
Ample Set Conditions
Lecture #10 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 27, 2006

c© JPK

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S

– a reduced version of transition system TS such that cTS ∼= TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– at state s select a (small) subset of enabled actions in s

– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction

– obtain a high-level description of cTS (without generating TS)
⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction

– construct TS during LTL\© model checking

– if accept cycle is found, there is no need to generate entire cTS

c© JPK 1

Advanced model checking

Independence of actions

Let TS = (S, Act,→, I, AP, L) be action-deterministic and α �= β ∈ Act

• α and β are independent if for any s ∈ S with α, β ∈ Act(s):

β ∈ Act(α(s)) and α ∈ Act(β(s)) and α(β(s)) = β(α(s))

• α and β are dependent if α and β are not independent

• For A ⊆ Act and β ∈ Act \ A:

– β is independent of A if for any α ∈ A, β is independent of α

– β depends on A in TS if β ∈ Act \ A and α are dependent for some α ∈ A

c© JPK 2

Advanced model checking

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:

• � is a finite execution in s with action sequence β1 . . . βn α

• �′ is a finite execution in s with action sequence α β1 . . . βn

Then:

if α is a stutter action independent of {β1, . . . , βn } then �∼= �′

c© JPK 3

Advanced model checking

Permuting independent actions

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

can be extended to

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

tn = t

α

t0 β1
t1 β2

t2 β3
. . . βn−1

tn−1 βn

αααα

t0

α

c© JPK 4

Advanced model checking

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:

• ρ is an infinite execution in s with action sequence β1 β2 . . .

• ρ′ is an infinite execution in s with action sequence α β1 β2 . . .

Then:

if α is a stutter action independent of {β1, β2, . . . } then ρ∼= ρ′

c© JPK 5

Advanced model checking

The ample-set approach

• Partial-order reduction for LT properties using ample sets

– generate cTS from a high-level description of TS (e.g., program graph)
– . . . without the need for ever generating the entire transition system TS

• T̂S = (Ŝ, Act, ⇒ , I, AP, L′) where:

– bS contains the states that are reachable (under ⇒) from some s0 ∈ I

–
s α−→ s′ ∧ α ∈ ample(s)

s
α⇒ s

′

– L′(s) = L(s) for any s ∈ bS

• Constraints: correctness (∼=), effectivity and efficiency

c© JPK 6

Advanced model checking

Transforming executions

c© JPK 7

Advanced model checking

Transforming executions (case 1)
∃n > 0 such that α = βn+1 ∈ ample(s) and β1, . . . , βn /∈ ample(s)

Then ρ0 can be changed into ρ1:

ρ0 = u
γ1⇒ . . .

γm⇒ s
β1−−→ . . .

βn−−→ sn
α−−→ t

βn+2−−−−→ sn+2
βn+3−−−−→ . . .

ρ1 = u
γ1⇒ . . .

γm⇒ s
α⇒ t0

β1−−→ . . .
βn−−→ t

βn+2−−−−→ sn+2
βn+3−−−−→ . . .

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

common prefix �0 stutter-trace equivalent common suffix

execution fragments

m is the minimal index at which some non-ample action is taken

if α is a stutter action we have ρ0
∼= ρ1

c© JPK 8

Advanced model checking

Transforming executions (case 2)

For all i > 0, βi /∈ ample(s)

Then for any α ∈ ample(s), ρ0 can be changed into ρ1

ρ0 = u
γ1⇒ . . .

γm⇒ s
β1−−→ s1

β1−−→ s2
β2−−→ . . .

ρ1 = u
γ1⇒ . . .

γm⇒ s
α⇒ t0

β1−−→ t1
β1−−→ t2

β2−−→ . . .

︸ ︷︷ ︸ ︸ ︷︷ ︸

common prefix �0 stutter-trace equivalent execution fragments

m is the minimal index at which some non-ample action is taken

if α is a stutter action we have ρ0
∼= ρ1

c© JPK 9

Advanced model checking

Which actions to select?

(A1) Nonemptiness condition

Select in any state in cTS at least one action.

(A2) Dependency condition

For any finite execution in TS: an action depending on ample(s) can only occur
after some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.

(A4) Cycle condition

Any action in ample(si) with si on a cycle in cTS must be selected in some sj on
that cycle.

