© JPK

Ample Set Conditions
Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

November 27, 2006

Advanced model checking

Outline of partial-order reduction

e During state space generation obtain TS

— areduced version of transition system TS such that TSTS
= this preserves all stutter sensitive LT properties, such as LTL\
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\ ~ model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK

Advanced model checking

Independence of actions

Let TS = (S, Act, —, I, AP, L) be action-deterministic and « # § € Act

e « and (are independent if for any s € S with o, 3 € Act(s):

B e Act(a(s)) and « € Act(f(s)) and «a(B(s)) = Blal(s))

e o and 3 are dependent if « and 5 are not independent

e For A C Actand 3 € Act \ A:

— @isindependent of A if forany o € A, 3 is independent of «
— B dependson AinTSif 8 € Act \ A and « are dependent for some o« € A

© JPK

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:
e o is a finite execution in s with action sequence 3 ... 3, «

e (' is a finite execution in s with action sequence a3, ... 3,

Then:

If o is a stutter action independent of { 51,..., 3, } then o= ¢’

© JPK

Advanced model checking

Permuting independent actions

s—sp P P2 g Po o Pea P
o
to can be extended to
s—g —P1 g B2 o B3 | Poa, g B o
A A (0 A A
to - tq -ty - ———ty —— t, =t
B1 B2 B3 Bno1 Bn "

© JPK

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:
e p IS an infinite execution in s with action sequence (3, 5. ..

e o' is an infinite execution in s with action sequence o 31 35 . ..

Then:

If a is a stutter action independent of { 31, 32, ... } then p=p’

© JPK

Advanced model checking

The ample-set approach

e Partial-order reduction for LT properties using ample sets

— generate TS from a high-level description of TS (e.g., program graph)

— ... without the need for ever generating the entire transition system TS
o TS = (§, Act, = I, AP, L") where:

— S contains the states that are reachable (under =) from some sy € I

s 25" A a € ample(s)

T =
— L'(s) = L(s)forany s € S

e Constraints: correctness (=), effectivity and efficiency

© JPK

Advanced model checking

Transforming executions

© JPK

Advanced model checking

Transforming executions (case 1)
dn > 0 such that o« = 3,11 € ample(s) and (1, ..., 3, ¢ ample(s)

Then py can be changed into pq:

0= U— ... —> s P, Bn,g o, t s g0 s
71 Tm o Bn+2 Brn+3

pr= U1/ ... = S:toﬁw..& t"—+>sn+2"—+>...
common prefix gg stutter-trace equivalent common suffix

execution fragments

m IS the minimal index at which some non-ample action is taken

if « Is a stutter action we have pg = p;

© JPK 8

Advanced model checking

Transforming executions (case 2)

Forall i > 0, 3; ¢ ample(s)

Then for any o € ample(s), pg can be changed into p;

71 Ym
) = U—...— S 51\51 51/82 B2,
71 Ym «
p1 = U —— ...— § —= 1 ﬁlftl 61/t2ﬁ>...
common prefix gg stutter-trace equivalent execution fragments

m IS the minimal index at which some non-ample action is taken

if « Is a stutter action we have pg = p;

© JPK

Advanced model checking

Which actions to select?

(A1) Nonemptiness condition

Select in any state in TS at least one action.
(A2) Dependency condition

For any finite execution in TS: an action depending on ample(s) can only occur
after some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.
(A4) Cycle condition

Any action in ample(s;) with s; on a cycle in TS must be selected in some s; on
that cycle.

(Al) through (A3) apply to states in S; (A4) to cycles in TS

© JPK 10

Advanced model checking

Example

© JPK

11

Advanced model checking

Nonemptiness condition

(A1)
@ #+ ample(s) C Act(s)

e |f a state has at least one direct successor i/n\TS,
then it has least at one direct successorin TS

= AS TS has no terminal states, 'Fé has no terminal states

© JPK 12

Advanced model checking

Dependency condition

(A2) Dependency condition

lets Pl P2, Pn,g 2.4 pe afinite execution

In TS such that o depends on ample(s).

Then: 3; € ample(s) forsome 0 < i < n

e In every (!) finite execution fragment of TS, an action depending on
ample(s) cannot occur before some action from ample(s) occurs first

e (A2) ensures that for any state s with ample(s) C Act(s),
any o € ample(s) is independent of Act(s) \ ample(s)

© JPK 13

Advanced model checking

Properties

e (A2) guarantees that any finite execution in TS is of the form:

0 = 51 61f82 B, . ﬁnfsn =t with o e ample(s)

and g; independent of ample(s) for 0 < i < n.

— if « is a stutter action: shifting o to the beginning yields an equivalent execution
= if pis pruned in TS, then an execution is obtained by first taking « in s

e (A2) guarantees that any infinite execution in TS is of the form:

s1 25 s 2, with 3; independent of ample(s) for 0 < i < n.

