

Binary Decision Diagrams

Lecture #12 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 7, 2006

Boolean functions

- Boolean functions $f : \mathbb{B}^n \rightarrow \mathbb{B}$ for $n \geq 0$ where $\mathbb{B} = \{0, 1\}$
 - examples: $f(x_1, x_2) = x_1 \wedge (x_2 \vee \neg x_1)$, and $f(x_1, x_2) = x_1 \leftrightarrow x_2$
- Finite sets are boolean functions
 - let $|S| = N$ and $2^{n-1} < N \leq 2^n$
 - encode any element $s \in S$ as boolean vector of length n : $\llbracket \cdot \rrbracket : S \rightarrow \mathbb{B}^n$
 - $T \subseteq S$ is represented by f_T such that:
- Relations are boolean functions
 - this is the characteristic function of T

$$f_T(\llbracket s \rrbracket) = 1 \quad \text{iff} \quad s \in T$$

- this is the characteristic function of T

- Relations are boolean functions

- $\mathcal{R} \subseteq S \times S$ is represented by $f_{\mathcal{R}}$ such that:

$$f_{\mathcal{R}}(\llbracket s \rrbracket, \llbracket t \rrbracket) = 1 \quad \text{iff} \quad (s, t) \in \mathcal{R}$$

Representing boolean functions

- **Truth tables**

- very space inefficient (2^n lines)
 - satisfiability and equivalence check: easy; boolean operations also easy
 - . . . but have to consider exponentially many lines (so are hard)

- **Propositional formulas**

- more compact representation
 - satisfiability problem is NP-complete (Cook's theorem)
 - boolean operations are just syntactic operations

- **... in Disjunctive Normal Form (DNF)**

- satisfiability is easy: find a disjunct that does have complementary literals
 - negation expensive (dnf of $\neg\Phi$ may be exponentially longer than Φ)
 - conjunction complicated ($\Phi \wedge (\Psi_1 \vee \Psi_2) \equiv (\Phi \wedge \Psi_1) \vee (\Phi \wedge \Psi_2)$)

- **... in Conjunctive Normal Form (CNF)**

Representing boolean functions

<i>representation</i>	<i>compact?</i>	<i>sat</i>	<i>equ</i>	\wedge	\vee	\neg
propositional formula	often	hard	hard	easy	easy	easy
DNF	sometimes	easy	hard	hard	easy	hard
CNF	sometimes	hard	easy	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard	hard

Representing boolean functions

<i>representation</i>	<i>compact?</i>	<i>sat</i>	<i>equ</i>	\wedge	\vee	\neg
propositional formula	often	hard	hard	easy	easy	easy
DNF	sometimes	easy	hard	hard	easy	hard
CNF	sometimes	hard	easy	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard	hard
reduced ordered binary decision diagram	often	easy	easy	medium	medium	easy

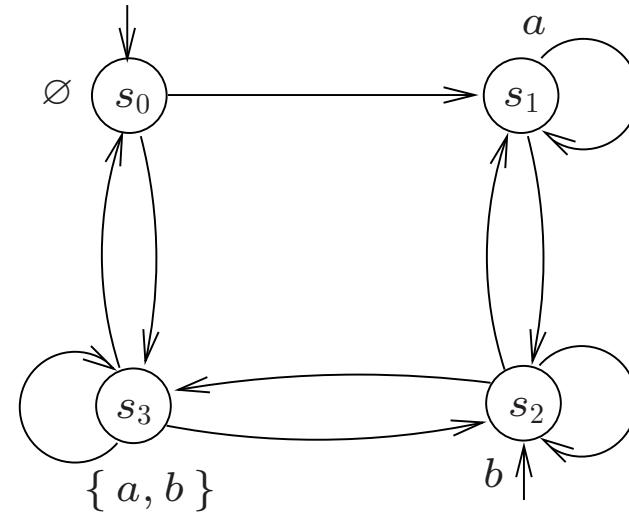
Explicitly representing transition systems

$TS = (S, Act, \rightarrow, I, AP, L)$ with $|S| = N$, $|Act| = M$ and $|AP| = K$:

