

Binary Decision Diagrams

Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 11, 2006

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

- **Binary decision diagram** (OBDD) is a **directed graph** over $\langle X, < \rangle$ with:
 - each leaf v is labeled with a boolean value $\text{val}(v) \in \{ 0, 1 \}$
 - non-leaf v is labeled by a boolean variable $\text{Var}(v) \in X$
 - such that for each non-leaf v and vertex w :

$$w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (\text{Var}(v) < \text{Var}(w) \vee w \text{ is a leaf})$$

\Rightarrow An OBDD is acyclic

- f_B for OBDD B is obtained as for BDTs

Reduced OBDDs

OBDD B over $\langle X, < \rangle$ is called *reduced* iff:

1. for each leaf v, w : $(\text{val}(v) = \text{val}(w)) \Rightarrow v = w$

\Rightarrow identical terminal vertices are forbidden

2. for each non-leaf v : $\text{left}(v) \neq \text{right}(v)$

\Rightarrow non-leaves may not have identical children

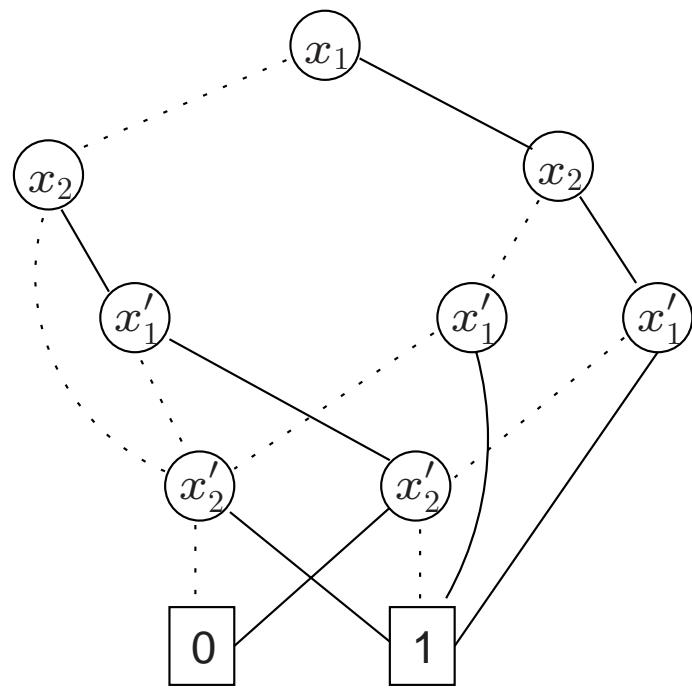
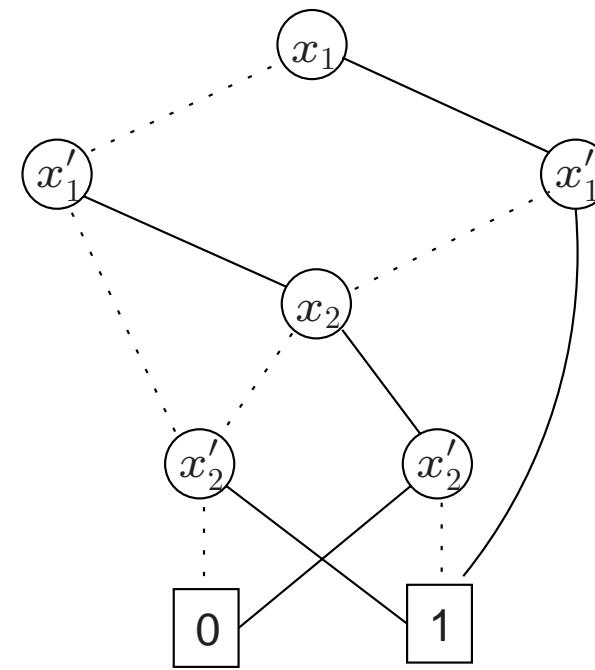
3. for each non-leaf v, w :

$$(\text{Var}(v) = \text{Var}(w) \wedge \text{right}(v) \cong \text{right}(w) \wedge \text{left}(v) \cong \text{left}(w)) \Rightarrow v = w$$

