© JPK

On-The-Fly Partial Order Reduction
Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 4, 2006

Advanced model checking

Outline of partial-order reduction

e During state space generation obtain TS

— areduced version of transition system TS such that TSTS
= this preserves all stutter sensitive LT properties, such as LTL\
— at state s select a (small) subset of enabled actions in s
— different approaches on how to select such set: consider Peled’s ample sets

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS during LTL\~» model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK

Advanced model checking

Ample-set conditions for LTL

(A1) Nonemptiness condition
o # ample(s) C Act(s)

(A2) Dependency condition
Let s 2L, . o s, — t be a finite execution fragment in TS such that «
depends on ample(s). Then: 8, € ample(s) forsome 0 < ¢ < n.

(A3) Stutter condition

If ample(s) # Act(s) then any @ € ample(s) is a stutter action.
(A4) Cycle condition

For any cycle sgps1 ... s, in TS and o € Act(s;), forsome 0 < i < n,
there exists j € {1,...,n } such that « € ample(s;).

© JPK 2

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

If conditions (Al) through (A4) are satisfied, then TS =~ TS.

© JPK

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle sgs1 ... s, IN 'I/'§,

there exists j € {1,...,n } such that ample(s;) = Act(s,).

© JPK

Advanced model checking

Invariant checking with POR

e Invariant checking
— on state space generation, check whether each state satisfies prop. formula &
— on finding a refuting state, (reversed) stack content yields counterexample

e Incorporating partial order reduction

— 0n encountering a new state, compute ample set satisfying (Al) through (A3)
— e.g., ample(s) = Act(FP;), enabled actions of a concurrent process

— enlarge ample(s) on demand using the strong cycle condition (A4’)

— mark actions to keep track of which actions have been taking

= Nested depth-first search can be extended similarly

— this yields a model-checking procedure with on-the-fly POR for LTL\

© JPK 5

Advanced model checking

Process O:
while true {
K skip;
my : wait until (-b) {
ng : ... critical section . . .}
b := true;
¥

Example

Process 1:

while true {
lq : skip;

mi : wait until (b) {

ny : ... critical section . ..

b .= false;

© JPK

Advanced model checking

Transition system

© JPK .

Advanced model checking

Reduced transition system

© JPK 8

Advanced model checking

Computing ample sets

e Aim: determine ample sets by a static analysis of channel system CS
TS =TS(CS) where CS=[PG;]|...|PG,]

— state s in TS has the form (¢4, ..., ¥4,,n,&) where
— £, denotes the current location (control point) of PG,
— n is the variable valuation, and & the channel valuation

e Basic idea:

— partition the set of processes P through P,, into two blocks

— one block P;,,...P; such that Pij does not communicate with P; outside
block

— intuition: ample(s) = Act;; (s) U ... U Act;, (s), for state s in TS(CS)

— for simplicity: mostly k=1 is considered: ample(s) = Act;(s), for some ¢

%

© JPK 9

Advanced model checking

Checking ample set conditions
Let Act;(s) C Act(s):

e Nonemptiness condition (Al):

— check whether process P; can perform an action in state s, i.e., Act;(s) # &

e Stutter condition (A3):

— « IS a stutter action if the atomic propositions do neither refer to:
x a variable that is modified by «, nor
« the source or target location of edges of the form ¢ £ ¢/, nor
x the content of channel c in case « is a receive or send action on c

e Cycle condition (A4):
— fully expand s if during its (nested) DFS a backward edge is found

e Dependency condition (A2): Hard!

© JPK 10

Advanced model checking

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite, action-deterministic
transition system TS equals that of checking TS’ |= 3<¢a, for some a € AP,

where TS' is a finite, action-deterministic transition system of the same size as TS.

