

On-The-Fly Partial Order Reduction

Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 4, 2006

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system TS such that $\widehat{TS} \cong TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\backslash\circlearrowright}$
 - at state s select a (small) subset of enabled actions in s
 - different approaches on how to select such set: consider Peled's *ample sets*
- *Static* partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
⇒ POR is preprocessing phase of model checking
- *Dynamic (or: on-the-fly)* partial-order reduction
 - construct \widehat{TS} during $LTL_{\backslash\circlearrowright}$ model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Ample-set conditions for LTL

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in TS such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \cong TS$.

Strong cycle condition

(A4') Strong cycle condition

On any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} ,
there exists $j \in \{1, \dots, n\}$ such that $\text{ample}(s_j) = \text{Act}(s_j)$.

Invariant checking with POR

- Invariant checking
 - on state space generation, check whether each state satisfies prop. formula Φ
 - on finding a refuting state, (reversed) stack content yields counterexample
- Incorporating partial order reduction
 - on encountering a new state, compute ample set satisfying (A1) through (A3)
 - e.g., $\text{ample}(s) = \text{Act}(P_i)$, enabled actions of a concurrent process
 - enlarge $\text{ample}(s)$ on demand using the strong cycle condition (A4')
 - mark actions to keep track of which actions have been taking

⇒ Nested depth-first search can be extended similarly

- this yields a model-checking procedure with on-the-fly POR for $\text{LTL}_{\setminus \Diamond}$

Example

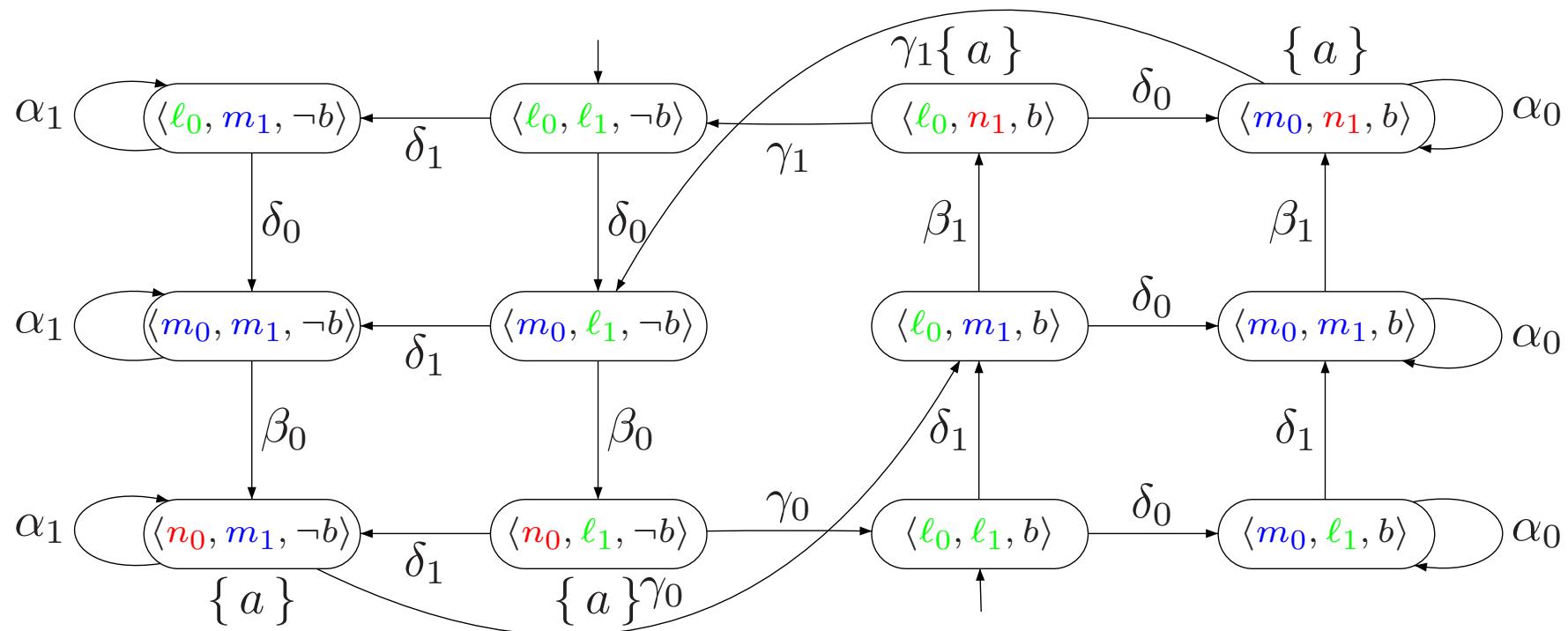
Process 0:

```
while true {  
    l0 : skip;  
    m0 : wait until ( $\neg b$ ) {  
        n0 : ... critical section ...}  
        b := true;  
    }  
}
```

