
Binary Decision Diagrams
Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 7, 2006

c© JPK

Advanced model checking

Boolean functions
• Boolean functions f : B

n → B for n � 0 where B = { 0, 1 }
– examples: f(x1, x2) = x1 ∧ (x2 ∨ ¬x1), and f(x1, x2) = x1 ↔ x2

• Finite sets are boolean functions

– let |S| = N and 2n−1 < N � 2n

– encode any element s ∈ S as boolean vector of length n: [[]] : S → B
n

– T ⊆ S is represented by fT such that:

fT ([[s]]) = 1 iff s ∈ T

– this is the characteristic function of T

• Relations are boolean functions

– R ⊆ S × S is represented by fR such that:

fR([[s]], [[t]]) = 1 iff (s, t) ∈ R

c© JPK 1

Advanced model checking

Representing boolean functions
• Truth tables

– very space inefficient (2n lines)
– satisfiability and equivalence check: easy; boolean operations also easy
– . . . but have to consider exponentially many lines (so are hard)

• Propositional formulas

– more compact representation
– satisfiability problem is NP-complete (Cook’s theorem)
– boolean operations are just syntactic operations

• . . . in Disjunctive Normal Form (DNF)

– satisfiability is easy: find a disjunct that does have complementary literals
– negation expensive (dnf of ¬Φ may be exponentially longer than Φ)
– conjunction complicated (Φ ∧ (Ψ1 ∨ Ψ2) ≡ (Φ ∧ Ψ1) ∨ (Φ ∧ Ψ2)

• . . . in Conjunctive Normal Form (CNF)

c© JPK 2

Advanced model checking

Representing boolean functions

representation compact? sat equ ∧ ∨ ¬
propositional

formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard

CNF sometimes hard easy easy hard hard

(ordered)
truth table never hard hard hard hard hard

c© JPK 3

Advanced model checking

Representing boolean functions

representation compact? sat equ ∧ ∨ ¬
propositional

formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard

CNF sometimes hard easy easy hard hard

(ordered)
truth table never hard hard hard hard hard

reduced ordered
binary decision diagram often easy easy medium medium easy

c© JPK 4

Advanced model checking

Explicitly representing transition systems

TS = (S, Act,→, I, AP, L) with |S| = N , |Act| = M and |AP| = K:

• Identify the N states by numbers

• Represent the set of initial states I as boolean vector i

– i(sj) = 1 if and only if state sj ∈ I

• Represent α−−→ by M boolean matrices Tα of size N×N

– Tα(si, sj) = 1 if and only if si
α−→ sj

• Represent L by an N×K-boolean matrix L

– L(si, aj) = 1 if and only if aj ∈ L(si)

⇒ Use sparse matrix representations for T and L

c© JPK 5

Advanced model checking

Example (no actions)

s0 s1

s3 s2

a

b{ a, b }

∅

i =




1

0

1

0


 and T =




0 1 0 1

0 1 1 0

0 1 1 1

1 0 1 1


 and L =




0 0

0 1

1 0

1 1




for simplicity, actions are omitted here

c© JPK 6

Advanced model checking

Transition systems as boolean functions
• Assume each state is uniquely labeled

– L(s) = L(s′) implies s = s′

– no restriction: if needed extend AP and label states uniquely

• Assume a fixed total order on propositions: a1 < a2 < . . . < aK

• Represent a state by a boolean function

– over the boolean variables x1 through xK such that

[[s]] = x
∗
1 ∧ x

∗
2 ∧ . . . ∧ x

∗
K

– where the literal x∗
i equals xi if ai ∈ L(s), and ¬xi otherwise

⇒ no need to explicitly represent function L

• Represent I and → by their characteristic (boolean) functions

– e.g., f→([[s]], [[α]], [[t]]) = 1 if and only if s α−→ t

c© JPK 7

Advanced model checking

A small example

c© JPK 8

Advanced model checking

An example (no actions)

s0 s1

s3 s2

a

b{ a, b }

∅

• States:

state bit-vector boolean function
s0 〈0, 0〉 ¬x1 ∧ ¬x2

s1 〈0, 1〉 ¬x1 ∧x2

s2 〈1, 0〉 x1 ∧ ¬x2

s3 〈1, 1〉 x1 ∧ x2

• Initial states: fI(x1, x2) = (¬x1 ∧ ¬x2) ∨ (x1 ∧ ¬x2)

c© JPK 9

Advanced model checking

Example (continued)

