of A if for any $\alpha \in A$, β is independent of α
 - β depends on A in TS if $\beta \in Act \setminus A$ and α are dependent for some $\alpha \in A$

Permuting independent **stutter** actions

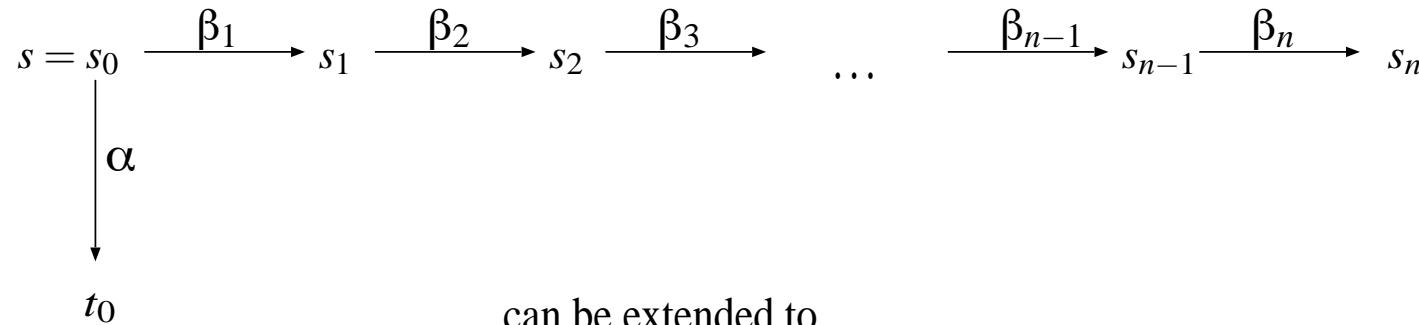
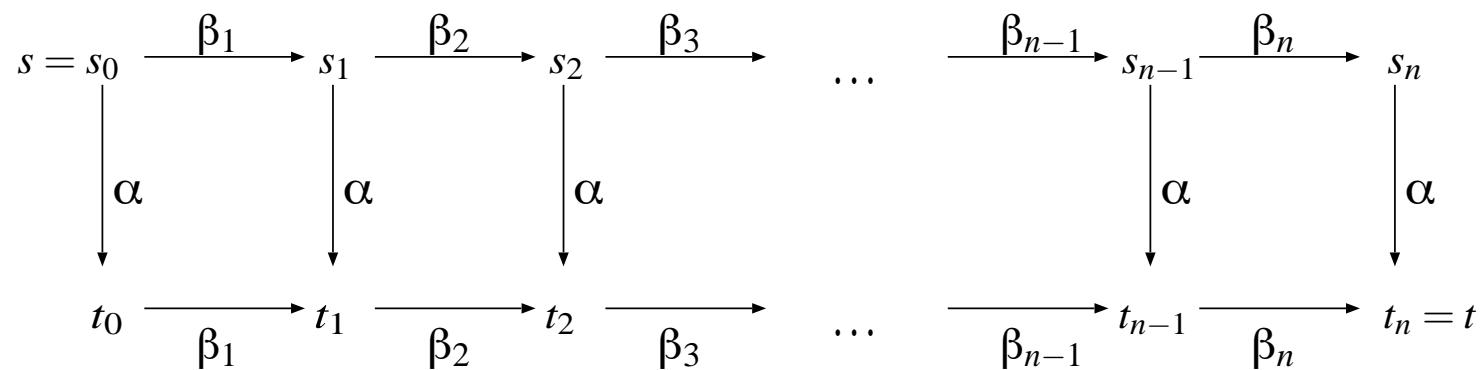
Let TS be action-deterministic, s a state in TS and:

- ϱ is a finite execution in s with action sequence $\beta_1 \dots \beta_n \alpha$
- ϱ' is a finite execution in s with action sequence $\alpha \beta_1 \dots \beta_n$