(A1) through (A3) apply to states in bS; (A4) to cycles in cTS

c© JPK 10

Advanced model checking

Example

c© JPK 11

Advanced model checking

Nonemptiness condition

(A1)

∅ �= ample(s) ⊆ Act(s)

• If a state has at least one direct successor in TS,
then it has least at one direct successor in T̂S

⇒ As TS has no terminal states, T̂S has no terminal states

c© JPK 12

Advanced model checking

Dependency condition

(A2) Dependency condition

Let s
β1−−→ s1

β2−−→ . . .
βn−−→ sn

α−−→ t be a finite execution

in TS such that α depends on ample(s).

Then: βi ∈ ample(s) for some 0 < i � n.

• In every (!) finite execution fragment of TS, an action depending on
ample(s) cannot occur before some action from ample(s) occurs first

• (A2) ensures that for any state s with ample(s) ⊂ Act(s),
any α ∈ ample(s) is independent of Act(s) \ ample(s)

c© JPK 13

Advanced model checking

Properties

• (A2) guarantees that any finite execution in TS is of the form:

� = s1
β1−−→ s2

β2−−→ . . .
βn−−→ sn

α−−→ t with α ∈ ample(s)

and βi independent of ample(s) for 0 < i � n.

– if α is a stutter action: shifting α to the beginning yields an equivalent execution
⇒ if � is pruned in TS, then an execution is obtained by first taking α in s

• (A2) guarantees that any infinite execution in TS is of the form:

s1
β1−−→ s2

β2−−→ . . . with βi independent of ample(s) for 0 < i � n.

– performing stutter action α ∈ ample(s) in s yields an equivalent execution

c© JPK 14

Advanced model checking

Properties

For any α ∈ ample(s) and s ∈ Reach(TS):

if ample(s) satisfies (A2) then α is independent of Act(s) \ ample(s)

For finite execution s = s0
β1−−→ . . .

βn−−→ sn in TS:

if ample(s) satisfies (A2) and {β1, . . . , βn } ∩ ample(s) = ∅, then:

α is independent of {β1, . . . , βn } and α ∈ Act(si) for 0 � i � n

c© JPK 15

Advanced model checking

A too simplistic dependency condition (1)

(A2’)

If ample(s) �= Act(s)

then α ∈ ample(s) is independent of Act(s) \ ample(s).

this is a property of (A2), but in itself too weak: see next example

c© JPK 16

Advanced model checking

A too simplistic dependency condition (2)

c© JPK 17

Advanced model checking

Stutter condition

(A3)

If ample(s) �= Act(s) then any α ∈ ample(s) is a stutter action.

• All ample actions of a non-fully expanded state are stutter actions

• (A3) ensures that:

– changing β1 , . . . βn α into α β1 . . . βn, and
– changing β1 β2 β3 . . . into α β1 β2 β3 . . .

yields stutter-equivalent executions

c© JPK 18

Advanced model checking

Correctness of transformation (1)

c© JPK 19

Advanced model checking

Necessity of cycle condition

c© JPK 20

Advanced model checking

Necessity of cycle condition: example (1)

s0 ∅

s1 { a }

β

γ

t0 ∅

t1∅ t3 ∅
α2

α3α1

transition systems TS1 and TS2

c© JPK 21

Advanced model checking

Necessity of cycle condition: example (1)

〈s0, t0〉∅

〈s0, t1〉∅ 〈s0, t3〉∅α2

α3α1

〈s1, t0〉{ a }

〈s1, t1〉{ a } 〈s1, t3〉{ a }α2

α3α1

β β

β

γ

γ

γ

〈s0, t0〉∅

〈s0, t1〉∅ 〈s0, t3〉∅α2

α3α1

TS1 ||| TS2 (left) and ̂TS1 ||| TS2 (right)

TS1 ||| TS2 �|= �¬a but ̂TS1 ||| TS2 |= �¬a

c© JPK 22

Advanced model checking

Cycle condition

(A4) Cycle condition

For any cycle s0 s1 . . . sn in T̂S and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

any enabled action in some state on a cycle must be selected in some state on that
cycle

c© JPK 23

Advanced model checking

Example

c© JPK 24

Advanced model checking

Overview of ample-set conditions

(A1) Nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . .

