© JPK

Binary Decision Diagrams
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 11, 2006



Advanced model checking

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

e Binary decision diagram (OBDD) is a directed graph over (X, <) with:

— each leaf v is labeled with a boolean value val(v) € { 0,1}
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € {left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)

= An OBDD is acyclic

— fg for OBDD B is obtained as for BDTs

© JPK 1



Advanced model checking

Reduced OBDDs
OBDD B over (X, <) is called reduced iff:

1. for each leaf v, w: (val(v) =val(w)) = v=w

=> identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v)

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w) A left(v) = left(w)) = v=w

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

© JPK 2



Advanced model checking

Transition relation as an ROBDD

(a) ordering z; < xy < ) < @,

(b) ordering z; <’ x| <’ xy <" 2

© JPK



Advanced model checking

Shannon expansion

e Each boolean function f : B® — B can be written as:

flxy,....xn) = (g N flr;:=1]) V (nx; A flz; :=0)])

— where f[x; := ¢|] stands for f(x1,...,xi—1,C, Tit1,--.,Tp)

e The boolean function fg(v) represented by vertex v in BDT B is:

— for v aleaf: fg(v) = val(v)
— otherwise:

fe(v) = (Var(v) A fg(right(v))) v (—=Var(v) A fg(left(v)))

e fz = fg(v) where v is the root of B

© JPK 4



Advanced model checking

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fr) Iimplies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

© JPK



Advanced model checking

The importance of canonicity

e Absence of redundant vertices
— if fg does not depend on x;, ROBDD B does not contain an x; vertex
e Test for equivalence: f(x1,...,x,) =9g(x1,...,Tn)?
— generate ROBDDs B and B, and check isomorphism
e Test for validity: f(z1,...,z,) =17
— generate ROBDD B and check whether it only consists of a 1-leaf
e Test for implication: f(z1,...,x,) — g(x1,...,Tn)?
— generate ROBDD —-B; Vv B, and check if it just consist of a 1-leaf

e Test for satisfiability

— f is satisfiable if and only if B¢ is not just the 1-leaf

© JPK



Advanced model checking

Variable ordering
e The size of the ROBDD depends on the variable ordering

e For some functions, very compact ROBDDs may be obtained

— e.g., the even parity function

e Some boolean functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

e Some boolean functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)
— examples f(...)=x1 D ... B x,, 0r f(...) = 1iff > k variables x; are true

e Some boolean functions only have exponential ROBDDs
— this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

© JPK .



Advanced model checking

The even parity function

feven(x1, ..., xy) = 1iff the number of variables z; with value 1 is even

truth table or propositional formula for f..., has exponential size

but an ROBDD of linear size is possible

© JPK 8



Advanced model checking

The function stable with exponential ROBDD

The ROBDD of fyu(Z,y) = (1 <= y1) A ... A (xn < Yn)

has 3-2" — 1 verticesunderorderingz; < ... <z, <y1 < ... < Yn

© JPK



Advanced model checking

The function stable with linear ROBDD
&
© B

1

The ROBDD of fyu (T, ) = (1 < y1) A ... A (T < yYn)

has 3-n + 2 verticesunderorderingz; < y1 < ... < x, < Yn

© JPK

10



Advanced model checking

Symmetric function (n=4)

symmetric boolean functions have ROBDDs of size in O (n?)

© JPK

11



Advanced model checking

The multiplication function

e Consider two n-bit integers

— let b,—1b,—2...by and Cn—1Cpn—2...Co

— where b,,_1 is the most significant bit, and b, the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD By, _, has at least 1.09" vertices
— where f,,_; denotes the the (n—1)-st output bit of the multiplication

© JPK

12



Advanced model checking

Optimal variable ordering
e The size of ROBDDs is dependent on the variable ordering

e Is it possible to determine < such that the ROBDD has minimal size?

— the optimal variable ordering problem for ROBDDs is NP-complete
— polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)

e There are many boolean functions with large ROBDDs

— for almost all boolean functions the minimal size is in (2-)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the manipulations of ROBDDs
— not necessary to test all n! orderings, best algorithm in ©(3™-n?)

© JPK 13



Advanced model checking

Variable swapping

© JPK

14



Advanced model checking

Sifting algorithm
(Rudell, 1993)

Dynamic variable ordering using variable swapping:

1. Select a variable x;

2. By successive swapping of z;, determine |B| at any position for x;
3. Shift x; to its optimal position

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

© JPK 15



Advanced model checking

Transition systems as boolean functions

e Assume each state is uniquely labeled

— no restriction: if needed extend AP and label states uniquely

e Assume a fixed total order on propositions: a1 < as < ... < ag

e Represent a state by a boolean function

— over the boolean variables x; through x ¢ such that
[s] = ] N x5 N ... N T
— where the literal ;7 equals «; if a; € L(s), and — x; otherwise

e Represent I and — by their characteristic (boolean) functions

—eg., fo([s],[a],[t]) =1ifandonlyif s =t

© JPK

16



Advanced model checking

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings x¢,...,x, and yq, ..., y, Of state s and ¢ respectively:
T <Y <2< Y2 < ...< Ty < Yn

e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

g1 <2< ...<Zp <1 <yYy1 <2< yYy2<...<Ty <Yy
encoding of o interleaved order of statea