\Rightarrow vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Transition relation as an ROBDD

(a) ordering $x_1 < x_2 < x_1' < x_2'$ (b) ordering $x_1 < ' x_1' < ' x_2 < ' x_2'$

Shannon expansion

- Each boolean function $f : \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, \dots, x_n) = (x_i \wedge f[x_i := 1]) \vee (\neg x_i \wedge f[x_i := 0])$$

- where $f[x_i := c]$ stands for $f(x_1, \dots, x_{i-1}, c, x_{i+1}, \dots, x_n)$
- The boolean function $f_B(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_B(v) = \text{val}(v)$
 - otherwise:

$$f_B(v) = (\text{Var}(v) \wedge f_B(\text{right}(v))) \vee (\neg \text{Var}(v) \wedge f_B(\text{left}(v)))$$

- $f_B = f_B(v)$ where v is the root of B

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, < \rangle$ we have:

$(f_B = f_{B'})$ implies B and B' are isomorphic

\Rightarrow for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- **Absence of redundant vertices**
 - if f_B does not depend on x_i , ROBDD B does not contain an x_i vertex
- **Test for equivalence:** $f(x_1, \dots, x_n) \equiv g(x_1, \dots, x_n)$?
 - generate ROBDDs B_f and B_g , and check isomorphism
- **Test for validity:** $f(x_1, \dots, x_n) = 1$?
 - generate ROBDD B_f and check whether it only consists of a 1-leaf
- **Test for implication:** $f(x_1, \dots, x_n) \rightarrow g(x_1, \dots, x_n)$?
 - generate ROBDD $\neg B_f \vee B_g$ and check if it just consists of a 1-leaf
- **Test for satisfiability**
 - f is satisfiable if and only if B_f is not just the 1-leaf

Variable ordering

- The size of the ROBDD depends on the variable ordering
- For some functions, very compact ROBDDs may be obtained
 - e.g., the even parity function
- Some boolean functions have linear and exponential ROBDDs
 - e.g., the addition function, or the stable function
- Some boolean functions only have polynomial ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - examples $f(\dots) = x_1 \oplus \dots \oplus x_n$, or $f(\dots) = 1$ iff $\geq k$ variables x_i are true
- Some boolean functions only have exponential ROBDDs
 - this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

