
Symbolic Model Checking
Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 14, 2006

c© JPK

Advanced model checking

Symbolic model checking

• CTL model checking using ROBDDs

– determine whether I ⊆ Sat(Φ) for transition system TS

• Represent TS by means of ROBDDs

• Represent Sat(Ψ) for sub-formula Ψ (of Φ) by an ROBDD

– manipulate these ROBDDs to obtain Sat(Ψ ∧ Ψ′), Sat(©Ψ), and so on
– most involved cases: until-operator and �Φ

• Check whether I ⊆ Sat(Φ) using their ROBDDs

this approach is also applicable to the µ-calculus

c© JPK 1

Advanced model checking

Transition systems as boolean functions

• Assume each state is uniquely labeled

• Assume a fixed total order on propositions: a1 < a2 < . . . < aK

• Represent a state by a boolean function

– over the boolean variables x1 through xK such that

[[s]] = x∗
1 ∧ x∗

2 ∧ . . . ∧ x∗
K

– where the literal x∗
i equals xi if ai ∈ L(s), and ¬xi otherwise

• Represent I and → by their characteristic (boolean) functions

– fI([[s]]) = 1 if and only if s ∈ I

– f→([[s]], [[α]], [[t]]) = 1 if and only if s α−→ t

c© JPK 2

Advanced model checking

Interleaved variable ordering

• Which variable ordering to use for transition relations?

• The interleaved variable ordering:

– for encodings x1, . . . , xn and y1, . . . , yn of state s and t respectively:

x1 < y1 < x2 < y2 < . . . < xn < yn

• This variable ordering yields compact ROBDDs for binary relations

– for transition relation with z1 . . . zm be the encoding of action α, take:

z1 < z2 < . . . < zm| {z }
encoding of α

< x1 < y1 < x2 < y2 < . . . < xn < yn| {z }
interleaved order of statea

c© JPK 3

Advanced model checking

Operations on ROBDDs

Algorithm Inputs Output ROBDD

REDUCE B (not reduced) B′ (reduced) with fB = fB′

NOT Bf B¬f

APPLY Bf , Bg, binary logical operator op Bf op g

RESTRICT Bf , variable x, boolean value b Bf [x:=b]

RENAME Bf , variables x and y Bf [x:=y]

EXISTS Bf , variable x B∃x. f

c© JPK 4

Advanced model checking

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

REDUCE B′ (reduced) with fB = fB′ O(|Bf |· log |Bf |) O(|Bf |)

NOT B¬f O(|Bf |) O(|Bf |)

APPLY Bf op g O(|Bf |·|Bg|) O(|Bf |·|Bg|)

RESTRICT Bf [x:=b] O(|Bf |) O(|Bf |)

RENAME Bf [x:=y] O(|Bf |) O(|Bf |)

EXISTS B∃x. f O(|Bf |2) O(|Bf |2)

operations are only efficient if f (and g) have compact ROBDD representations

c© JPK 5

Advanced model checking

Model checking CTL using ROBDDs

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃©Φ

∣
∣
∣ ∃(Φ1 UΦ2)

∣
∣
∣ ∃�Φ

For each CTL formula, there exists an equivalent CTL formula in ENF

c© JPK 6

Advanced model checking

Model checking CTL

• Convert the formula Φ′ into an equivalent Φ in ENF

• How to check whether state TS satisfies Φ?

– compute recursively the set Sat(Φ) of states that satisfy Φ

– check whether all initial states belong to Sat(Φ)

• Recursive bottom-up computation:

– consider the parse-tree of Φ

– start to compute Sat(a), for all leafs in the tree
– then go one level up in the tree and check the formula of these nodes
– then go one level up and check the formula of these nodes
– and so on....... until the root of the tree (i.e., Φ) is checked

c© JPK 7

Advanced model checking

Computing Sat(Φ) symbolically
Input: CTL-formula Φ in ENF
Output: ROBDD BSat(Φ)

switch(Φ):

true : return CONST(1);

false : return CONST(0);

ai : return ROBDD Bf for f(x1, . . . , xn) = xi;

¬Ψ : return NOT(bddSat(Ψ))

Φ1 ∧Φ2 : return APPLY(∧, bddSat(Φ1), bddSat(Φ2))

∃©Ψ : return bddEX(Ψ);

∃(Φ1 U Φ2) : return bddEU(Φ1, Φ2)