• Transition relation:

f→ 〈0, 0〉 〈0, 1〉 〈1, 0〉 〈1, 1〉
〈0, 0〉 0 1 0 1
〈0, 1〉 0 1 1 0
〈1, 0〉 0 1 1 1
〈1, 1〉 1 0 1 1

• Alternatively: f→(x1, x2
| {z }

s

, x′
1, x′

2
| {z }

s′
) = 1 if and only if s → s′

f→(x1, x2, x′
1, x′

2) = (¬x1 ∧ ¬x2 ∧ ¬x′
1 ∧ x′

2)

∨ (¬x1 ∧ ¬x2 ∧ x′
1 ∧ x′

2)

∨ (¬x1 ∧ x2 ∧ x′
1 ∧ ¬x′

2)

∨ . . .

∨ (x1 ∧ x2 ∧ x′
1 ∧ x′

2)

c© JPK 10

Advanced model checking

Binary decision trees

• Let X be a set of boolean variables and < a total order on X

• Binary decision tree (BDT) is a complete binary tree over 〈X,<〉
– each leaf v is labeled with a boolean value val(v) ∈ B

– non-leaf v is labeled by a boolean variable Var(v) ∈ X

– such that for each non-leaf v and vertex w:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ On each path from root to leaf, variables occur in the same order

c© JPK 11

Advanced model checking

Transition relation as a BDT

1 0 1 0 1 1 0 0 1 1 1 01 1 10

x′
2 x′

2 x′
2 x′

2

x′
1 x′

1

x2

x1

x′
1

x′
2 x′

2

x′
1

x2

x′
2x′

2

A BDT representing f→ for our example using x1 < x2 < x′
1 < x′

2

c© JPK 12

Advanced model checking

Branching program

on the black board

any boolean expression is equivalent to an expression
in if-then-else (ITE) normal form

in particular f ≡ if x then f [x := 1] else f [x := 0]

⇒ the Shannon expansion of f with respect to x

c© JPK 13

Advanced model checking

Shannon expansion

• Each boolean function f : B
n −→ B can be written as:

f(x1, . . . , xn) = (xi ∧ f [xi := 1]) ∨ (¬xi ∧ f [xi := 0])

– where f [xi := 1] stands for f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

– and f [xi := 0] is a shorthand for f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

• The boolean function fB(v) represented by vertex v in BDT B is:

– for v a leaf: fB(v) = val(v)

– otherwise:

fB(v) = (Var(v) ∧ fB(right(v))) ∨ (¬Var(v) ∧ fB(left(v)))

• fB = fB(v) where v is the root of B

c© JPK 14

Advanced model checking

Example

c© JPK 15

Advanced model checking

Considerations on BDTs

• BDTs are not compact

– a BDT for boolean function f : B
b → B has 2n leafs

⇒ they are as space inefficient as truth tables!

⇒ BDTs contain quite some redundancy

– all leafs with value one (zero) could be collapsed into a single leaf
– a similar scheme could be adopted for isomorphic subtrees

• The size of a BDT does not change if the variable order changes

c© JPK 16

Advanced model checking

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

• Binary decision diagram (OBDD) is a directed graph over 〈X,<〉 with:

– each leaf v is labeled with a boolean value val(v) ∈ { 0, 1 }
– non-leaf v is labeled by a boolean variable Var(v) ∈ X

– such that for each non-leaf v and vertex w:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ An OBDD is acyclic