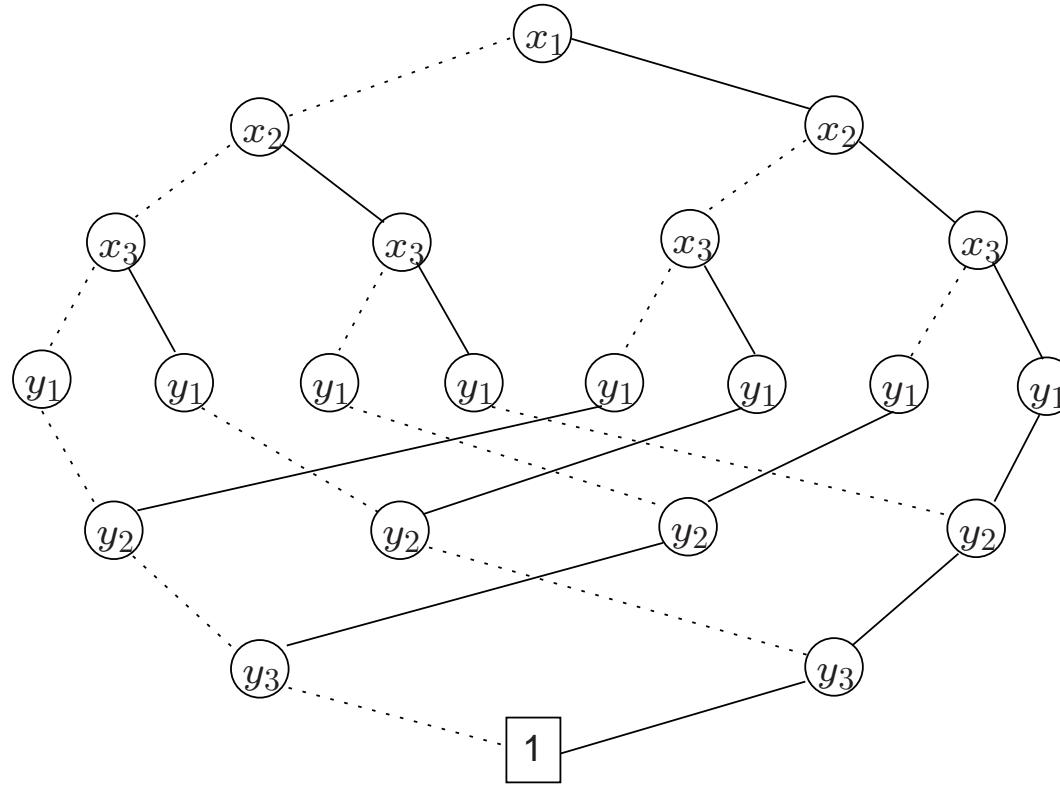
The even parity function

$f_{even}(x_1, \dots, x_n) = 1$ iff the number of variables x_i with value 1 is even

truth table or propositional formula for f_{even} has exponential size

but an ROBDD of linear size is possible

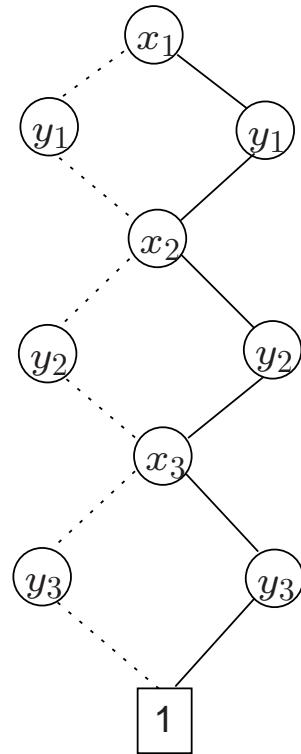
The function stable with exponential ROBDD



The ROBDD of $f_{stab}(\bar{x}, \bar{y}) = (x_1 \leftrightarrow y_1) \wedge \dots \wedge (x_n \leftrightarrow y_n)$

has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \dots < x_n < y_1 < \dots < y_n$

The function stable with linear ROBDD



The ROBDD of $f_{stab}(\bar{x}, \bar{y}) = (x_1 \leftrightarrow y_1) \wedge \dots \wedge (x_n \leftrightarrow y_n)$
has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \dots < x_n < y_n$

Symmetric function ($n=4$)

symmetric boolean functions have ROBDDs of size in $\mathcal{O}(n^2)$

The multiplication function

- Consider two n -bit integers
 - let $b_{n-1}b_{n-2}\dots b_0$ and $c_{n-1}c_{n-2}\dots c_0$
 - where b_{n-1} is the most significant bit, and b_0 the least significant bit
- Multiplication yields a $2n$ -bit integer
 - the ROBDD $B_{f_{n-1}}$ has at least 1.09^n vertices
 - where f_{n-1} denotes the the $(n-1)$ -st output bit of the multiplication

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine $<$ such that the ROBDD has minimal size?
 - the optimal variable ordering problem for ROBDDs is NP-complete
 - polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)
- There are many boolean functions with large ROBDDs
 - for almost all boolean functions the minimal size is in $\Omega(\frac{2^n}{n})$
- How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the manipulations of ROBDDs
 - not necessary to test all $n!$ orderings, best algorithm in $\mathcal{O}(3^n \cdot n^2)$

Variable swapping

Sifting algorithm

(Rudell, 1993)

Dynamic variable ordering using variable swapping:

1. Select a variable x_i
2. By successive swapping of x_i , determine $|B|$ at any position for x_i
3. Shift x_i to its optimal position
4. Go back to the first step until no improvement is made
 - Characteristics:
 - a variable may change position several times during a single sifting iteration
 - often yields a local optimum, but works well in practice