Then:

if α is a stutter action independent of $\{\beta_1, \dots, \beta_n\}$ then $\varrho \cong \varrho'$

Permuting independent actions



Adding an independent **stutter** action

Let TS be action-deterministic, s a state in TS and:

- ρ is an **infinite** execution in s with action sequence $\beta_1 \beta_2 \dots$
- ρ' is an **infinite** execution in s with action sequence $\alpha \beta_1 \beta_2 \dots$

Then:

if α is a stutter action independent of $\{\beta_1, \beta_2, \dots\}$ then $\rho \cong \rho'$

The ample-set approach

- Partial-order reduction for LT properties using *ample sets*
 - generate \widehat{TS} from a high-level description of TS (e.g., program graph)
 - . . . without the need for ever generating the entire transition system TS
- $\widehat{TS} = (\widehat{S}, Act, \Rightarrow, I, AP, L')$ where:
 - \widehat{S} contains the states that are reachable (under \Rightarrow) from some $s_0 \in I$
 - $$\frac{s \xrightarrow{\alpha} s' \wedge \alpha \in \text{ample}(s)}{s \overline{\Rightarrow} s'}$$
 - $L'(s) = L(s)$ for any $s \in \widehat{S}$
- Constraints: correctness (\cong), effectivity and efficiency

Transforming executions

Transforming executions (case 1)

$\exists n > 0$ such that $\alpha = \beta_{n+1} \in \text{ample}(s)$ and $\beta_1, \dots, \beta_n \notin \text{ample}(s)$

Then ρ_0 can be changed into ρ_1 :

$$\begin{aligned} \rho_0 = \quad & u \xrightarrow{\gamma_1} \dots \xrightarrow{\gamma_m} \quad s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} \quad t \xrightarrow{\beta_{n+2}} s_{n+2} \xrightarrow{\beta_{n+3}} \dots \\ \rho_1 = \quad & u \xrightarrow{\gamma_1} \dots \xrightarrow{\gamma_m} \quad s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \quad t \xrightarrow{\beta_{n+2}} s_{n+2} \xrightarrow{\beta_{n+3}} \dots \\ & \underbrace{\hspace{10em}} \quad \underbrace{\hspace{10em}} \quad \underbrace{\hspace{10em}} \\ & \text{common prefix } \varrho_0 \quad \text{stutter-trace equivalent} \\ & \quad \text{execution fragments} \quad \text{common suffix} \end{aligned}$$

m is the minimal index at which some non-ample action is taken

if α is a stutter action we have $\rho_0 \cong \rho_1$

Transforming executions (case 2)

For all $i > 0$, $\beta_i \notin \text{ample}(s)$

Then for any $\alpha \in \text{ample}(s)$, ρ_0 can be changed into ρ_1

$$\begin{aligned}
 \rho_0 &= u \xrightarrow{\gamma_1} \dots \xrightarrow{\gamma_m} s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_1} s_2 \xrightarrow{\beta_2} \dots \\
 \rho_1 &= u \xrightarrow{\gamma_1} \dots \xrightarrow{\gamma_m} s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_1} t_2 \xrightarrow{\beta_2} \dots
 \end{aligned}$$

 common prefix ρ_0 stutter-trace equivalent execution fragments

m is the minimal index at which some non-ample action is taken

if α is a stutter action we have $\rho_0 \cong \rho_1$

Which actions to select?

(A1) Nonemptiness condition

Select in any state in \widehat{TS} at least one action.

(A2) Dependency condition

For any finite execution in TS : an action depending on $ample(s)$ can only occur after some action in $ample(s)$ has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s .

(A4) Cycle condition

Any action in $ample(s_i)$ with s_i on a cycle in \widehat{TS} must be selected in some s_j on that cycle.

