
Binary Decision Diagrams
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 11, 2006

c© JPK

Advanced model checking

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

• Binary decision diagram (OBDD) is a directed graph over 〈X,<〉 with:

– each leaf v is labeled with a boolean value val(v) ∈ { 0, 1 }
– non-leaf v is labeled by a boolean variable Var(v) ∈ X

– such that for each non-leaf v and vertex w:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ An OBDD is acyclic

– fB for OBDD B is obtained as for BDTs

c© JPK 1

Advanced model checking

Reduced OBDDs
OBDD B over 〈X,<〉 is called reduced iff:

1. for each leaf v, w: (val(v) = val(w)) ⇒ v = w

⇒ identical terminal vertices are forbidden

2. for each non-leaf v: left(v) �= right(v)

⇒ non-leafs may not have identical children

3. for each non-leaf v, w:

(Var(v) = Var(w) ∧ right(v) ∼= right(w) ∧ left(v) ∼= left(w)) ⇒ v = w

⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

c© JPK 2

Advanced model checking

Transition relation as an ROBDD

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x′
1

0

x1

x2 x2

x′
1x′

1

x′
2x′

2

1

(a) ordering x1 < x2 < x′
1 < x′

2 (b) ordering x1 <′ x′
1 <′ x2 <′ x′

2

c© JPK 3

Advanced model checking

Shannon expansion

• Each boolean function f : B
n −→ B can be written as:

f(x1, . . . , xn) = (xi ∧ f [xi := 1]) ∨ (¬xi ∧ f [xi := 0])

– where f [xi := c] stands for f(x1, . . . , xi−1, c, xi+1, . . . , xn)

• The boolean function fB(v) represented by vertex v in BDT B is:

– for v a leaf: fB(v) = val(v)

– otherwise:

fB(v) = (Var(v) ∧ fB(right(v))) ∨ (¬Var(v) ∧ fB(left(v)))

• fB = fB(v) where v is the root of B

c© JPK 4

Advanced model checking

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B′ over 〈X, <〉 we have:

(fB = fB′) implies B and B′ are isomorphic

⇒ for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

c© JPK 5

Advanced model checking

The importance of canonicity

• Absence of redundant vertices

– if fB does not depend on xi, ROBDD B does not contain an xi vertex

• Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?

– generate ROBDDs Bf and Bg, and check isomorphism

• Test for validity: f(x1, . . . , xn) = 1?

– generate ROBDD Bf and check whether it only consists of a 1-leaf

• Test for implication: f(x1, . . . , xn) → g(x1, . . . , xn)?

– generate ROBDD ¬Bf ∨ Bg and check if it just consist of a 1-leaf

• Test for satisfiability

– f is satisfiable if and only if Bf is not just the 1-leaf

c© JPK 6

Advanced model checking

Variable ordering
• The size of the ROBDD depends on the variable ordering

• For some functions, very compact ROBDDs may be obtained

– e.g., the even parity function

• Some boolean functions have linear and exponential ROBDDs

– e.g., the addition function, or the stable function

• Some boolean functions only have polynomial ROBDDs

– this holds, e.g., for symmetric functions (see next)
– examples f(. . .) = x1 ⊕ . . . ⊕ xn, or f(. . .) = 1 iff � k variables xi are true

• Some boolean functions only have exponential ROBDDs

– this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

c© JPK 7

Advanced model checking

The even parity function

feven(x1, . . . , xn) = 1 iff the number of variables xi with value 1 is even

truth table or propositional formula for feven has exponential size

but an ROBDD of linear size is possible

c© JPK 8

Advanced model checking

The function stable with exponential ROBDD

y1y1 y1 y1 y1 y1 y1 y1

x1

1

y3

x2 x2

x3 x3 x3x3

y2

y3

y2 y2 y2

The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·2n − 1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn

c© JPK 9

Advanced model checking

The function stable with linear ROBDD
x1

y1 y1

x2

y2 y2

x3

y3

1

y3

The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·n + 2 vertices under ordering x1 < y1 < . . . < xn < yn

c© JPK 10

Advanced model checking

Symmetric function (n=4)

symmetric boolean functions have ROBDDs of size in O(n2)

c© JPK 11

Advanced model checking

The multiplication function

• Consider two n-bit integers

– let bn−1bn−2 . . . b0 and cn−1cn−2 . . . c0

– where bn−1 is the most significant bit, and b0 the least significant bit

• Multiplication yields a 2n-bit integer

– the ROBDD Bfn−1
has at least 1.09n vertices

– where fn−1 denotes the the (n−1)-st output bit of the multiplication

c© JPK 12

Advanced model checking

Optimal variable ordering

• The size of ROBDDs is dependent on the variable ordering

• Is it possible to determine < such that the ROBDD has minimal size?