Transition systems as boolean functions

- Assume each state is uniquely labeled
 - no restriction: if needed extend AP and label states uniquely
- Assume a fixed total order on propositions: $a_1 < a_2 < \dots < a_K$
- Represent a state by a *boolean function*
 - over the boolean variables x_1 through x_K such that

$$[\![s]\!] = x_1^* \wedge x_2^* \wedge \dots \wedge x_K^*$$

- where the literal x_i^* equals x_i if $a_i \in L(s)$, and $\neg x_i$ otherwise
- Represent I and \rightarrow by their characteristic (boolean) functions
 - e.g., $f_{\rightarrow}([\![s]\!], [\![\alpha]\!], [\![t]\!]) = 1$ if and only if $s \xrightarrow{\alpha} t$

Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The *interleaved variable ordering*:
 - for encodings x_1, \dots, x_n and y_1, \dots, y_n of state s and t respectively:

$$x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$$

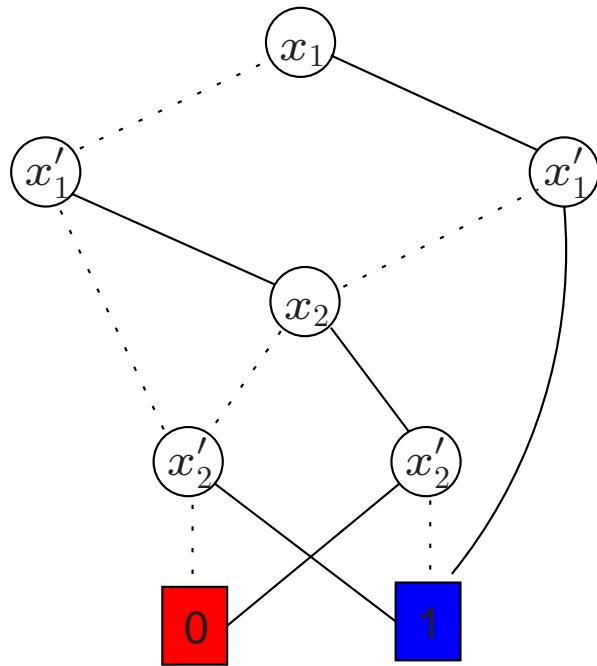
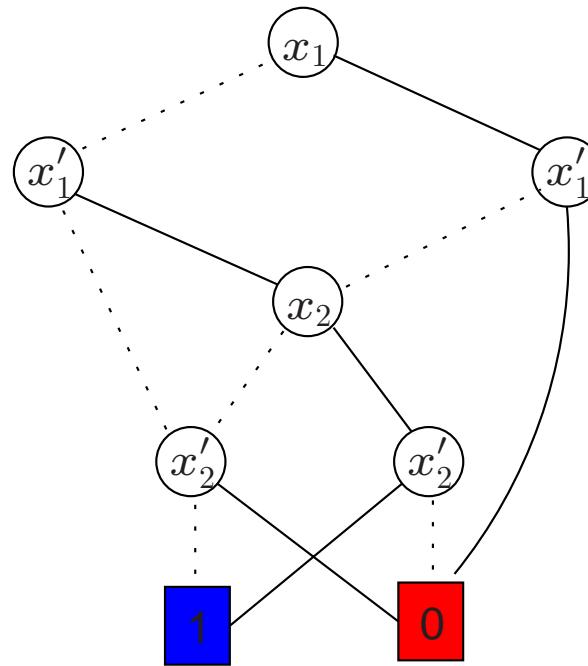
- This variable ordering yields compact ROBDDs for binary relations
 - for transition relation with $z_1 \dots z_m$ be the encoding of action α , take:

$$\underbrace{z_1 < z_2 < \dots < z_m}_{\text{encoding of } \alpha} < \underbrace{x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n}_{\text{interleaved order of statea}}$$