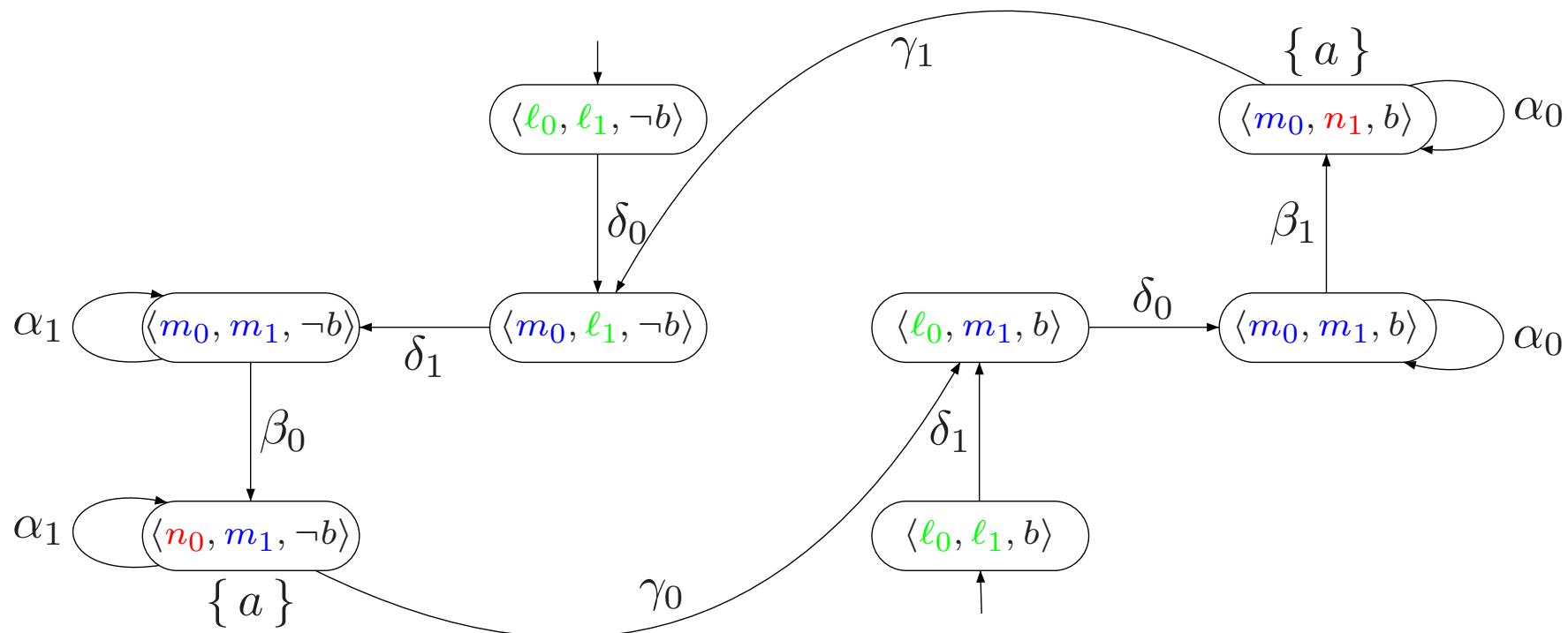
Process 1:

```
while true {  
    l1 : skip;  
    m1 : wait until (b) {  
        n1 : ... critical section ...}  
        b := false;  
    }  
}
```

