

Symbolic Model Checking

Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 14, 2006

Symbolic model checking

- CTL model checking using ROBDDs
 - determine whether $I \subseteq \text{Sat}(\Phi)$ for transition system TS
- Represent TS by means of ROBDDs
- Represent $\text{Sat}(\Psi)$ for sub-formula Ψ (of Φ) by an ROBDD
 - manipulate these ROBDDs to obtain $\text{Sat}(\Psi \wedge \Psi')$, $\text{Sat}(\bigcirc \Psi)$, and so on
 - most involved cases: until-operator and $\Box \Phi$
- Check whether $I \subseteq \text{Sat}(\Phi)$ using their ROBDDs

this approach is also applicable to the μ -calculus

Transition systems as boolean functions

- Assume each state is uniquely labeled
- Assume a fixed **total order on propositions**: $a_1 < a_2 < \dots < a_K$
- Represent a state by a *boolean function*
 - over the boolean variables x_1 through x_K such that

$$[\![s]\!] = x_1^* \wedge x_2^* \wedge \dots \wedge x_K^*$$

- where the literal x_i^* equals x_i if $a_i \in L(s)$, and $\neg x_i$ otherwise
- Represent I and \rightarrow by their characteristic (boolean) functions
 - $f_I([\![s]\!]) = 1$ if and only if $s \in I$
 - $f_{\rightarrow}([\![s]\!], [\![\alpha]\!], [\![t]\!]) = 1$ if and only if $s \xrightarrow{\alpha} t$

Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The *interleaved variable ordering*:
 - for encodings x_1, \dots, x_n and y_1, \dots, y_n of state s and t respectively:

$$x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$$

- This variable ordering yields compact ROBDDs for binary relations
 - for transition relation with $z_1 \dots z_m$ be the encoding of action α , take:

$$\underbrace{z_1 < z_2 < \dots < z_m}_{\text{encoding of } \alpha} < \underbrace{x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n}_{\text{interleaved order of statea}}$$

Operations on ROBDDs

Algorithm	Inputs	Output ROBDD
REDUCE	B (not reduced)	B' (reduced) with $f_B = f_{B'}$
NOT	B_f	$B_{\neg f}$
APPLY	B_f, B_g , binary logical operator op	$B_f \ op \ g$
RESTRICT	B_f , variable x , boolean value b	$B_{f[x:=b]}$
RENAME	B_f , variables x and y	$B_{f[x:=y]}$
EXISTS	B_f , variable x	$B_{\exists x. f}$

Operations on ROBDDs

Algorithm	Output	Time complexity	Space complexity
REDUCE	B' (reduced) with $f_B = f_{B'}$	$\mathcal{O}(B_f \cdot \log B_f)$	$\mathcal{O}(B_f)$
NOT	$B_{\neg f}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
APPLY	$B_f \text{ op } g$	$\mathcal{O}(B_f \cdot B_g)$	$\mathcal{O}(B_f \cdot B_g)$
RESTRICT	$B_{f[x:=b]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
RENAME	$B_{f[x:=y]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
EXISTS	$B_{\exists x. f}$	$\mathcal{O}(B_f ^2)$	$\mathcal{O}(B_f ^2)$

operations are only efficient if f (and g) have compact ROBDD representations

Model checking CTL using ROBDDs

The set of CTL formulas in *existential normal form* (ENF) is given by:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \bigcirc \Phi \quad | \quad \exists (\Phi_1 \cup \Phi_2) \quad | \quad \exists \Box \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

Model checking CTL

- Convert the formula Φ' into an equivalent Φ in ENF
- How to check whether state TS satisfies Φ ?
 - compute *recursively* the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether all initial states belong to $Sat(\Phi)$
- Recursive **bottom-up** computation:
 - consider the *parse-tree* of Φ
 - start to compute $Sat(a)$, for all leafs in the tree
 - then go one level up in the tree and check the formula of these nodes
 - then go one level up and check the formula of these nodes
 - and so on..... until the root of the tree (i.e., Φ) is checked

Computing $\text{Sat}(\Phi)$ symbolically

Input: CTL-formula Φ in ENF

Output: ROBDD $B_{\text{Sat}(\Phi)}$

switch(Φ):

true	:	return CONST(1);
false	:	return CONST(0);
a_i	:	return ROBDD B_f for $f(x_1, \dots, x_n) = x_i$;
$\neg \Psi$:	return NOT($bddSat(\Psi)$)
$\Phi_1 \wedge \Phi_2$:	return APPLY(\wedge , $bddSat(\Phi_1)$, $bddSat(\Phi_2)$)
$\exists \bigcirc \Psi$:	return $bddEX(\Psi)$;
$\exists (\Phi_1 \cup \Phi_2)$:	return $bddEU(\Phi_1, \Phi_2)$
$\exists \Box \Psi$:	return $bddEG(\Psi)$

end switch

The next-step operator

$$\text{Sat}(\bigcirc\Phi) = \{ s \in S \mid \exists s'. s \rightarrow s' \text{ and } s' \in \text{Sat}(\Phi) \}$$