Operations on ROBDDs

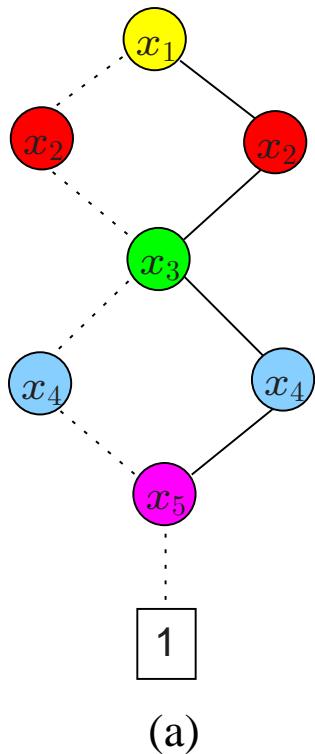
Algorithm	Inputs	Output ROBDD
REDUCE	B (not reduced)	B' (reduced) with $f_B = f_{B'}$
NOT	B_f	$B_{\neg f}$
APPLY	B_f, B_g , binary logical operator op	$B_f \ op \ g$
RESTRICT	B_f , variable x , boolean value b	$B_{f[x:=b]}$
RENAME	B_f , variables x and y	$B_{f[x:=y]}$
EXISTS	B_f , variable x	$B_{\exists x. f}$

Negation

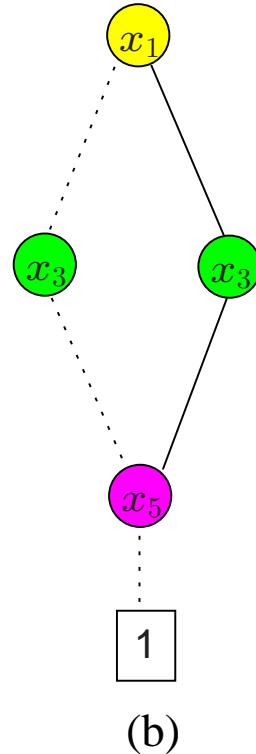


negation amounts to interchange the 0- and 1-leaf

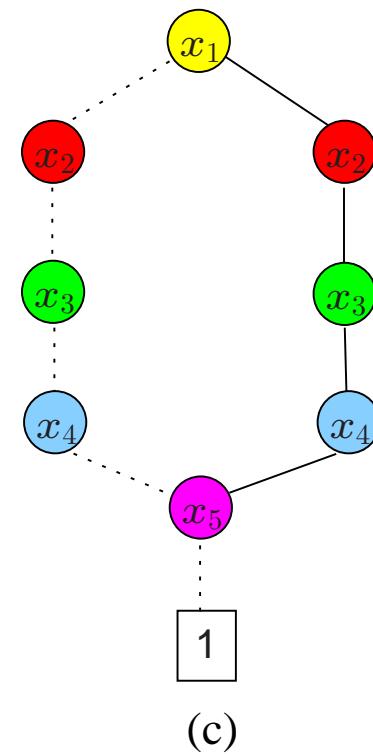
Conjunction



(a)



(b)



(c)

performing $\text{APPLY}(\wedge, B_{left}, B_{middle})$, i.e., compute $f_{B_{left}} \wedge f_{B_{middle}}$

APPLY

- Shannon expansion for binary operations:

$$\begin{aligned} f \text{ op } g &= (x_1 \wedge (f[x_1 := 1] \text{ op } g[x_1 := 1])) \\ &\quad \vee (\neg x_1 \wedge (f[x_1 := 0] \text{ op } g[x_1 := 0])) \end{aligned}$$

- A **top-down evaluation** scheme using the Shannon's expansion:
 - let v be the variable highest in the ordering occurring in B_f or B_g
 - split the problem into subproblems for $v := 0$ and $v := 1$, and solve recursively
 - at the leaves, apply the boolean operator op directly
 - reduce afterwards to turn the resulting OBDD into an ROBDD
- Efficiency gain is obtained by **dynamic programming**
 - the time complexity of constructing the ROBDD of $B_f \text{ op } g$ is in $\mathcal{O}(|B_f| \cdot |B_g|)$