- Identify the N states by **numbers**
- Represent the set of initial states I as **boolean vector** \underline{i}
 - $\underline{i}(s_j) = 1$ if and only if state $s_j \in I$
- Represent \rightarrow by M boolean matrices \mathbf{T}_α of size $N \times N$
 - $\mathbf{T}_\alpha(s_i, s_j) = 1$ if and only if $s_i \xrightarrow{\alpha} s_j$
- Represent L by an $N \times K$ -boolean matrix \mathbf{L}
 - $\mathbf{L}(s_i, a_j) = 1$ if and only if $a_j \in L(s_i)$

⇒ Use sparse matrix representations for \mathbf{T} and \mathbf{L}

Example (no actions)



$$\underline{i} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{T} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{L} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

for simplicity, actions are omitted here

Transition systems as boolean functions

- Assume each state is uniquely labeled
 - $L(s) = L(s')$ implies $s = s'$
 - no restriction: if needed extend AP and label states uniquely
- Assume a fixed total order on propositions: $a_1 < a_2 < \dots < a_K$
- Represent a state by a *boolean function*
 - over the boolean variables x_1 through x_K such that

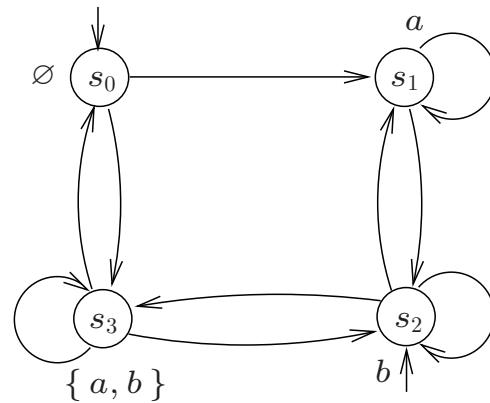
$$[s] = x_1^* \wedge x_2^* \wedge \dots \wedge x_K^*$$

- where the literal x_i^* equals x_i if $a_i \in L(s)$, and $\neg x_i$ otherwise
 \Rightarrow no need to explicitly represent function L

- Represent I and \rightarrow by their characteristic (boolean) functions
 - e.g., $f_{\rightarrow}([s], [\alpha], [t]) = 1$ if and only if $s \xrightarrow{\alpha} t$

A small example

An example (no actions)



state	bit-vector	boolean function
s_0	$\langle 0, 0 \rangle$	$\neg x_1 \wedge \neg x_2$
s_1	$\langle 0, 1 \rangle$	$\neg x_1 \wedge x_2$
s_2	$\langle 1, 0 \rangle$	$x_1 \wedge \neg x_2$
s_3	$\langle 1, 1 \rangle$	$x_1 \wedge x_2$

- States:

- Initial states:

$$f_I(x_1, x_2) = (\neg x_1 \wedge \neg x_2) \vee (x_1 \wedge \neg x_2)$$

Example (continued)

f_{\rightarrow}	$\langle 0, 0 \rangle$	$\langle 0, 1 \rangle$	$\langle 1, 0 \rangle$	$\langle 1, 1 \rangle$
$\langle 0, 0 \rangle$	0	1	0	1
$\langle 0, 1 \rangle$	0	1	1	0
$\langle 1, 0 \rangle$	0	1	1	1
$\langle 1, 1 \rangle$	1	0	1	1

- Transition relation:

- Alternatively: $f_{\rightarrow}(\underbrace{x_1, x_2}_{s}, \underbrace{x'_1, x'_2}_{s'}) = 1$ if and only if $s \rightarrow s'$

$$\begin{aligned}
 f_{\rightarrow}(x_1, x_2, x'_1, x'_2) = & (\neg x_1 \wedge \neg x_2 \wedge \neg x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge \neg x_2 \wedge x'_1 \wedge x'_2) \\
 \vee & (\neg x_1 \wedge x_2 \wedge x'_1 \wedge \neg x'_2) \\
 \vee & \dots \\
 \vee & (x_1 \wedge x_2 \wedge x'_1 \wedge x'_2)
 \end{aligned}$$

