
On-The-Fly Partial Order Reduction
Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 4, 2006

c© JPK

Advanced model checking

Outline of partial-order reduction

• During state space generation obtain T̂S

– a reduced version of transition system TS such that cTS ∼= TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– at state s select a (small) subset of enabled actions in s

– different approaches on how to select such set: consider Peled’s ample sets

• Static partial-order reduction

– obtain a high-level description of cTS (without generating TS)
⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction

– construct cTS during LTL\© model checking

– if accept cycle is found, there is no need to generate entire cTS

c© JPK 1

Advanced model checking

Ample-set conditions for LTL

(A1) Nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . .

βn−−→ sn
α−→ t be a finite execution fragment in TS such that α

depends on ample(s). Then: βi ∈ ample(s) for some 0 < i � n.

(A3) Stutter condition

If ample(s) �= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition

For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

c© JPK 2

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then T̂S ∼= TS.

c© JPK 3

Advanced model checking

Strong cycle condition

(A4’) Strong cycle condition

On any cycle s0 s1 . . . sn in T̂S,

there exists j ∈ { 1, . . . , n } such that ample(sj) = Act(sj).

c© JPK 4

Advanced model checking

Invariant checking with POR

• Invariant checking

– on state space generation, check whether each state satisfies prop. formula Φ

– on finding a refuting state, (reversed) stack content yields counterexample

• Incorporating partial order reduction

– on encountering a new state, compute ample set satisfying (A1) through (A3)
– e.g., ample(s) = Act(Pi), enabled actions of a concurrent process
– enlarge ample(s) on demand using the strong cycle condition (A4’)
– mark actions to keep track of which actions have been taking

⇒ Nested depth-first search can be extended similarly

– this yields a model-checking procedure with on-the-fly POR for LTL\©

c© JPK 5

Advanced model checking

Example

Process 0:

while true {
�0 : skip;

m0 : wait until (¬b) {
n0 : . . . critical section . . .}

b := true;

}

Process 1:

while true {
�1 : skip;

m1 : wait until (b) {
n1 : . . . critical section . . .}

b := false;

}

c© JPK 6

Advanced model checking

Transition system

〈�0, �1,¬b〉〈�0, m1,¬b〉

〈m0, �1,¬b〉〈m0, m1,¬b〉

〈n0, �1,¬b〉
{ a }

〈n0, m1,¬b〉
{ a }

〈�0, �1, b〉 〈m0, �1, b〉

〈�0, m1, b〉 〈m0, m1, b〉

〈�0, n1, b〉
{ a }

〈m0, n1, b〉
{ a }

α1

α1

α1

δ1

δ0 δ0

δ1

β0

δ1

β0

α0

α0

α0

δ0

δ1δ1

δ0

β1

δ0

β1

γ0

γ1

γ1

γ0

c© JPK 7

Advanced model checking

Reduced transition system

〈�0, �1,¬b〉

〈m0, �1,¬b〉〈m0, m1,¬b〉

〈n0, m1,¬b〉
{ a }

〈�0, �1, b〉

〈�0, m1, b〉 〈m0, m1, b〉

〈m0, n1, b〉
{ a }

α1

α1

δ0

δ1

β0

α0

α0

δ1

δ0

β1

γ0

γ1

c© JPK 8

Advanced model checking

Computing ample sets

• Aim: determine ample sets by a static analysis of channel system CS

TS = TS(CS) where CS = [PG1 | . . . | PGn]

– state s in TS has the form 〈�1, . . . , �n, η, ξ〉 where
– �i denotes the current location (control point) of PGi

– η is the variable valuation, and ξ the channel valuation

• Basic idea:

– partition the set of processes P1 through Pn into two blocks
– one block Pi1

, . . .Pik
such that Pij

does not communicate with Pi outside
block

– intuition: ample(s) = Acti1(s) ∪ . . . ∪ Actik(s), for state s in TS(CS)

– for simplicity: mostly k=1 is considered: ample(s) = Acti(s), for some i

c© JPK 9

Advanced model checking

Checking ample set conditions
Let Acti(s) ⊂ Act(s):

• Nonemptiness condition (A1):

– check whether process Pi can perform an action in state s, i.e., Acti(s) �= ∅

• Stutter condition (A3):

– α is a stutter action if the atomic propositions do neither refer to:
∗ a variable that is modified by α, nor
∗ the source or target location of edges of the form �

g:α
� �′, nor

∗ the content of channel c in case α is a receive or send action on c

• Cycle condition (A4):