– the optimal variable ordering problem for ROBDDs is NP-complete
– polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)

• There are many boolean functions with large ROBDDs

– for almost all boolean functions the minimal size is in Ω(2n

n)

• How to deal with this problem in practice?

– guess a variable ordering in advance
– rearrange the variable ordering during the manipulations of ROBDDs
– not necessary to test all n! orderings, best algorithm in O(3n·n2)

c© JPK 13

Advanced model checking

Variable swapping

c© JPK 14

Advanced model checking

Sifting algorithm
(Rudell, 1993)

Dynamic variable ordering using variable swapping:

1. Select a variable xi

2. By successive swapping of xi, determine |B| at any position for xi

3. Shift xi to its optimal position

4. Go back to the first step until no improvement is made

◦ Characteristics:

• a variable may change position several times during a single sifting iteration
• often yields a local optimum, but works well in practice

c© JPK 15

Advanced model checking

Transition systems as boolean functions

• Assume each state is uniquely labeled

– no restriction: if needed extend AP and label states uniquely

• Assume a fixed total order on propositions: a1 < a2 < . . . < aK

• Represent a state by a boolean function

– over the boolean variables x1 through xK such that

[[s]] = x∗
1 ∧ x∗

2 ∧ . . . ∧ x∗
K

– where the literal x∗
i equals xi if ai ∈ L(s), and ¬xi otherwise

• Represent I and → by their characteristic (boolean) functions

– e.g., f→([[s]], [[α]], [[t]]) = 1 if and only if s α−→ t

c© JPK 16

Advanced model checking

Interleaved variable ordering

• Which variable ordering to use for transition relations?

• The interleaved variable ordering:

– for encodings x1, . . . , xn and y1, . . . , yn of state s and t respectively:

x1 < y1 < x2 < y2 < . . . < xn < yn

• This variable ordering yields compact ROBDDs for binary relations

– for transition relation with z1 . . . zm be the encoding of action α, take:

z1 < z2 < . . . < zm
| {z }

encoding of α

< x1 < y1 < x2 < y2 < . . . < xn < yn
| {z }

interleaved order of statea

c© JPK 17

Advanced model checking

Operations on ROBDDs

Algorithm Inputs Output ROBDD

REDUCE B (not reduced) B′ (reduced) with fB = fB′

NOT Bf B¬f

APPLY Bf , Bg, binary logical operator op Bf op g

RESTRICT Bf , variable x, boolean value b Bf [x:=b]

RENAME Bf , variables x and y Bf [x:=y]

EXISTS Bf , variable x B∃x. f

c© JPK 18

Advanced model checking

Negation

x1

x2

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x′
2

x′
1

1

x′
2

0

x′
1

negation amounts to interchange the 0- and 1-leaf

c© JPK 19

Advanced model checking

Conjunction

(a) (b) (c)

1 1 1

x4

x1

x3

x5

x4

x3

x2

x4

x1 x1

x2 x2 x2

x3 x3
x3

x4

x5 x5

performing APPLY(∧, Bleft, Bmiddle), i.e., compute fBleft ∧ fBmiddle

c© JPK 20

Advanced model checking

APPLY

• Shannon expansion for binary operations:

f op g = (x1 ∧ (f [x1 := 1] op g[x1 := 1]))

∨ (¬x1 ∧ (f [x1 := 0] op g[x1 := 0]))

• A top-down evaluation scheme using the Shannon’s expansion:

– let v be the variable highest in the ordering occurring in Bf orBg

– split the problem into subproblems for v := 0 and v := 1, and solve recursively
– at the leaves, apply the boolean operator op directly
– reduce afterwards to turn the resulting OBDD into an ROBDD

• Efficiency gain is obtained by dynamic programming

– the time complexity of constructing the ROBDD of Bf op g is in O (|Bf |·|Bg |)

c© JPK 21

Advanced model checking

Algorithm APPLY(op,Bf ,Bg)