Input: CTL-formula Φ in ENF

Output: ROBDD $B_{\text{Sat}(\bigcirc\Phi)}$

```
B := bddSat( $\Phi$ );                                     (* Sat( $\Phi$ ) *)
B := RENAME(B,  $x_1, \dots, x_n, x'_1, \dots, x'_n$ );
B := APPLY( $\wedge$ , B $\rightarrow$ , B);                         (* Pre(Sat( $\Phi$ )) *)
return EXISTS(B,  $x'_1, \dots, x'_n$ )
```

Characterization for until and globally

For all CTL formulas Φ, Ψ over AP it holds:

- $Sat(\exists(\Phi \cup \Psi))$ is the **smallest** subset T of S , such that:
 - (1) $Sat(\Psi) \subseteq T$ and
 - (2) $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$
- $Sat(\exists \Box \Phi)$ is the **largest** subset T of S , such that:
 - (3) $T \subseteq Sat(\Phi)$ and
 - (4) $s \in T$ implies $Post(s) \cap T \neq \emptyset$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Computation of Sat

switch(Φ):

```

 $a$  : return {  $s \in S \mid a \in L(s)$  };

 $\dots$  :  $\dots$ 

 $\exists(\Phi_1 \cup \Phi_2)$  :  $T := \text{Sat}(\Phi_2)$ ; (* compute the smallest fixed point *)
  while ( $\text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T) \neq \emptyset$ ) do
    let  $s \in \text{Sat}(\Phi_1) \setminus T \cap \text{Pre}(T)$ ;
     $T := T \cup \{ s \}$ ;
  od;
  return  $T$ ;

 $\exists \Box \Psi$  :  $T := \text{Sat}(\Psi)$ ; (* compute the greatest fixed point *)
  while  $\exists s \in T. \text{Post}(s) \cap T = \emptyset$  do
    let  $s \in \{ s \in T \mid \text{Post}(s) \cap T = \emptyset \}$ ;
     $T := T \setminus \{ s \}$ ;
  od;
  return  $T$ ;
```

end switch

Computing $\text{Sat}(\exists(\Phi \cup \Psi))$ and $\text{Sat}(\exists \Box \Phi)$

- Computing $\text{Sat}(\exists(\Phi \cup \Psi))$ iteratively:
 - $T_0 := \text{Sat}(\Psi)$
 - $T_{i+1} := T_i \cup \{ s \in \text{Sat}(\Phi) \mid \exists s'. s \rightarrow s' \text{ and } s' \in T_i \}$
- Computing $\text{Sat}(\exists \Box \Phi)$ iteratively:
 - $T_0 := \text{Sat}(\Phi)$
 - $T_{i+1} := T_i \cap \{ s \in \text{Sat}(\Phi) \mid \exists s'. s \rightarrow s' \text{ and } s' \in T_i \}$

Existential until

Input: CTL-formulas Φ , Ψ in ENF

Output: ROBDD $B_{Sat(\exists(\Phi \cup \Psi))}$

```

var N, P, B : ROBDD;
N := bddSat( $\Psi$ );
P := CONST(0);
B := bddSat( $\Phi$ );
while (N  $\neq$  P) do
  P := N; (*  $T_i$  *)
  N := RENAME(N,  $x_1, \dots, x_n, x'_1, \dots, x'_n$ );
  N := APPLY( $\wedge$ , B $\rightarrow$ , N); (* Pre( $T_i$ ) *)
  N := EXISTS(N,  $x'_1, \dots, x'_n$ );
  N := APPLY( $\wedge$ , N, B); (* Pre( $T_i$ )  $\cap$  Sat( $\Phi$ ) *)
  N := APPLY( $\vee$ , P, N); (*  $T_{i+1} = T_i \cup \dots$  *)
od
return N
  