βn−−→ sn
α−→ t be a finite execution fragment in TS such that α

depends on ample(s). Then: βi ∈ ample(s) for some 0 < i � n.

(A3) Stutter condition

If ample(s) �= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition

For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

c© JPK 25

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then T̂S ∼= TS.

as Traces(cTS) ⊆ Traces(TS), it follows cTS
 TS

proof sketch of reverse direction in lecture notes

c© JPK 26

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle s0 s1 . . . sn in T̂S,

there exists j ∈ { 1, . . . , n } such that ample(sj) = Act(sj).

• (A4’) implies the cycle condition (A4)

• (A4’) can be checked easily in DFS when backward edge is found

c© JPK 27

Advanced model checking

Invariant checking with POR

• Invariant checking

– on state space generation, check whether each state satisfies prop. formula Φ

– on finding a refuting state, (reversed) stack content yields counterexample

• Incorporating partial order reduction

– on encountering a new state, compute ample set satisfying (A1) through (A3)
– e.g., ample(s) = Act(Pi), enabled actions of a concurrent process
– enlarge ample(s) on demand using strong cycle condition (A4’)
– mark actions to keep track of which actions have been taking

c© JPK 28

Advanced model checking

Depth-first search under POR (1)

Input: finite transition system TS and propositional formula Φ
Output: ”yes” if TS |= �Φ”, otherwise ”no” plus a counterexample

set of states R := ∅; (* the set of reachable states *)
stack of states U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
while (I \ R �= ∅ ∧ b) do

let s ∈ I \ R; (* choose an arbitrary initial state not in R *)
visit(s); (* perform a DFS for each unvisited initial state *)

od
if b then

return(”yes”) (* TS |= ”always Φ” *)
else

return(”no”, reverse(U)) (* counterexample arises from the stack content *)
fi

c© JPK 29

Advanced model checking

procedure visit (state s)
push(s, U); R := R ∪ { s }; (* mark s as reachable *)
compute ample(s) satisfying (A1)–(A3);
mark(s) := ∅; (* taken actions in s *)
repeat

s′ := top(U);
if ample(s′) = mark(s′) then

pop(U); b := b ∧ (s′ |= Φ); (* all ample actions have been taken *)
else

let α ∈ mark(s′) \ ample(s′)
mark(s′) := mark(s′) ∪ {α }; (* mark α as taken *)
if α(s′) �∈ R then

push(α(s′), U); R := R ∪ {α(s′) } (* α(s′) is a new reachable state *)
compute ample(α(s′)) satisfying (A1)–(A3);
mark(α(s′)) := ∅;

else
if s′ ∈ U then ample(s) := Act(s); fi (* enlarge ample(s) for (A4) *)

fi
fi

until ((U = ε) ∨ ¬ b)
endproc

c© JPK 30

Advanced model checking

Example

Process 0:

while true {
�0 : skip;

m0 : wait until (¬b) {
n0 : . . . critical section . . .}

b := true;

}

Process 1:

while true {
�1 : skip;

m1 : wait until (b) {
n1 : . . . critical section . . .}

b := false;

}

c© JPK 31

Advanced model checking

Transition system

〈�0, �1,¬b〉〈�0, m1,¬b〉

〈m0, �1,¬b〉〈m0, m1,¬b〉

〈n0, �1,¬b〉
{ a }

〈n0, m1,¬b〉
{ a }

〈�0, �1, b〉 〈m0, �1, b〉

〈�0, m1, b〉 〈m0, m1, b〉

〈�0, n1, b〉
{ a }

〈m0, n1, b〉
{ a }

α1

α1

α1

δ1

δ0 δ0

δ1

β0

δ1

β0

α0

α0

α0

δ0

δ1δ1

δ0

β1

δ0

β1

γ0

γ1

γ1

γ0

c© JPK 32

Advanced model checking

Reduced transition system

〈�0, �1,¬b〉

〈m0, �1,¬b〉〈m0, m1,¬b〉

〈n0, m1,¬b〉
{ a }

〈�0, �1, b〉

〈�0, m1, b〉 〈m0, m1, b〉

〈m0, n1, b〉
{ a }

α1

α1

δ0

δ1

β0

α0

α0

δ1

δ0

β1

γ0

γ1

c© JPK 33