Transition system



Reduced transition system



Computing ample sets

- Aim: determine ample sets by a **static analysis** of channel system CS

$$TS = TS(CS) \quad \text{where} \quad CS = [PG_1 \mid \dots \mid PG_n]$$

- state s in TS has the form $\langle \ell_1, \dots, \ell_n, \eta, \xi \rangle$ where
 - ℓ_i denotes the current location (control point) of PG_i
 - η is the variable valuation, and ξ the channel valuation
- Basic idea:
 - partition the set of processes \mathcal{P}_1 through \mathcal{P}_n into two blocks
 - one block $\mathcal{P}_{i_1}, \dots, \mathcal{P}_{i_k}$ such that \mathcal{P}_{i_j} does not communicate with \mathcal{P}_i outside block
 - intuition: $\text{ample}(s) = \text{Act}_{i_1}(s) \cup \dots \cup \text{Act}_{i_k}(s)$, for state s in $TS(CS)$
 - for simplicity: mostly $k=1$ is considered: $\text{ample}(s) = \text{Act}_i(s)$, for some i

Checking ample set conditions

Let $Act_i(s) \subset Act(s)$:

- Nonemptiness condition (A1):
 - check whether process \mathcal{P}_i can perform an action in state s , i.e., $Act_i(s) \neq \emptyset$
- Stutter condition (A3):
 - α is a stutter action if the atomic propositions do neither refer to:
 - * a variable that is modified by α , nor
 - * the source or target location of edges of the form $\ell \xrightarrow{g:\alpha} \ell'$, nor
 - * the content of channel c in case α is a receive or send action on c
- Cycle condition (A4):
 - fully expand s if during its (nested) DFS a backward edge is found
- Dependency condition (A2): Hard!

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite, action-deterministic transition system TS equals that of checking $TS' \models \exists \diamond a$, for some $a \in AP$, where TS' is a finite, action-deterministic transition system of the same size as TS .

Proof

Conservative heuristic for dependencies

- Actions that refer to the same variable are dependent
 - but $x := y + 1$ and $x := y + z$ are not
- Actions that modify the same variable are dependent
 - but $x := z + y$ and $x := z$ are not, if they are never enabled when $y \neq 0$
- Actions that belong to the same process are dependent
- Send (receive) actions on the same channel are dependent
 - but $c!v$ and $c?x$ for channel c with capacity one can never be enabled both
- Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation $D \subseteq \text{Act} \times \text{Act}$

Local criteria for (A2)

To ensure condition (A2) check the conditions:

(A2.1) Any $\beta \in \text{Act}_j$ is independent of $\text{Act}_i(s)$ for $i \neq j$

- inspect program graphs PG_j and check whether $(\alpha, \beta) \notin D$ for $\alpha \in \text{Act}_i$ and $\beta \in \text{Act}_j$
- note: all actions local to PG_i are considered to be dependent

(A2.2) Any $\beta \in \text{Act}_i \setminus \text{Act}(s)$ may not become enabled

through the activities of some process \mathcal{P}_j with $i \neq j$

- consider $s = \langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle$ and $\beta \in \text{Act}_i \setminus \text{Act}(s)$
- e.g., in $\ell_i \xrightarrow{g:\beta} \ell'_i$ in PG_i , g does not hold or β is blocked
- ... e.g., a send action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then $\text{ample}(s) = \text{Act}_i(s)$ satisfies (A2)