© JPK 17



Advanced model checking

Operations on ROBDDs

Algorithm  Inputs Output ROBDD

REDUCE B (not reduced) B’ (reduced) with fg = fg
NOT By B-f

APPLY B, By, binary logical operatorop By opg

RESTRICT By, variable z, boolean value b B f[z:=p)

RENAME B, variables = and y B fz:=y

EXISTS By, variable x Bas. ¢

© JPK 18



Advanced model checking

Negation

negation amounts to interchange the 0- and 1-leaf

© JPK

19



Advanced model checking

Conjunction

(@) (b) ()

performing APPLY(A, By, Briadre), 1.€., compute fBleﬁ N I8, adie

© JPK

20



Advanced model checking

APPLY

e Shannon expansion for binary operations:

Jopg = (w1 A (flz1:=1] 0p glzy :=1]))
V (mx1 A (flz1:=0]op gz, :=0]))

e A top-down evaluation scheme using the Shannon’s expansion:

— let v be the variable highest in the ordering occurring in B s orB,,

— split the problem into subproblems for v := 0 and v := 1, and solve recursively
— at the leaves, apply the boolean operator op directly

— reduce afterwards to turn the resulting OBDD into an ROBDD

e Efficiency gain is obtained by dynamic programming

— the time complexity of constructing the ROBDD of B, gp ,isin O (| Bs || By |)

© JPK 21



Advanced model checking

Algorithm AppPLY(0p, B¢, B,)

B.root := APPLY(0p, B.root, Bg.root);

if G(v1,v9) # empty then return G (v, vo) fi; (* lookup in hashtable *)
if (v and vg are terminals) then res := val(v) op val(v2) fi;
else if (v is terminal and vs is nonterminal)

then res := MakeNode(Var(vs), APPLY (0P, v1, left(vsy)), APPLY(0Op, vy, right(vs)));
else if (vy is nonterminal and v is terminal)

then res := MakeNode(Var(vy), APPLY (0P, left(vy), vo), APPLY (0P, right(vy), v2));
elseif (Var(vi) = Var(vs))

thenres := MakeNode(Var(vy), APPLY (0P, left(vy), left(vs)), APPLY (0P, right(vy ), right(v2)));
else if (Var(vy) < Var(v2))

then res := MakeNode(Var(vy), APPLY (0P, left(vy), vo), APPLY (0P, right(vy), v2));

else (* Var(vy) > Var(vg) *)
res := MakeNode(Var(vg), APPLY(0Op, vy, left(vy)), APPLY (0P, v1, right(vs2)));

G(v1,v2) 1= res; (* memoize result *)

return res

© JPK 22



Advanced model checking

Example

© JPK

23



Advanced model checking

Algorithm RESTRICT(B, z, b)

e For each vertex v labeled with variable z:

— if b = 1 then redirect incoming edges to right(v)
— if b = 0 then redirect incoming edges to left(v)
— remove vertex v, and (if necessary) reduce (only above v)

© JPK

24



Advanced model checking

RESTRICT

performing RESTRICT(B, z2, 1): replace x- by constant 1

© JPK

25



Advanced model checking

EXISTS

e Existential quantification over x;:

e Naive realization: APPLY(V, RESTRICT (B¢, z;,1), RESTRICT (B¢, z;,0))

e Efficiency gain:

— observe that RESTRICT(By, z;, 1) and RESTRICT(B, x;, 0) are equal up to x;
— ... the resulting ROBDD also has the same structure up to x;
— replace each node labeled with z; by the result of applying Vv on its children

e This can easily be generalized to Jx;. ... dzg. f(x1,...25)

© JPK 26



Advanced model checking

A simple example

© JPK

27



Advanced model checking

A more involved example

ROBBDs B ¢ (left up), Bf[x2::0] (right up), Bf[x2::1] (left down), and Bgm2' # (right down)

© JPK

28



Advanced model checking

Operations on ROBDDs

Algorithm  Output Time complexity Space complexity

REDUCE B’ (reduced) with fg = for  O(|By|-log|Bs|) O(|By|)

NoT B, O(|Bfl) O(1Byl)
APPLY Bfop g O(IBy|-|Bgl) O(IByl-Bgl)
RESTRICT By O(|By]) O(IByl)
RENAME  Bjpmy O(IByl) O(IBy)
EXISTS B ¢ O(|Bs|?) O(IBy[?)

operations are only efficient if f (and g) have compact ROBDD representations

© JPK

29



Advanced model checking

OBDDs versus automata

each OBDD B is a deterministic automaton Ag with f5 ' (1) = L(Asg)

© JPK

30



Advanced model checking

Analogies between ROBDDs and automata

e Forlanguage L, a minimised automaton is unique up to isomorphism

— for a given variable ordering <, and function f, an ROBDD is unique upto =

e L. = L'? can be checked by verifying isomorphism of their automata

— f = f'? for boolean functions can be checked by verifying By = B/
= In both cases, efficient algorithms do exist for this

o [ =+ &? = Is there a reachable accept state?

— Is f satisfiable? = its ROBDD has a reachable leaf 1

e Union, intersection, and complementation on automata is efficient

— disjunction, conjunction, and negation on ROBDDs are efficient

© JPK 31