– fB for OBDD B is obtained as for BDTs

c© JPK 17

Advanced model checking

Some example OBDDs

c© JPK 18

Advanced model checking

Transition relation as an OBDD

1 0 1 1 0 1 10

x′
2 x′

2 x′
2

x′
1 x′

1

x2

x1

x′
1 x′

1

x2

x′
2

An example OBDD representing f→ for our example using x1 < x2 < x′
1 < x′

2

c© JPK 19

Advanced model checking

Isomorphism

• B and B′ over 〈X,<〉 are isomorphic iff their roots are isomorphic

• Vertices v in B and w in B′ are isomorphic, denoted v ∼= w, iff

there exists a bijection H between the vertices of B and B′ such that:

1. if v is a leaf, then H(v) = w is a leaf with val(v) = val(H(v))

2. if v is a non-leaf, then H(v) = w is a non-leaf such that

Var(v) = Var(w) ∧ H(left(v)) = left(H(v)) ∧ H(right(v)) = right(H(v))

• Testing B ∼= B′ can be done in linear time

– due to the labels (0 and 1) of the edges.

c© JPK 20

Advanced model checking

Reduced OBDDs
OBDD B over 〈X,<〉 is called reduced iff:

1. for each leaf v, w: (val(v) = val(w)) ⇒ v = w

⇒ identical terminal vertices are forbidden

2. for each non-leaf v: left(v) 	= right(v)

⇒ non-leafs may not have identical children

3. for each non-leaf v, w:

(Var(v) = Var(w) ∧ right(v) ∼= right(w) ∧ left(v) ∼= left(w)) ⇒ v = w

⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

c© JPK 21

Advanced model checking

Example ROBDDs

c© JPK 22

Advanced model checking

Dynamic generation of ROBDDs

Main idea:

• Construct directly an ROBDD from a boolean expression

• Create vertices in depth-first search order

• On-the-fly reduction by applying hashing

– on encountering a new vertex v, check whether:
– an equivalent vertex w has been created (same label and children)
– left(v) = right(v), i.e., vertex v is a “don’t care” vertex

c© JPK 23

Advanced model checking

Example and algorithm

c© JPK 24

Advanced model checking

Reducing OBDDs

• Generate an OBDD (or BDT) for a boolean expression, then reduce

– by means of a recursive descent over the OBDD

• Elimination of duplicate leafs

– for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them

• Elimination of “don’t care” (non-leaf) vertices

– if left(v) = right(v) = w, eliminate v and redirect all its incoming edges to w

• Elimination of isomorphic subtrees

– if v
= w are roots of isomorphic subtrees, remove w

– and redirect all incoming edges to w to v

c© JPK 25

Advanced model checking

How to reduce an OBDD?

0 01 1 01

becomes

eliminating identical leafs

c© JPK 26

Advanced model checking

How to reduce an OBDD?

v

w

w
becomes

eliminating “don’t care” vertices

c© JPK 27

Advanced model checking

How to reduce a BDD?

v w v

0 1
0 1

becomes

eliminating isomorphic subtrees

c© JPK 28

Advanced model checking

Transition relation as an ROBDD

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x′
1

0

x1

x2 x2

x′
1x′

1

x′
2x′

2

1

(a) ordering x1 < x2 < x′
1 < x′

2 (b) ordering x1 <′ x′
1 <′ x2 <′ x′

2

c© JPK 29

Advanced model checking

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B′ over 〈X, <〉 we have:

(fB = fB′) implies B and B′ are isomorphic

⇒ for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

c© JPK 30

Advanced model checking

The importance of canonicity

• Absence of redundant vertices

– if fB does not depend on xi, ROBDD B does not contain an xi vertex

• Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?

– generate ROBDDs Bf and Bg, and check isomorphism

• Test for validity: f(x1, . . . , xn) = 1?

– generate ROBDD Bf and check whether it only consists of a 1-leaf

• Test for implication: f(x1, . . . , xn) → g(x1, . . . , xn)?

– generate ROBDD Bf ∧¬Bg and check if it just consist of a 0-leaf

• Test for satisfiability

– f is satisfiable if and only if Bf is not just the 1-leaf

c© JPK 31