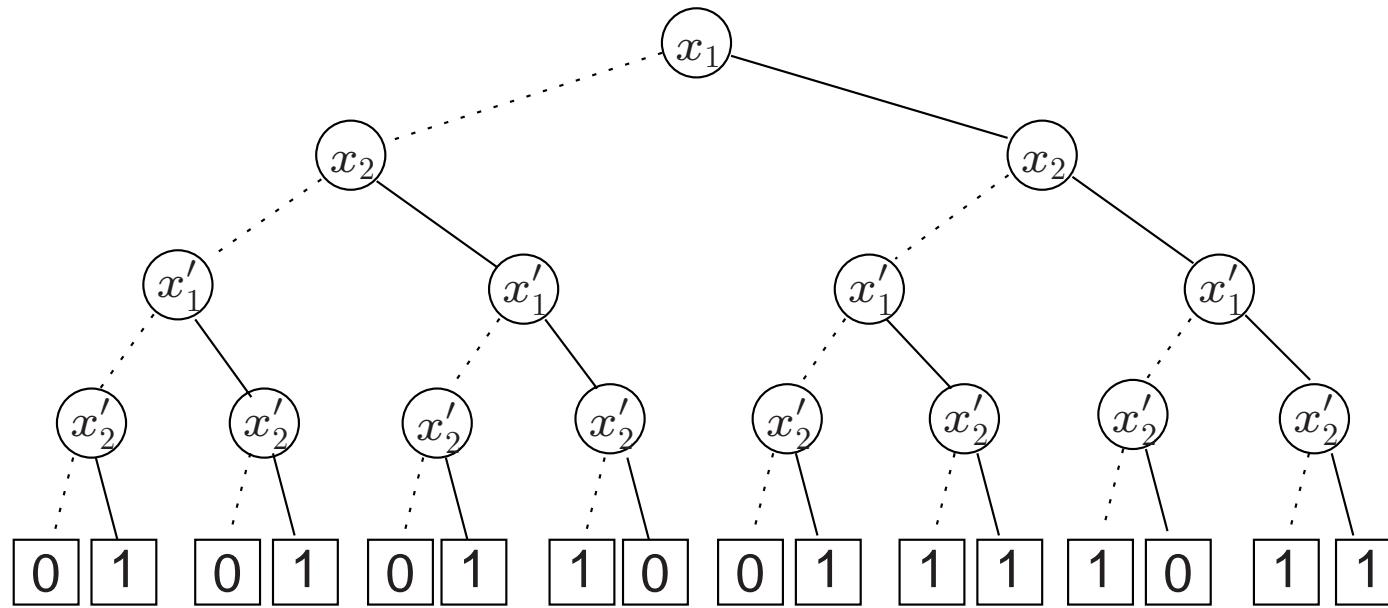
Binary decision trees

- Let X be a set of boolean variables and $<$ a total order on X
- **Binary decision tree (BDT)** is a complete binary **tree** over $\langle X, < \rangle$
 - each leaf v is labeled with a boolean value $\text{val}(v) \in \mathbb{B}$
 - non-leaf v is labeled by a boolean variable $\text{Var}(v) \in X$
 - such that for each non-leaf v and vertex w :

$$w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (\text{Var}(v) < \text{Var}(w) \vee w \text{ is a leaf})$$

\Rightarrow On each path from root to leaf, variables occur in the **same order**

Transition relation as a BDT



A BDT representing f_{\rightarrow} for our example using $x_1 < x_2 < x'_1 < x'_2$

Branching program

on the black board

*any boolean expression is equivalent to an expression
in if-then-else (ITE) normal form*

in particular $f \equiv \text{if } x \text{ then } f[x := 1] \text{ else } f[x := 0]$

\Rightarrow *the Shannon expansion of f with respect to x*

Shannon expansion

- Each boolean function $f : \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, \dots, x_n) = (x_i \wedge f[x_i := 1]) \vee (\neg x_i \wedge f[x_i := 0])$$

- where $f[x_i := 1]$ stands for $f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$
- and $f[x_i := 0]$ is a shorthand for $f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$
- The boolean function $f_B(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_B(v) = \text{val}(v)$
 - otherwise:
$$f_B(v) = (\text{Var}(v) \wedge f_B(\text{right}(v))) \vee (\neg \text{Var}(v) \wedge f_B(\text{left}(v)))$$
- $f_B = f_B(v)$ where v is the root of B

Example

Considerations on BDTs

- BDTs are **not compact**
 - a BDT for boolean function $f : \mathbb{B}^b \rightarrow \mathbb{B}$ has 2^n leafs
⇒ they are as space inefficient as truth tables!
- ⇒ BDTs contain quite some **redundancy**
 - all leafs with value one (zero) could be collapsed into a single leaf
 - a similar scheme could be adopted for isomorphic subtrees
- The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