Algorithm $\text{APPLY}(op, B_f, B_g)$

```

B.root := APPLY(op, Bf.root, Bg.root);

if  $G(v_1, v_2) \neq \text{empty}$  then return  $G(v_1, v_2)$  fi; (* lookup in hashtable *)
if ( $v_1$  and  $v_2$  are terminals) then  $res := val(v_1) op val(v_2)$  fi;
else if ( $v_1$  is terminal and  $v_2$  is nonterminal)
  then  $res := MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)))$ ;
else if ( $v_1$  is nonterminal and  $v_2$  is terminal)
  then  $res := MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2))$ ;
else if ( $Var(v_1) = Var(v_2)$ )
  then  $res := MakeNode(Var(v_1), APPLY(op, left(v_1), left(v_2)), APPLY(op, right(v_1), right(v_2)))$ ;
else if ( $Var(v_1) < Var(v_2)$ )
  then  $res := MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2))$ ;
else (*  $Var(v_1) > Var(v_2)$  *)
   $res := MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)))$ ;
 $G(v_1, v_2) := res$ ; (* memoize result *)
return  $res$ 

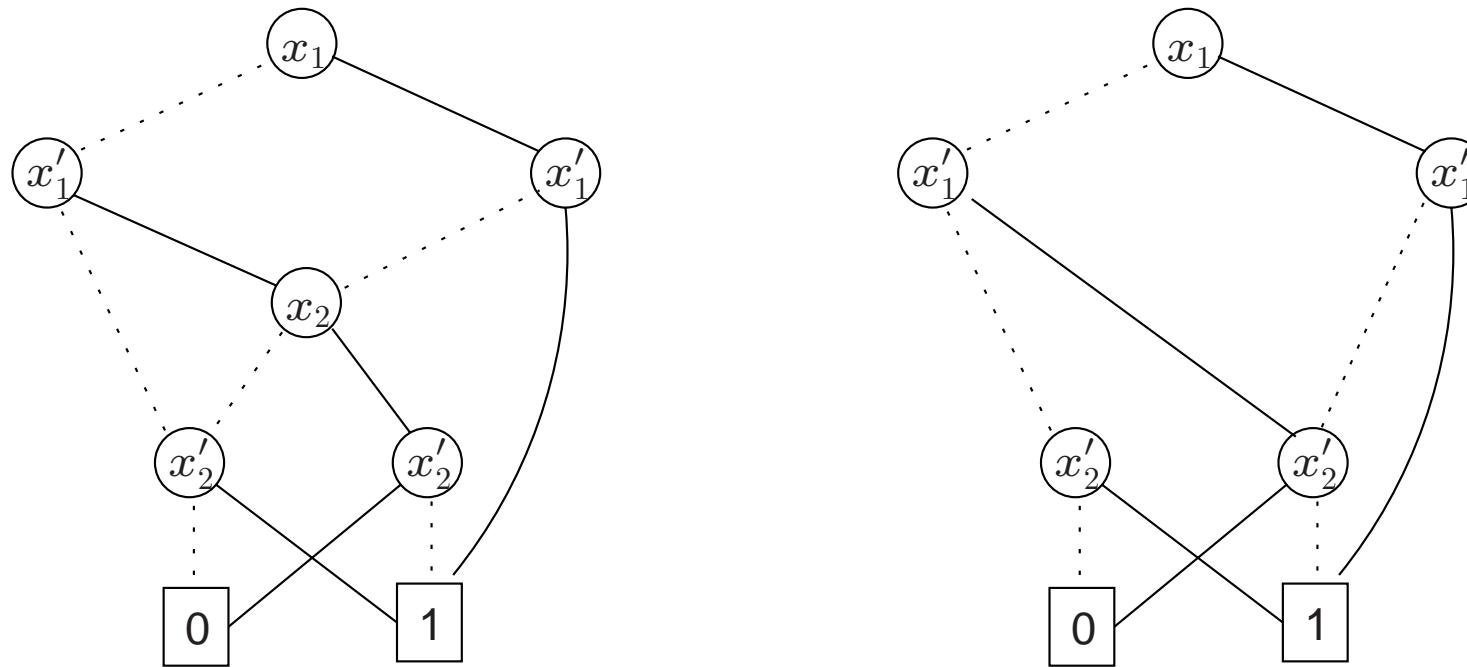
```