(A1) through (A3) apply to states in \widehat{S} ; (A4) to cycles in \widehat{TS}

Example

Nonemptiness condition

(A1)

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

- If a state has at least one direct successor in TS , then it has least at one direct successor in \widehat{TS}

⇒ As TS has no terminal states, \widehat{TS} has no terminal states

Dependency condition

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution in TS such that α depends on $\text{ample}(s)$.

Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

- In every (!) finite execution fragment of TS , an action depending on $\text{ample}(s)$ cannot occur before some action from $\text{ample}(s)$ occurs first
- (A2) ensures that for any state s with $\text{ample}(s) \subset \text{Act}(s)$, any $\alpha \in \text{ample}(s)$ is **independent** of $\text{Act}(s) \setminus \text{ample}(s)$

Properties

- (A2) guarantees that any finite execution in TS is of the form:

$$\varrho = s_1 \xrightarrow{\beta_1} s_2 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t \quad \text{with} \quad \alpha \in \text{ample}(s)$$

and β_i independent of $\text{ample}(s)$ for $0 < i \leq n$.

- if α is a stutter action: shifting α to the beginning yields an equivalent execution
 \Rightarrow if ϱ is pruned in TS , then an execution is obtained by first taking α in s

- (A2) guarantees that any infinite execution in TS is of the form:

$$s_1 \xrightarrow{\beta_1} s_2 \xrightarrow{\beta_2} \dots \quad \text{with } \beta_i \text{ independent of } \text{ample}(s) \text{ for } 0 < i \leq n.$$

- performing stutter action $\alpha \in \text{ample}(s)$ in s yields an equivalent execution

Properties

For any $\alpha \in \text{ample}(s)$ and $s \in \text{Reach}(\text{TS})$:

if $\text{ample}(s)$ satisfies (A2) then α is independent of $\text{Act}(s) \setminus \text{ample}(s)$

For finite execution $s = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n$ in TS :

if $\text{ample}(s)$ satisfies (A2) and $\{\beta_1, \dots, \beta_n\} \cap \text{ample}(s) = \emptyset$, then:

α is independent of $\{\beta_1, \dots, \beta_n\}$ and $\alpha \in \text{Act}(s_i)$ for $0 \leq i \leq n$

A too simplistic dependency condition (1)

(A2')

If $ample(s) \neq Act(s)$

then $\alpha \in ample(s)$ is independent of $Act(s) \setminus ample(s)$.

this is a property of (A2), but in itself too weak: see next example

A too simplistic dependency condition (2)

Stutter condition

(A3)

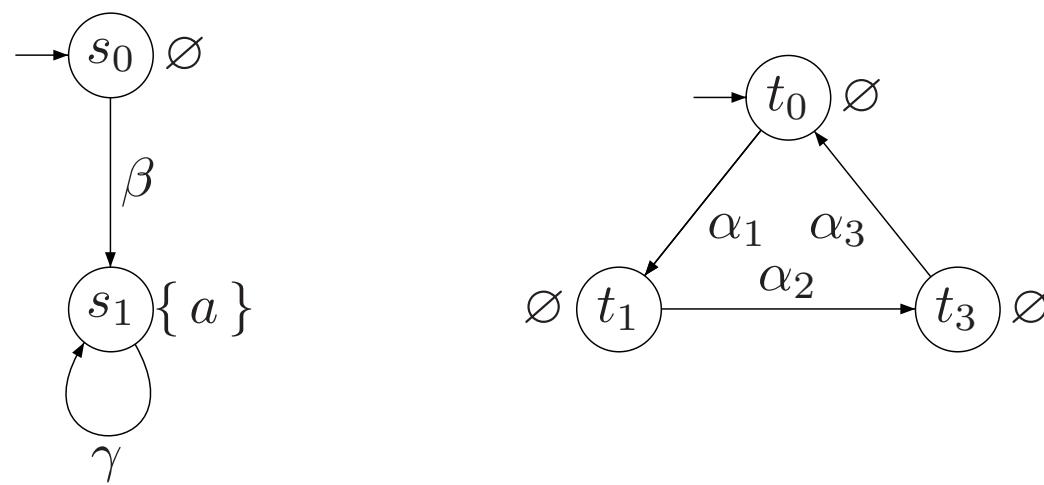
If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