- **Binary decision diagram** (OBDD) is a **directed graph** over $\langle X, < \rangle$ with:
 - each leaf v is labeled with a boolean value $\text{val}(v) \in \{ 0, 1 \}$
 - non-leaf v is labeled by a boolean variable $\text{Var}(v) \in X$
 - such that for each non-leaf v and vertex w :

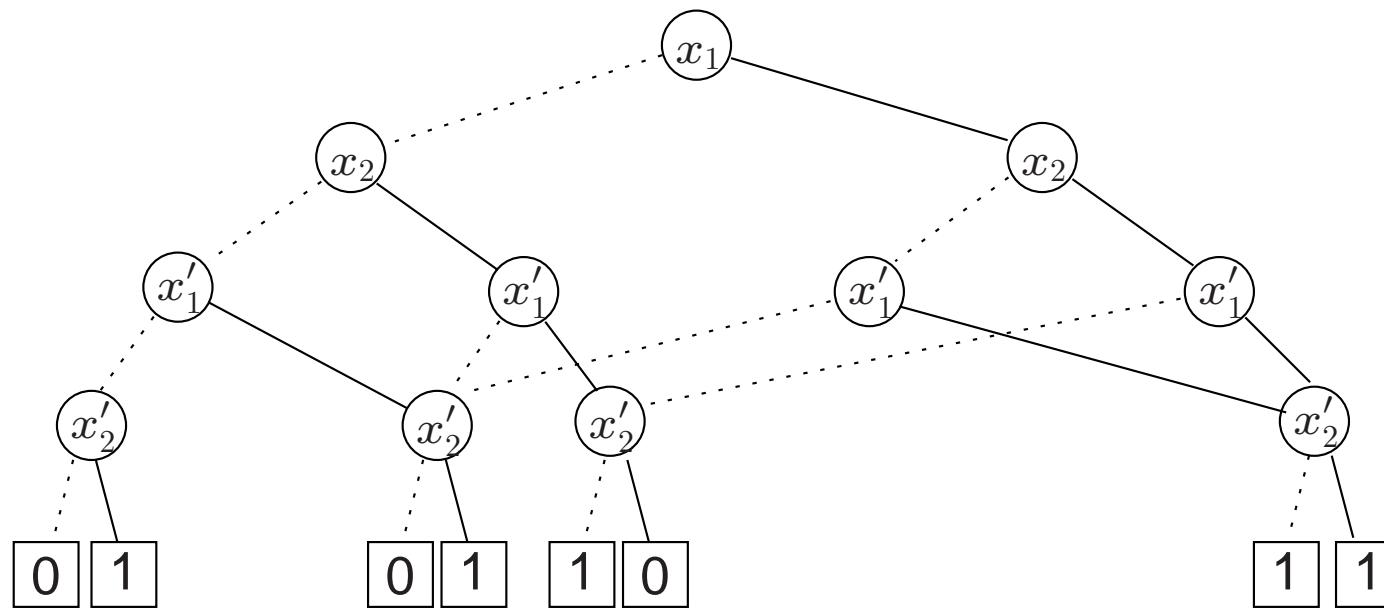
$$w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (\text{Var}(v) < \text{Var}(w) \vee w \text{ is a leaf})$$

\Rightarrow An OBDD is acyclic

- f_B for OBDD B is obtained as for BDTs

Some example OBDDs

Transition relation as an OBDD



An example OBDD representing f_{\rightarrow} for our example using $x_1 < x_2 < x'_1 < x'_2$

Isomorphism

- B and B' over $\langle X, < \rangle$ are *isomorphic* iff their roots are isomorphic
- Vertices v in B and w in B' are isomorphic, denoted $v \cong w$, iff there exists a bijection H between the vertices of B and B' such that:
 1. if v is a leaf, then $H(v) = w$ is a leaf with $\text{val}(v) = \text{val}(H(v))$
 2. if v is a non-leaf, then $H(v) = w$ is a non-leaf such that

$$\text{Var}(v) = \text{Var}(w) \wedge H(\text{left}(v)) = \text{left}(H(v)) \wedge H(\text{right}(v)) = \text{right}(H(v))$$

- Testing $B \cong B'$ can be done in linear time
 - due to the labels (0 and 1) of the edges.