B.root := APPLY(op, Bf .root, Bg.root);

if G(v1, v2) �= empty then return G(v1, v2) fi; (* lookup in hashtable *)
if (v1 and v2 are terminals) then res := val(v1) op val(v2) fi;
else if (v1 is terminal and v2 is nonterminal)

then res := MakeNode(Var(v2), APPLY(op, v1, left(v2)), APPLY(op, v1, right(v2)));
else if (v1 is nonterminal and v2 is terminal)

then res := MakeNode(Var(v1), APPLY(op, left(v1), v2), APPLY(op, right(v1), v2));
else if (Var(v1) = Var(v2))

then res := MakeNode(Var(v1), APPLY(op, left(v1), left(v2)), APPLY(op, right(v1), right(v2)));
else if (Var(v1) < Var(v2))

then res := MakeNode(Var(v1), APPLY(op, left(v1), v2), APPLY(op, right(v1), v2));
else (* Var(v1) > Var(v2) *)

res := MakeNode(Var(v2), APPLY(op, v1, left(v2)), APPLY(op, v1, right(v2)));
G(v1, v2) := res; (* memoize result *)
return res

c© JPK 22

Advanced model checking

Example

c© JPK 23

Advanced model checking

Algorithm RESTRICT(B, x, b)

• For each vertex v labeled with variable x:

– if b = 1 then redirect incoming edges to right(v)

– if b = 0 then redirect incoming edges to left(v)

– remove vertex v, and (if necessary) reduce (only above v)

c© JPK 24

Advanced model checking

RESTRICT

x1

x2

x′
2

x′
1

0

x′
2

1

x′
1

x1

x′
2

x′
1

0

x′
2

1

x′
1

performing RESTRICT(B, x2, 1): replace x2 by constant 1

c© JPK 25

Advanced model checking

EXISTS

• Existential quantification over xi:

∃xi. f(x1, . . . , xn) = f [xi := 1] ∨ f [xi := 0]

• Naive realization: APPLY(∨, RESTRICT(Bf , xi, 1), RESTRICT(Bf , xi, 0))

• Efficiency gain:

– observe that RESTRICT(Bf, xi, 1) and RESTRICT(Bf , xi, 0) are equal up to xi

– . . . the resulting ROBDD also has the same structure up to xi

– replace each node labeled with xi by the result of applying ∨ on its children

• This can easily be generalized to ∃x1. . . . ∃xk. f(x1, . . . xn)

c© JPK 26

Advanced model checking

A simple example

c© JPK 27

Advanced model checking

A more involved example

x1

x2

x′2

x′1

0

x′2

1

x′1

x1

x′2

0 1

x′1

x1

x′1

x′2

0 1

x′2

x′1

x1

0 1

x′2

x′1

ROBBDs Bf (left up), Bf [x2:=0] (right up), Bf [x2:=1] (left down), and B∃x2. f (right down)

c© JPK 28

Advanced model checking

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

REDUCE B′ (reduced) with fB = fB′ O(|Bf |· log |Bf |) O(|Bf |)

NOT B¬f O(|Bf |) O(|Bf |)

APPLY Bf op g O(|Bf |·|Bg|) O(|Bf |·|Bg|)

RESTRICT Bf [x:=b] O(|Bf |) O(|Bf |)

RENAME Bf [x:=y] O(|Bf |) O(|Bf |)

EXISTS B∃x. f O(|Bf |2) O(|Bf |2)

operations are only efficient if f (and g) have compact ROBDD representations

c© JPK 29

Advanced model checking

OBDDs versus automata

1

1

1

1

1

1

0

0

0

0 0

0

x1

x2

x′
2

x′
1

0 1

x′
1

x′
2

each OBDD B is a deterministic automaton AB with f−1
B (1) = L(AB)

c© JPK 30

Advanced model checking

Analogies between ROBDDs and automata

• For language L, a minimised automaton is unique up to isomorphism

– for a given variable ordering <, and function f , an ROBDD is unique upto ∼=

• L = L′? can be checked by verifying isomorphism of their automata

– f = f ′? for boolean functions can be checked by verifying Bf
∼= Bf ′

⇒ in both cases, efficient algorithms do exist for this

• L �= ∅? ≡ is there a reachable accept state?

– is f satisfiable? ≡ its ROBDD has a reachable leaf 1

• Union, intersection, and complementation on automata is efficient

– disjunction, conjunction, and negation on ROBDDs are efficient

c© JPK 31

