© JPK

Binary Decision Diagrams
Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 7, 2006

Advanced model checking

Boolean functions
e Boolean functions f : B® — B forn > 0where B ={0,1}
— examples: f(x1,x2) = 1 A (2 V —x1),and f(x1, x2) = 1 <> X2
e Finite sets are boolean functions

— let|S|=Nand2" ' < N 2"
— encode any element s € S as boolean vector of lengthn: [] : S — B"
— T C Sisrepresented by fr such that:

fr([s]) =1 iff seT
— this is the characteristic function of T
e Relations are boolean functions

— R C S x Sisrepresented by fr such that:

fr([s],[t]) =1 iff (s,t) € R

© JPK

Advanced model checking

Representing boolean functions

e Truth tables

very space inefficient (2" lines)
satisfiability and equivalence check: easy; boolean operations also easy
... but have to consider exponentially many lines (so are hard)

e Propositional formulas

more compact representation
satisfiability problem is NP-complete (Cook’s theorem)
boolean operations are just syntactic operations

. In Disjunctive Normal Form (DNF)

satisfiability is easy: find a disjunct that does have complementary literals
negation expensive (dnf of =® may be exponentially longer than &)
conjunction complicated (® A (V1 V Wy) = (P A Wy) V (P A WUy)

.. In Conjunctive Normal Form (CNF)

© JPK

Advanced model checking

Representing boolean functions

representation | compact? sat equ A V —
propositional
formula often hard hard | easy easy easy
DNF | sometimes easy hard | hard easy hard
CNF | sometimes hard easy | easy hard hard
(ordered)
truth table never hard hard | hard hard hard

© JPK

Advanced model checking

Representing boolean functions

representation | compact? sat equ A Vv —

propositional

formula often hard hard easy easy easy

DNF | sometimes easy hard hard easy hard

CNF | sometimes hard easy easy hard hard
(ordered)

truth table never hard hard hard hard hard
reduced ordered

binary decision diagram often easy easy | medium medium easy

© JPK

Advanced model checking

Explicitly representing transition systems

TS = (S,Act,—, I,AP, L) with |S| = N, |Act| = M and |AP| = K:

e Identify the N states by numbers

e Represent the set of initial states I as boolean vector ¢
— i(s;) = lifand only if state s; € I

e Represent — by M boolean matrices T, of size NxN
— T,(si,s;) = lifandonly if s;, = s,

e Represent L by an N x K-boolean matrix L
— L(s;,a;) = 1ifandonly if a; € L(s;)

= Use sparse matrix representations for T and L

© JPK

Advanced model checking

|
I
R

Example (no actions)

a

o (o oP
(/=

{a,b}
O 1 0 1
O 1 1 O
and T = 0 1 1 1 and L =
1 0 1 1

for simplicity, actions are omitted here

= = O O

= O = O

© JPK

Advanced model checking

Transition systems as boolean functions

e Assume each state is uniquely labeled

— L(s) = L(s") implies s = s’
— no restriction: if needed extend AP and label states uniquely

e Assume a fixed total order on propositions: a; < as < ... < ag
e Represent a state by a boolean function
— over the boolean variables x; through x x such that
[s] =] N x5 N ... A T

— where the literal = equals z; if a; € L(s), and — x; otherwise
=- Nno need to explicitly represent function L

e Represent I and — by their characteristic (boolean) functions
—eg., f~([s],[a],[t]) = 1lifandonly if s = ¢

© JPK

Advanced model checking

A small example

© JPK

Advanced model checking

An example (no actions)

o (s oP

{a,b} b
state | bit-vector boolean function
So <0,0> —x1 N\ Xy
e States: s1 (0, 1) —x1 A T2
S92 <1, O> L1 AN i)
S3 <17 1> T1 N\ T2
[|n|t|a| StateS f[(il?l, 5132) p— (—x1 AN\ 7 2132) V (2131 /N — 2132)

© JPK 9

Advanced model checking

Example (continued)

f— (0,00 (0,1) (1,00 (1,1)
(0, 0) 0 1 0 1
e Transition relation: (0, 1) 0 1 1 0
(1,0) 0 1 1 1
(1,1) 1 0 1 1

: . N q - /
e Alternatively: f_ (x4, Ty, T, x,) = lifand only if s — s

S S/

fo (1, 22, T, T5) = (mx1 A —xza A —x| A xh)
(mx1 A =z A x) A 25)
(mx1 AN T2 A) AN —x)

<< <KL

(1 A T2 AN T} N)

© JPK 10

Advanced model checking

Binary decision trees

e Let X be a set of boolean variables and < a total order on X

e Binary decision tree (BDT) is a complete binary tree over (X, <)