© JPK 11

Advanced model checking

Proof

© JPK

12

Advanced model checking

Conservative heuristic for dependencies

e Actions that refer to the same variable are dependent

— butx :=y+ 1and x := y + z are not

e Actions that modify the same variable are dependent

— butz := z + y and x := z are not, if they are never enabled when y # 0

e Actions that belong to the same process are dependent

e Send (receive) actions on the same channel are dependent

— but c!v and ¢?x for channel ¢ with capacity one can never be enabled both

e Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D C Act x Act

© JPK 13

Advanced model checking

Local criteria for (A2)

To ensure condition (A2) check the conditions:

(A2.1) Any 8 € Act; is independent of Act;(s) for ¢ # j

e inspect program graphs PG, and check whether («, 3) ¢ D for « € Act; and
B e ACtj
e note: all actions local to PG; are considered to be dependent
(A2.2) Any 8 € Act; \ Act(s) may not become enabled
through the activities of some process P, with i # j

e considers = (¢y,...,4;,...,¢,,m &) and B € Act; \ Act(s)

e e.4.,In¥¢; 94 Eg in PG,, g does not hold or 3 is blocked
e ...e.0., asend action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then ample(s) = Act;(s) satisfies (A2)

© JPK 14

Advanced model checking

Input: state s = (¢1,...,0n,n,&)InN 'I/'§; Output: ample(s) satisfying (A1)-(A3)

if (3Ji. Act;(s) = Act(s)) then return Act(s) fi;
fori: =1 to n do (* check whether ample(s) = Act;(s) is possible *)
if (Act; # @ and Act;(s) only contains stutter actions) then

if (35 # i. Act;(s) x Act;(s) N D = @) then

b .= true; (* (A2.1) holds *)
if 3¢; 9 Eg in PG; where g is a handshaking action then

b .= false; (* (A2.2) violated *)
else

for all ¢; 9:4 ¢;in PG; and ¢ hy ¢ in PG, with j # 4 and £; ~* £ do

if (n = g and v modifies some variable that occurs in g) or
(8 and ~ are complementary communication actions) then

b .= false; (* (A2.2) violated *)
fi
od
fi
if (b) then return Act;(s) fi (* (A1)-(A3) hold *)
fi
fi
od
return Act(s) (* ample(s) := Act(s) *)

© JPK 15

Advanced model checking

The branching-time ample approach

e Linear-time ample approach:

— during state space generation obtain TS such that TS TS
= this preserves all stutter sensitive LT properties, such as LTL\
— static partial order reduction: generate TS prior to verification
— on-the-fly partial order reduction: generate TS during the verification
— generation of TS by means of static analysis of program graphs

e Branching-time ample approach

— during state space generation obtain TS such that TS ~% TS
= this preserves all CTL, 5 and CTL{ - formulas
— static partial order reduction only

as ~% is strictly finer than 22, try (A1) through (A4)

© JPK 16

Advanced model checking

transition system TS

© JPK

17

Advanced model checking

Conditions (A1)-(A4) are insufficient

© JPK

18

Advanced model checking

Branching condition

(A5)
If ample(s) # Act(s) then |[ample(s)| = 1

© JPK 19

Advanced model checking

A sound reduction

© JPK

20

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then TS ~%v TS,

proof: show that (A1)-(A5) imply a normed bisimulation between TS and TS

normed bisimulation is strictly finer than %"

© JPK

21

Advanced model checking

Ample-set conditions for CTL

(A1) Nonemptiness condition
o # ample(s) C Act(s)
(A2) Dependency condition
b1 Bn o

Let s —— ... Sn t be a finite execution fragment in TS such that «

depends on ample(s). Then: 3; € ample(s) forsome 0 < i < n.
(A3) Stutter condition

If ample(s) # Act(s) then any @ € ample(s) is a stutter action.
(A4) Cycle condition

For any cycle sgps1 ... s, in TS and o € Act(s;), forsome 0 < i < n,
there exists j € {1,...,n } such that « € ample(s;).

(A5) Branching condition
If ample(s) # Act(s) then |ample(s)| = 1

© JPK

22