Example

Algorithm RESTRICT(B, x, b)

- For each vertex v labeled with variable x :
 - if $b = 1$ then redirect incoming edges to $right(v)$
 - if $b = 0$ then redirect incoming edges to $left(v)$
 - remove vertex v , and (if necessary) reduce (only above v)

RESTRICT



performing $\text{RESTRICT}(B, x_2, 1)$: replace x_2 by constant 1

EXISTS

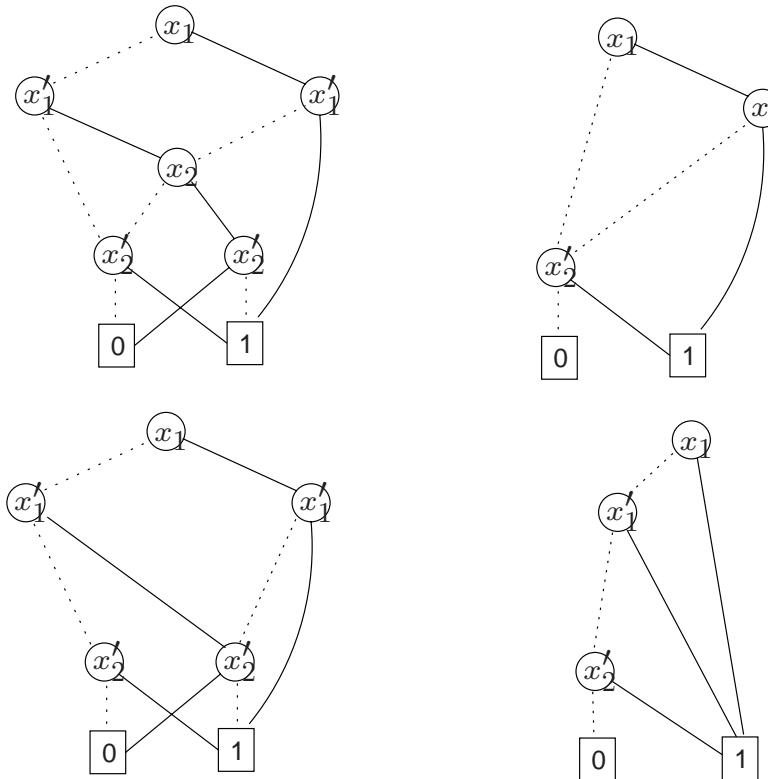
- Existential quantification over x_i :

$$\exists x_i. f(x_1, \dots, x_n) = f[x_i := 1] \vee f[x_i := 0]$$

- Naive realization: $\text{APPLY}(\vee, \text{RESTRICT}(B_f, x_i, 1), \text{RESTRICT}(B_f, x_i, 0))$
- Efficiency gain:
 - observe that $\text{RESTRICT}(B_f, x_i, 1)$ and $\text{RESTRICT}(B_f, x_i, 0)$ are equal up to x_i
 - ... the resulting ROBDD also has the same structure up to x_i
 - replace each node labeled with x_i by the result of applying \vee on its children
- This can easily be generalized to $\exists x_1. \dots \exists x_k. f(x_1, \dots, x_n)$