— each leaf v is labeled with a boolean value val(v) € B
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € {left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)

= On each path from root to leaf, variables occur in the same order

© JPK 11

Advanced model checking

Transition relation as a BDT

_,.,@\

Q h

@

%?%?%%%

1{0 1

A BDT representing f_. for our example using z; < z2 < = <

© JPK

12

Advanced model checking

Branching program

on the black board

any boolean expression is equivalent to an expression
in if-then-else (ITE) normal form

in particular f = if x then f[x := 1] else f[z := 0]

= the Shannon expansion of f with respect to x

© JPK

13

Advanced model checking

Shannon expansion
e Each boolean function f : B® — B can be written as:

flxy,....xn) = (g N flr;:=1]) V (nx; A flz; :=0)])

— where f[x; := 1] stands for f(z1,...,%;—1, 1, Tit1,...,Ty)
— and flx; := 0] is a shorthand for f(x1,...,2x;-1,0, Tit1,...,Tn)

e The boolean function fg(v) represented by vertex v in BDT B is:

— for v aleaf: fg(v) = val(v)
— otherwise:

fe(v) = (Var(v) A fg(right(v))) v (—Var(v) A fg(left(v)))

e fz = fg(v) where v is the root of B

© JPK

14

Advanced model checking

Example

© JPK

15

Advanced model checking

Considerations on BDTs

e BDTs are not compact

— a BDT for boolean function f : B> — B has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— a similar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change if the variable order changes

© JPK 16

Advanced model checking

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

e Binary decision diagram (OBDD) is a directed graph over (X, <) with:

— each leaf v is labeled with a boolean value val(v) € { 0,1}
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € {left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)

= An OBDD is acyclic

— fg for OBDD B is obtained as for BDTs

© JPK 17

Advanced model checking

Some example OBDDs

© JPK

18

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x) <

© JPK

19

Advanced model checking

Isomorphism

e B and B’ over (X, <) are isomorphic iff their roots are isomorphic

e Vertices v in B and w in B’ are isomorphic, denoted v = w, iff
there exists a bijection H between the vertices of B and B’ such that:

1. if vis aleaf, then H(v) = w is a leaf with val(v) = val(H (v))
2. if v is a non-leaf, then H(v) = w is a non-leaf such that

Var(v) = Var(w) A H(left(v)) = left(H(v)) A H(right(v)) = right(H (v))

e Testing B = B’ can be done in linear time

— due to the labels (0 and 1) of the edges.

© JPK 20

Advanced model checking

Reduced OBDDs
OBDD B over (X, <) is called reduced iff:

1. for each leaf v, w: (val(v) =val(w)) = v=w

=> identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v)

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w) A left(v) = left(w)) = v=w

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

© JPK

21

Advanced model checking

Example ROBDDs

© JPK

22

Advanced model checking

Dynamic generation of ROBDDs

Main idea:
e Construct directly an ROBDD from a boolean expression

e Create vertices in depth-first search order

e On-the-fly reduction by applying hashing

— 0n encountering a new vertex v, check whether:
— an equivalent vertex w has been created (same label and children)
— left(v) = right(v), i.e., vertex v is a “don’t care” vertex

© JPK

23

Advanced model checking

Example and algorithm

© JPK

24

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a boolean expression, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— if left(v) = right(v) = w, eliminate v and redirect all its incoming edges to w

e Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
— and redirect all incoming edges to w to v

© JPK 25

Advanced model checking

How to reduce an OBDD?

Q : becomes

eliminating identical leafs

© JPK 26

Advanced model checking

How to reduce an OBDD?

Q
.
.

becomes

eliminating “don’t care” vertices

© JPK

27

Advanced model checking

How to reduce a BDD?

Qv Qu

NI

O becomes

eliminating isomorphic subtrees

© JPK 28

Advanced model checking

Transition relation as an ROBDD

(a) ordering z; < xy <) < @,

(b) ordering z; <’ x| <’ xy <" 2

© JPK

29

Advanced model checking

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fr) Iimplies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

© JPK

30

Advanced model checking

The importance of canonicity

e Absence of redundant vertices
— if fg does not depend on x;, ROBDD B does not contain an x; vertex
e Test for equivalence: f(x1,...,x,) =9g(x1,...,Tn)?
— generate ROBDDs B and B, and check isomorphism
e Test for validity: f(z1,...,z,) =17
— generate ROBDD B and check whether it only consists of a 1-leaf
e Test for implication: f(z1,...,x,) — g(x1,...,Tn)?
— generate ROBDD B A =B, and check if it just consist of a O-leaf

e Test for satisfiability

— f is satisfiable if and only if B¢ is not just the 1-leaf

© JPK

31