```

Possibly always

Input: CTL-formula Φ in ENF

Output: ROBDD $B_{Sat(\exists \Box \Phi)}$

```

var N, P, B : ROBDD;
B := bddSat( $\Phi$ );
N := B;
P := CONST(0);
while (N  $\neq$  P) do
  P := N;                                     (*  $T_i$  *)
  N := RENAME(N,  $x_1, \dots, x_n, x'_1, \dots, x'_n$ );
  N := APPLY( $\wedge$ , B $\rightarrow$ , N);                 (*  $Pre(T_i)$  *)
  N := EXISTS(N,  $x'_1, \dots, x'_n$ );
  N := APPLY( $\wedge$ , N, B);                     (*  $Pre(T_i) \cap Sat(\Phi)$  *)
  N := APPLY( $\wedge$ , P, N);                     (*  $T_{i+1} = T_i \cap \dots$  *)
od
return N

```

Compositional generation of ROBDDs

- Let $TS_i = (S_i, Act, \rightarrow_i, I_i, AP, L_i)$ for $i = 1, 2$ and for $H \subseteq Act$:

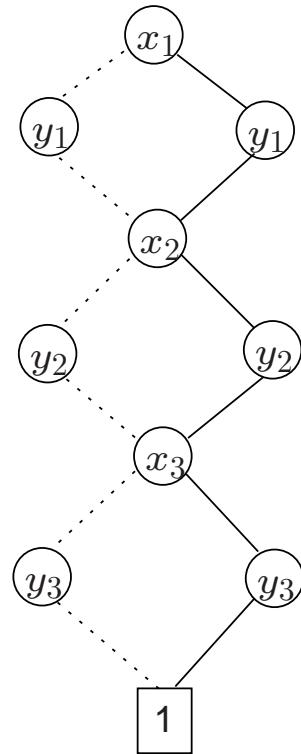
$TS = TS_1 \parallel_H TS_2$ the parallel composition of TS_1 and TS_2

- \rightarrow_i is represented by B_i and H by B_H
- The ROBDD B representing the transition relation of TS is given by:

$$\underbrace{((B_1 \wedge B_H) \wedge (B_2 \wedge B_H))}_{\text{synchronization}} \vee \underbrace{(B_1 \wedge B_{\overline{H}} \wedge B_{f_{stab1}})}_{\text{own move by } TS_1} \vee \underbrace{(B_2 \wedge B_{\overline{H}} \wedge B_{f_{stab2}})}_{\text{own move by } TS_2}$$

- where $f_{stabi} = \bigwedge_{j=1}^{n_i} (x_j^{(i)} \leftrightarrow y_j^{(i)})$ with $n_i = \#$ state variables in TS_i
- and $x_j^{(i)}, y_j^{(i)}$ encode the source and target state of a transition in TS_i

The function stable with linear ROBDD



The ROBDD of $f_{stab}(\bar{x}, \bar{y}) = (x_1 \leftrightarrow y_1) \wedge \dots \wedge (x_n \leftrightarrow y_n)$

has $3 \cdot n + 2$ vertices under **interleaving** ordering $x_1 < y_1 < \dots < x_n < y_n$

Example of compositional generation

Compositional generation of ROBDDs

- The size of TS is **exponential** in number of concurrent processes
 - $|TS| = |TS_1| \parallel_H |TS_2|$ is bounded from above by $|S_1| \cdot |S_2|$
- The size of B is **linear** in number of concurrent processes
 - $|B|$ is bounded from above by:
$$|Act| \cdot (|B_1| + |B_2| + |B_{f_{stab1}}| + |B_{f_{stab2}}|)$$
 - by exploiting the interleaved variable ordering
- Compositional generation of ROBDDs is **beneficial**
 - it reduces the peak memory requirements
 - size of BDD representation is linear in number of components

Some experimental results

- **Traffic alert and collision avoidance system (TCAS)** (1998)
 - 277 boolean variables, reachable state space is about $9.6 \cdot 10^{56}$ states
 - $|B| = 124,618$ vertices (about 7.1 MB), construction time 46.6 sec
 - checking $\forall \square(p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices
- **Synchronous pipeline circuit** (1992)
 - pipeline with 12 bits: reachable state space of $1.5 \cdot 10^{29}$ states
 - checking safety property takes about $10^4 - 10^5$ sec
 - $|B_{\rightarrow}|$ is linear in data path width
 - verification of 32 bits (about 10^{120} states): 1h 25m
 - using partitioned transition relations

Some other types of BDDs

- Zero-suppressed BDDs
 - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted
- Parity BDDs
 - like ROBDDs, but non-terminals may be labeled with \oplus ; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
 - like ROBDDs, but terminals have values in \mathbb{R} , or \mathbb{N} , etc.
- Binary moment diagrams (BMD)
 - generalization of ROBDD to linear functions over bool, int and real
 - uses edge weights

Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)