A simple example

A more involved example



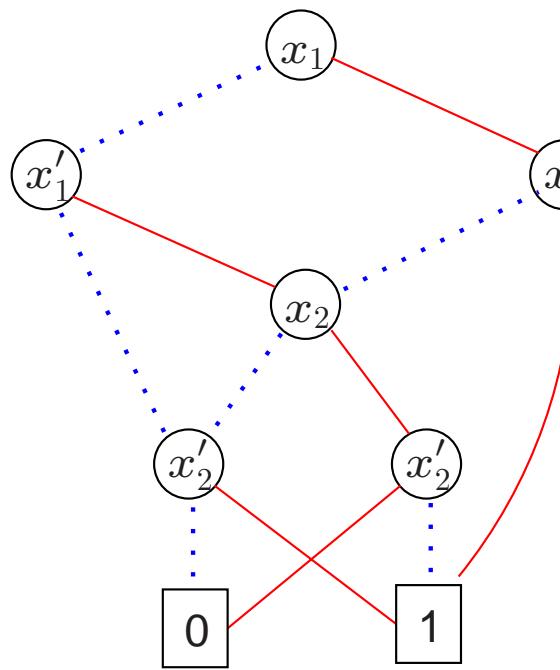
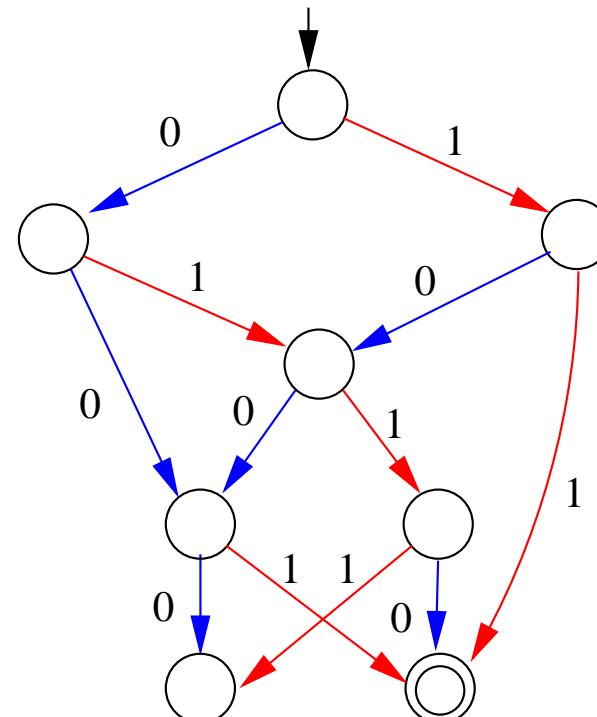
ROBDDs B_f (left up), $B_{f[x_2:=0]}$ (right up), $B_{f[x_2:=1]}$ (left down), and $B_{\exists x_2. f}$ (right down)

Operations on ROBDDs

Algorithm	Output	Time complexity	Space complexity
REDUCE	B' (reduced) with $f_B = f_{B'}$	$\mathcal{O}(B_f \cdot \log B_f)$	$\mathcal{O}(B_f)$
NOT	$B_{\neg f}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
APPLY	$B_f \text{ op } g$	$\mathcal{O}(B_f \cdot B_g)$	$\mathcal{O}(B_f \cdot B_g)$
RESTRICT	$B_{f[x:=b]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
RENAME	$B_{f[x:=y]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
EXISTS	$B_{\exists x. f}$	$\mathcal{O}(B_f ^2)$	$\mathcal{O}(B_f ^2)$

operations are only efficient if f (and g) have compact ROBDD representations

OBDDs versus automata



each OBDD B is a deterministic automaton A_B with $f_B^{-1}(1) = L(A_B)$

Analogy between ROBDDs and automata

- For language L , a minimised automaton is unique up to isomorphism
 - for a given variable ordering $<$, and function f , an ROBDD is unique up to \cong
- $L = L'?$ can be checked by verifying isomorphism of their automata
 - $f = f'?$ for boolean functions can be checked by verifying $B_f \cong B_{f'}$
 \Rightarrow in both cases, efficient algorithms do exist for this
- $L \neq \emptyset? \equiv$ is there a reachable accept state?
 - is f satisfiable? \equiv its ROBDD has a reachable leaf 1
- Union, intersection, and complementation on automata is efficient
 - disjunction, conjunction, and negation on ROBDDs are efficient