Input: state $s = \langle \ell_1, \dots, \ell_n, \eta, \xi \rangle$ in \widehat{TS} ; *Output:* $\text{ample}(s)$ satisfying (A1)-(A3)

```

if ( $\exists i. \text{Act}_i(s) = \text{Act}(s)$ ) then return  $\text{Act}(s)$  fi;
for  $i = 1$  to  $n$  do (* check whether  $\text{ample}(s) = \text{Act}_i(s)$  is possible *)
if ( $\text{Act}_i \neq \emptyset$  and  $\text{Act}_i(s)$  only contains stutter actions) then
  if ( $\exists j \neq i. \text{Act}_i(s) \times \text{Act}_j(s) \cap D = \emptyset$ ) then
     $b := \text{true}$ ; (* (A2.1) holds *)
    if  $\exists \ell_i \xrightarrow{g:\beta} \ell'_i$  in  $PG_i$  where  $\beta$  is a handshaking action then
       $b := \text{false}$ ; (* (A2.2) violated *)
    else
      for all  $\ell_i \xrightarrow{g:\beta} \ell'_i$  in  $PG_i$  and  $\ell'_j \xrightarrow{h:\gamma} \ell''_j$  in  $PG_j$  with  $j \neq i$  and  $\ell_j \rightsquigarrow^* \ell'_j$  do
        if ( $\eta \not\models g$  and  $\gamma$  modifies some variable that occurs in  $g$ ) or
          ( $\beta$  and  $\gamma$  are complementary communication actions) then
             $b := \text{false}$ ; (* (A2.2) violated *)
        fi
      od
    fi
    if ( $b$ ) then return  $\text{Act}_i(s)$  fi (* (A1)-(A3) hold *)
  fi
fi
od
return  $\text{Act}(s)$  (*  $\text{ample}(s) := \text{Act}(s)$  *)

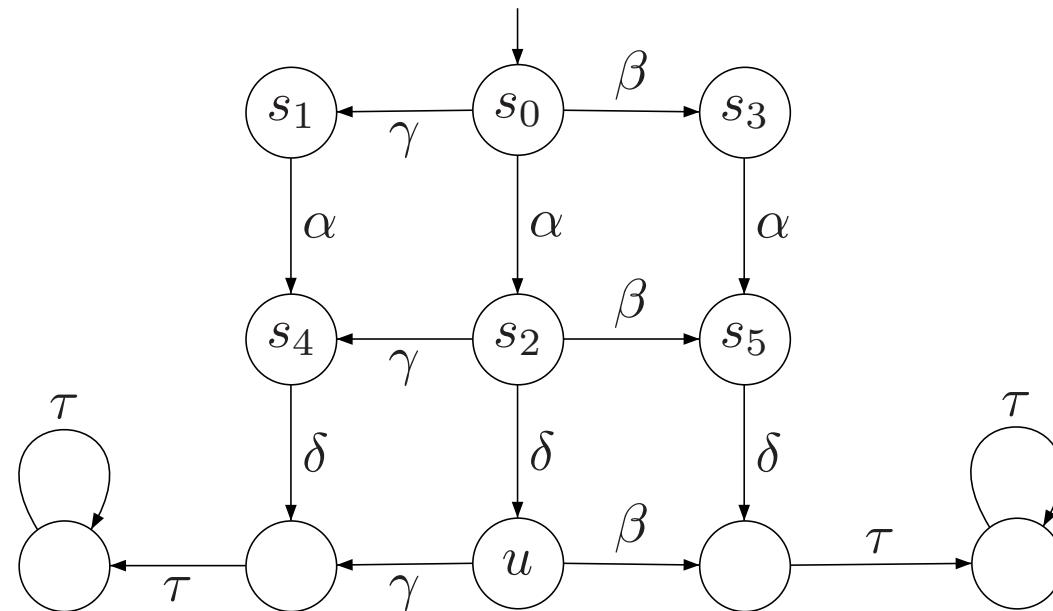
```

The branching-time ample approach

- Linear-time ample approach:
 - during state space generation obtain \widehat{TS} such that $\widehat{TS} \cong TS$
⇒ this preserves all stutter sensitive LT properties, such as $LTL_{\setminus \Diamond}$
 - static partial order reduction: generate \widehat{TS} prior to verification
 - on-the-fly partial order reduction: generate \widehat{TS} during the verification
 - generation of \widehat{TS} by means of static analysis of program graphs
- Branching-time ample approach
 - during state space generation obtain \widehat{TS} such that $\widehat{TS} \approx^{div} TS$
⇒ this preserves all $CTL_{\setminus \Diamond}$ and $CTL_{\setminus \Diamond}^*$ formulas
 - static partial order reduction only

as \approx^{div} is strictly finer than \cong , try (A1) through (A4)

Example



transition system TS

Conditions (A1)-(A4) are insufficient

Branching condition

(A5)

If $ample(s) \neq Act(s)$ then $|ample(s)| = 1$

A sound reduction

Correctness theorem

For action-deterministic, finite TS without terminal states:
if conditions (A1) through (A5) are satisfied, then $\widehat{TS} \approx^{\text{div}} TS$.

proof: show that (A1)-(A5) imply a normed bisimulation between TS and \widehat{TS}
normed bisimulation is strictly finer than \approx^{div}

Ample-set conditions for CTL

(A1) Nonemptiness condition

$$\emptyset \neq \text{ample}(s) \subseteq \text{Act}(s)$$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in \widehat{TS} such that α depends on $\text{ample}(s)$. Then: $\beta_i \in \text{ample}(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $\text{ample}(s) \neq \text{Act}(s)$ then any $\alpha \in \text{ample}(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \dots s_n$ in \widehat{TS} and $\alpha \in \text{Act}(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \dots, n\}$ such that $\alpha \in \text{ample}(s_j)$.

(A5) Branching condition

If $\text{ample}(s) \neq \text{Act}(s)$ then $|\text{ample}(s)| = 1$