— performing stutter action o € ample(s) in s yields an equivalent execution

© JPK 14

Advanced model checking

Properties

For any a € ample(s) and s € Reach(TS):

If ample(s) satisfies (A2) then « is independent of Act(s) \ ample(s)

For finite execution s = sg B, ey s, INTS:

If ample(s) satisfies (A2) and { 51, ..., 06, } Nample(s) = @, then:
a is independentof { 31,..., 0, } and a € Act(s;) for0 < < n

© JPK 15

Advanced model checking

A too simplistic dependency condition (1)

(A2')
If ample(s) # Act(s)
then o € ample(s) is independent of Act(s) \ ample(s).

this is a property of (A2), but in itself too weak: see next example

© JPK

16

Advanced model checking

A too simplistic dependency condition (2)

© JPK

17

Advanced model checking

Stutter condition

(A3)

If ample(s) # Act(s) then any o € ample(s) is a stutter action.

e All ample actions of a non-fully expanded state are stutter actions

e (A3) ensures that:

changing 81 ,... B, aintoa By ... By, and
changing 81 B2 B3 ...Into e 81 B2 B3 . . .

yields stutter-equivalent executions

© JPK

18

Advanced model checking

Correctness of transformation (1)

© JPK

19

Advanced model checking

Necessity of cycle condition

© JPK

20

Advanced model checking

Necessity of cycle condition: example (1)

transition systems TS; and TS»

© JPK

21

Advanced model checking

Necessity of cycle condition: example (1)

—_—

TS, ||| T8, (left) and TS; ||| TS (right)

TS, ||| TS b~ O-a but TS ||| TSs |= O-a

© JPK 22

Advanced model checking

Cycle condition

(A4) Cycle condition

For any cycle sg sy ... s, 1IN TSand a e Act(s;), for some 0 < i < n,
there exists j € {1,...,n } such that o € ample(s;).

any enabled action in some state on a cycle must be selected in some state on that
cycle

© JPK 23

Advanced model checking

Example

© JPK

24

Advanced model checking

(A1)

(A2)

(A3)

(A4)

Overview of ample-set conditions

Nonemptiness condition

o # ample(s) C Act(s)

Dependency condition

Let s A, .. Bn, s, — t be a finite execution fragment in TS such that «
depends on ample(s). Then: 3; € ample(s) forsome 0 < i < n.

Stutter condition

If ample(s) # Act(s) then any @ € ample(s) is a stutter action.
Cycle condition

For any cycle sps1 ... s, 1IN TS and a € Act(s;), forsome 0 < 7 < n,
thereexists j € { 1,...,n } such that « € ample(s;).

© JPK 25

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then TS = TS.

as Traces('fé) C Traces(TS), it follows TSCTS

proof sketch of reverse direction in lecture notes

© JPK

26

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle sgs1 ... s, 1IN f§,

there exists j € {1,...,n } such that ample(s;) = Act(s,).

e (A4’) implies the cycle condition (A4)

e (A4’) can be checked easily in DFS when backward edge is found

© JPK

27

Advanced model checking

Invariant checking with POR

e Invariant checking

— on state space generation, check whether each state satisfies prop. formula
— on finding a refuting state, (reversed) stack content yields counterexample

e Incorporating partial order reduction

— 0n encountering a new state, compute ample set satisfying (Al) through (A3)
— e.g., ample(s) = Act(FP;), enabled actions of a concurrent process

— enlarge ample(s) on demand using strong cycle condition (A4’)

— mark actions to keep track of which actions have been taking

© JPK 28

Advanced model checking

Depth-first search under POR (1)

Input: finite transition system TS and propositional formula
Output: "yes” if TS |= O®”, otherwise "no” plus a counterexample

set of states R := &; (* the set of reachable states *)
stack of states U := ¢; (* the empty stack *)
bool b := true; (* all states in R satisfy ® *)
while (I \ R # @ A b)do

lets € I\ R; (* choose an arbitrary initial state not in R *)

visit(s); (* perform a DFS for each unvisited initial state *)
od
if bthen

return(’yes”) (* TS |= "always o” *)
else

return("no”, reverse(U)) (* counterexample arises from the stack content *)

fi

© JPK 29

Advanced model checking

procedure visit (state s)

push(s,U); R:= R U {s}; (* mark s as reachable *)
compute ample(s) satisfying (A1)—(A3);
mark(s) := &; (* taken actions in s *)
repeat
s = top(U);
if ample(s’) = mark(s’) then
pop(U);b:=b A (s |= ®); (* all ample actions have been taken *)
else
let o € mark(s’) \ ample(s’)
mark(s’) := mark(s’) U {a}; (* mark o as taken *)
if a(s’) € R then
push(a(s),U); R:= R U {a(s")} (* a(s’) is a new reachable state *)

compute ample(a(s’)) satisfying (A1)—(A3);
mark(a(s’)) := @;

else
if s € U then ample(s) := Act(s); fi (* enlarge ample(s) for (A4) *)
fi
fi
until (U =€) vV —b)
endproc

© JPK 30

Advanced model checking

Process O:
while true {
K skip;
my : wait until (-b) {
ng : ... critical section . . .}
b := true;
¥

Example

Process 1:

while true {
lq : skip;

mi : wait until (b) {

ny : ... critical section . ..

b .= false;

© JPK

31

Advanced model checking

Transition system

© JPK 32

Advanced model checking

Reduced transition system

© JPK 33