- All ample actions of a non-fully expanded state are stutter actions
- (A3) ensures that:
 - changing $\beta_1, \dots, \beta_n \alpha$ into $\alpha \beta_1 \dots \beta_n$, and
 - changing $\beta_1 \beta_2 \beta_3 \dots$ into $\alpha \beta_1 \beta_2 \beta_3 \dots$yields stutter-equivalent executions

Correctness of transformation (1)

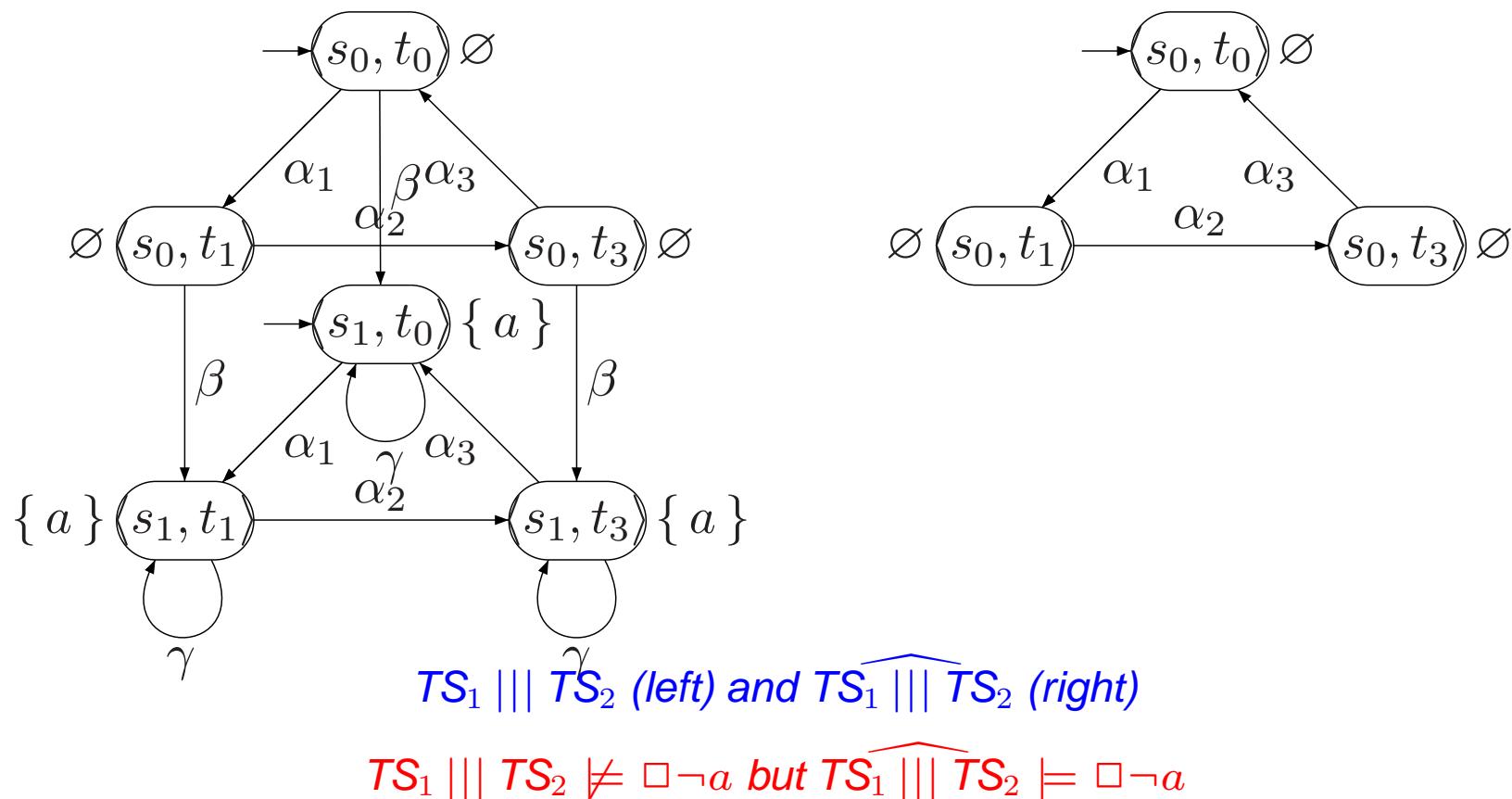
Necessity of cycle condition

Necessity of cycle condition: example (1)



transition systems TS_1 and TS_2

Necessity of cycle condition: example (1)



Cycle condition

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

any enabled action in some state on a cycle must be selected in some state on that cycle

Example

Overview of ample-set conditions

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \cong TS$.

as $Traces(\widehat{TS}) \subseteq Traces(TS)$, it follows $\widehat{TS} \sqsubseteq TS$

proof sketch of reverse direction in lecture notes

Strong cycle condition

(A4') Strong cycle condition

On any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} ,

there exists $j \in \{1, \dots, n\}$ such that $\text{ample}(s_j) = \text{Act}(s_j)$.

- (A4') implies the cycle condition (A4)
- (A4') can be checked easily in DFS when backward edge is found

Invariant checking with POR

- Invariant checking
 - on state space generation, check whether each state satisfies prop. formula Φ
 - on finding a refuting state, (reversed) stack content yields counterexample
- Incorporating partial order reduction
 - on encountering a new state, compute ample set satisfying (A1) through (A3)
 - e.g., $\text{ample}(s) = \text{Act}(P_i)$, enabled actions of a concurrent process
 - enlarge $\text{ample}(s)$ on demand using strong cycle condition (A4')
 - mark actions to keep track of which actions have been taking

Depth-first search under POR (1)

Input: finite transition system TS and propositional formula Φ