Reduced OBDDs

OBDD B over $\langle X, < \rangle$ is called *reduced* iff:

1. for each leaf v, w : $(\text{val}(v) = \text{val}(w)) \Rightarrow v = w$

\Rightarrow identical terminal vertices are forbidden

2. for each non-leaf v : $\text{left}(v) \neq \text{right}(v)$

\Rightarrow non-leaves may not have identical children

3. for each non-leaf v, w :

$$(\text{Var}(v) = \text{Var}(w) \wedge \text{right}(v) \cong \text{right}(w) \wedge \text{left}(v) \cong \text{left}(w)) \Rightarrow v = w$$

\Rightarrow vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Example ROBDDs

Dynamic generation of ROBDDs

Main idea:

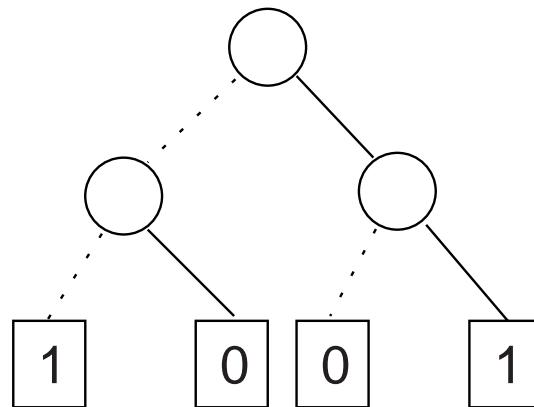
- Construct directly an ROBDD from a boolean expression
- Create vertices in depth-first search order
- On-the-fly reduction by applying **hashing**
 - on encountering a new vertex v , check whether:
 - an equivalent vertex w has been created (same label and children)
 - $\text{left}(v) = \text{right}(v)$, i.e., vertex v is a “don’t care” vertex

Example and algorithm

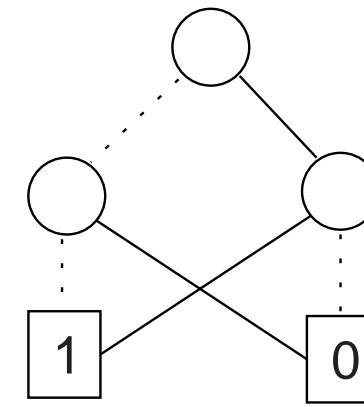
Reducing OBDDs

- Generate an OBDD (or BDT) for a boolean expression, then **reduce**
 - by means of a recursive descent over the OBDD
- **Elimination of duplicate leafs**
 - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- **Elimination of “don’t care” (non-leaf) vertices**
 - if $left(v) = right(v) = w$, eliminate v and redirect all its incoming edges to w
- **Elimination of isomorphic subtrees**
 - if $v \neq w$ are roots of isomorphic subtrees, remove w
 - and redirect all incoming edges to w to v

How to reduce an OBDD?



becomes

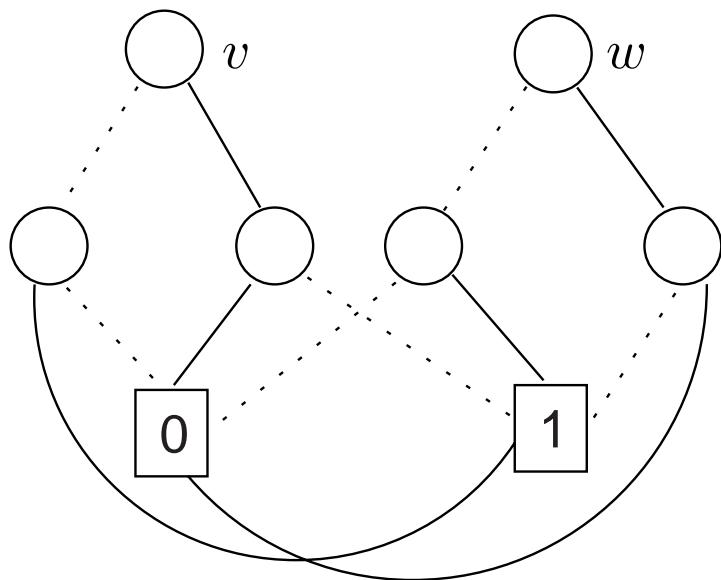


eliminating identical leafs

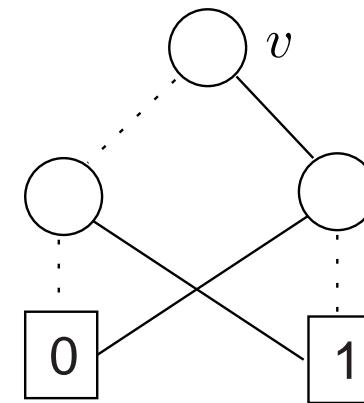
How to reduce an OBDD?

eliminating “don’t care” vertices

How to reduce a BDD?