– fully expand s if during its (nested) DFS a backward edge is found

• Dependency condition (A2): Hard!

c© JPK 10

Advanced model checking

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite, action-deterministic

transition system TS equals that of checking TS′ |= ∃�a, for some a ∈ AP,

where TS′ is a finite, action-deterministic transition system of the same size as TS.

c© JPK 11

Advanced model checking

Proof

c© JPK 12

Advanced model checking

Conservative heuristic for dependencies

• Actions that refer to the same variable are dependent

– but x := y + 1 and x := y + z are not

• Actions that modify the same variable are dependent

– but x := z + y and x := z are not, if they are never enabled when y �= 0

• Actions that belong to the same process are dependent

• Send (receive) actions on the same channel are dependent

– but c!v and c?x for channel c with capacity one can never be enabled both

• Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D ⊆ Act × Act

c© JPK 13

Advanced model checking

Local criteria for (A2)
To ensure condition (A2) check the conditions:

(A2.1) Any β ∈ Actj is independent of Acti(s) for i �= j

• inspect program graphs PGj and check whether (α, β) �∈ D for α ∈ Acti and
β ∈ Actj

• note: all actions local to PGi are considered to be dependent

(A2.2) Any β ∈ Acti \ Act(s) may not become enabled

through the activities of some process Pj with i �= j

• consider s = 〈�1, . . . , �i, . . . , �n, η, ξ〉 and β ∈ Acti \ Act(s)

• e.g., in �i
g:β
� �′i in PGi, g does not hold or β is blocked

• . . . e.g., a send action to a full channel, or a receive on an empty channel

if (A2.1) and (A2.2) hold, then ample(s) = Acti(s) satisfies (A2)

c© JPK 14

Advanced model checking

Input: state s = 〈�1, . . . , �n, η, ξ〉 in cTS; Output: ample(s) satisfying (A1)-(A3)

if (∃i. Acti(s) = Act(s)) then return Act(s) fi;
for i = 1 to n do (* check whether ample(s) = Acti(s) is possible *)
if (Acti �= ∅ and Acti(s) only contains stutter actions) then

if (∃j �= i. Acti(s) × Actj(s) ∩ D = ∅) then
b := true; (* (A2.1) holds *)

if ∃�i
g:β
� �′i in PGi where β is a handshaking action then

b := false; (* (A2.2) violated *)
else

for all �i
g:β
� �′i in PGi and �′j

h:γ
� �′′j in PGj with j �= i and �j �∗ �′j do

if (η �|= g and γ modifies some variable that occurs in g) or
(β and γ are complementary communication actions) then

b := false; (* (A2.2) violated *)
fi

od
fi
if (b) then return Acti(s) fi (* (A1)-(A3) hold *)

fi
fi
od
return Act(s) (* ample(s) := Act(s) *)

c© JPK 15

Advanced model checking

The branching-time ample approach

• Linear-time ample approach:

– during state space generation obtain cTS such that cTS∼= TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– static partial order reduction: generate cTS prior to verification
– on-the-fly partial order reduction: generate cTS during the verification
– generation of cTS by means of static analysis of program graphs

• Branching-time ample approach

– during state space generation obtain cTS such that cTS ≈div TS
⇒ this preserves all CTL\© and CTL∗

\© formulas
– static partial order reduction only

as ≈div is strictly finer than ∼= , try (A1) through (A4)

c© JPK 16

Advanced model checking

Example

s0s1

s2

s3

s4

u

s5

γ

α

β

α α

δ

γ
β

δ δ

γ
β

τ
τ

τ τ

transition system TS

c© JPK 17

Advanced model checking

Conditions (A1)-(A4) are insufficient

c© JPK 18

Advanced model checking

Branching condition

(A5)

If ample(s) �= Act(s) then |ample(s)| = 1

c© JPK 19

Advanced model checking

A sound reduction

c© JPK 20

Advanced model checking

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then T̂S ≈div TS.

proof: show that (A1)-(A5) imply a normed bisimulation between TS and cTS

normed bisimulation is strictly finer than ≈div

c© JPK 21

Advanced model checking

Ample-set conditions for CTL

(A1) Nonemptiness condition

∅ �= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . .

βn−−→ sn
α−→ t be a finite execution fragment in TS such that α

depends on ample(s). Then: βi ∈ ample(s) for some 0 < i � n.

(A3) Stutter condition

If ample(s) �= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition

For any cycle s0 s1 . . . sn in cTS and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

(A5) Branching condition

If ample(s) �= Act(s) then |ample(s)| = 1

c© JPK 22