Output: "yes" if $TS \models \square \Phi$, otherwise "no" plus a counterexample

```

set of states  $R := \emptyset$ ;                                (* the set of reachable states *)
stack of states  $U := \varepsilon$ ;                                (* the empty stack *)
bool  $b := \text{true}$ ;                                         (* all states in  $R$  satisfy  $\Phi$  *)
while ( $I \setminus R \neq \emptyset \wedge b$ ) do
  let  $s \in I \setminus R$ ;                                     (* choose an arbitrary initial state not in  $R$  *)
  visit( $s$ );                                                 (* perform a DFS for each unvisited initial state *)
od
if  $b$  then
  return("yes")                                              (*  $TS \models \text{"always } \Phi$  *)
else
  return("no", reverse( $U$ ))                                    (* counterexample arises from the stack content *)
fi
  
```

```

procedure visit (state  $s$ )
   $push(s, U); R := R \cup \{ s \}$ ; (* mark  $s$  as reachable *)
  compute  $ample(s)$  satisfying (A1)–(A3);
   $mark(s) := \emptyset$ ; (* taken actions in  $s$  *)
  repeat
     $s' := top(U)$ ;
    if  $ample(s') = mark(s')$  then
       $pop(U); b := b \wedge (s' \models \Phi)$ ; (* all ample actions have been taken *)
    else
      let  $\alpha \in mark(s') \setminus ample(s')$ 
       $mark(s') := mark(s') \cup \{ \alpha \}$ ; (* mark  $\alpha$  as taken *)
      if  $\alpha(s') \notin R$  then
         $push(\alpha(s'), U); R := R \cup \{ \alpha(s') \}$  (*  $\alpha(s')$  is a new reachable state *)
        compute  $ample(\alpha(s'))$  satisfying (A1)–(A3);
         $mark(\alpha(s')) := \emptyset$ ;
      else
        if  $s' \in U$  then  $ample(s) := Act(s)$ ; fi (* enlarge  $ample(s)$  for (A4) *)
      fi
    fi
  until  $((U = \varepsilon) \vee \neg b)$ 
endproc