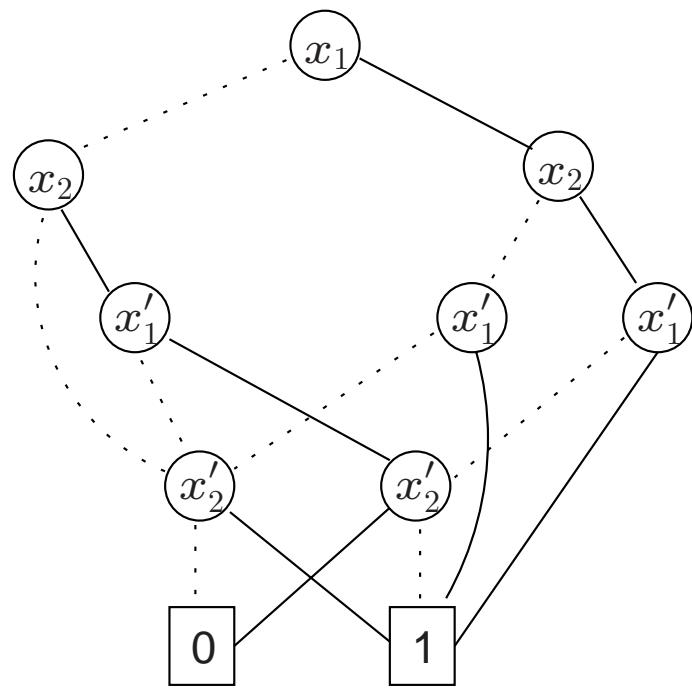
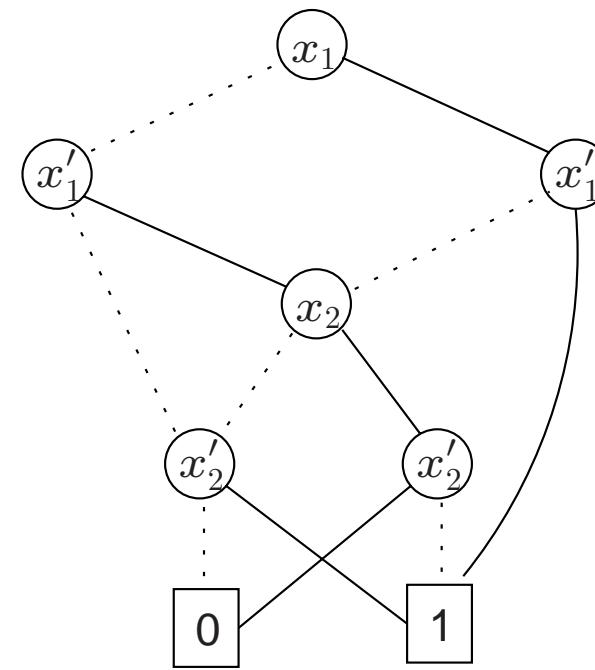


becomes



eliminating isomorphic subtrees

Transition relation as an ROBDD

(a) ordering $x_1 < x_2 < x_1' < x_2'$ (b) ordering $x_1 < ' x_1' < ' x_2 < ' x_2'$

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, < \rangle$ we have:
 $(f_B = f_{B'})$ implies B and B' are isomorphic

\Rightarrow for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- **Absence of redundant vertices**
 - if f_B does not depend on x_i , ROBDD B does not contain an x_i vertex
- **Test for equivalence:** $f(x_1, \dots, x_n) \equiv g(x_1, \dots, x_n)$?
 - generate ROBDDs B_f and B_g , and check isomorphism
- **Test for validity:** $f(x_1, \dots, x_n) = 1$?
 - generate ROBDD B_f and check whether it only consists of a 1-leaf
- **Test for implication:** $f(x_1, \dots, x_n) \rightarrow g(x_1, \dots, x_n)$?
 - generate ROBDD $B_f \wedge \neg B_g$ and check if it just consists of a 0-leaf
- **Test for satisfiability**
 - f is satisfiable if and only if B_f is not just the 1-leaf