```

Example

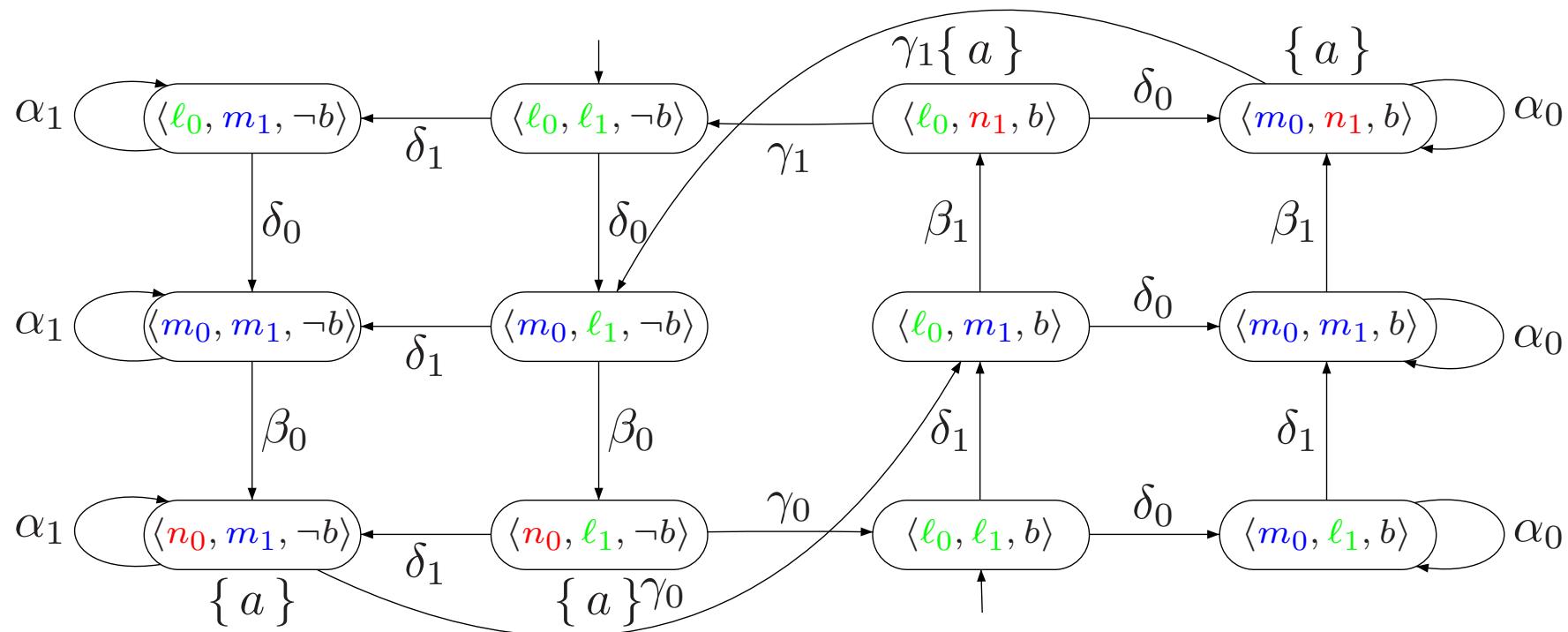
Process 0:

```
while true {  
    l0 : skip;  
    m0 : wait until ( $\neg b$ ) {  
        n0 : ... critical section ...}  
        b := true;  
    }  
}
```

Process 1:

```
while true {  
    l1 : skip;  
    m1 : wait until (b) {  
        n1 : ... critical section ...}  
        b := false;  
    }  
}
```

Transition system



Reduced transition system