∃�Ψ : return bddEG(Ψ)

end switch

c© JPK 8

Advanced model checking

The next-step operator

Sat(©Φ) = { s ∈ S | ∃s′. s−→ s′ and s′ ∈ Sat(Φ) }

Input: CTL-formula Φ in ENF
Output: ROBDD BSat(©Φ)

B := bddSat(Φ); (* Sat(Φ) *)
B := RENAME(B, x1, . . . , xn, x′

1, . . . , x′
n);

B := APPLY(∧, B→, B); (* Pre(Sat(Φ)) *)
return EXISTS(B, x′

1, . . . , x′
n)

c© JPK 9

Advanced model checking

Characterization for until and globally

For all CTL formulas Φ, Ψ over AP it holds:

• Sat(∃(Φ UΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and

(2) s ∈ Sat(Φ) and Post(s) ∩ T
= ∅ implies s ∈ T

• Sat(∃�Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and

(4) s ∈ T implies Post(s) ∩ T
= ∅

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 10

Advanced model checking

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . :

∃(Φ1 U Φ2) : T := Sat(Φ2); (* compute the smallest fixed point *)
while (Sat(Φ1) \ T ∩ Pre(T)
= ∅) do

let s ∈ Sat(Φ1) \ T ∩ Pre(T);
T := T ∪ { s };

od;
return T ;

∃�Ψ : T := Sat(Ψ); (* compute the greatest fixed point *)
while ∃s ∈ T. Post(s) ∩ T = ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 11

Advanced model checking

Computing Sat(∃(ΦU Ψ)) and Sat(∃�Φ)

• Computing Sat(∃(Φ UΨ)) iteratively:

– T0 := Sat(Ψ)

– Ti+1 := Ti ∪ { s ∈ Sat(Φ) | ∃s′. s → s′ and s′ ∈ Ti }

• Computing Sat(∃�Φ) iteratively:

– T0 := Sat(Φ)

– Ti+1 := Ti ∩ { s ∈ Sat(Φ) | ∃s′. s → s′ and s′ ∈ Ti }

c© JPK 12

Advanced model checking

Existential until

Input: CTL-formulas Φ, Ψ in ENF
Output: ROBDD BSat(∃(Φ U Ψ))

var N, P, B : ROBDD;
N := bddSat(Ψ);
P := CONST(0);
B := bddSat(Φ);
while (N
= P) do

P := N; (* Ti *)
N := RENAME(N, x1, . . . , xn, x′

1, . . . , x′
n);

N := APPLY(∧, B→, N); (* Pre(Ti) *)
N := EXISTS(N, x′

1, . . . , x′
n);

N := APPLY(∧, N, B); (* Pre(Ti) ∩ Sat(Φ) *)
N := APPLY(∨, P, N); (* Ti+1 = Ti ∪ *)

od
return N

c© JPK 13

Advanced model checking

Possibly always

Input: CTL-formula Φ in ENF
Output: ROBDD BSat(∃�Φ)

var N, P, B : ROBDD;
B := bddSat(Φ);
N := B;
P := CONST(0);
while (N
= P) do

P := N; (* Ti *)
N := RENAME(N, x1, . . . , xn, x′

1, . . . , x′
n);

N := APPLY(∧, B→, N); (* Pre(Ti) *)
N := EXISTS(N, x′

1, . . . , x′
n);

N := APPLY(∧, N, B); (* Pre(Ti) ∩ Sat(Φ) *)
N := APPLY(∧, P, N); (* Ti+1 = Ti ∩ *)

od
return N

c© JPK 14

Advanced model checking

Compositional generation of ROBDDs

• Let TSi = (Si, Act,→ i, Ii, AP, Li) for i = 1, 2 and for H ⊆ Act:

TS = TS1 ||H TS2 the parallel composition of TS1 and TS2

• → i is represented by Bi and H by BH

• The ROBDD B representing the transition relation of TS is given by:

((B1∧BH) ∧ (B2∧BH))
︸ ︷︷ ︸

synchronization

∨ (B1∧BH ∧Bfstab1)︸ ︷︷ ︸
own move by TS1

∨ (B2∧BH ∧Bfstab2)︸ ︷︷ ︸
own move by TS2

– where fstabi =
Vni

j=1(x
(i)
j ↔ y

(i)
j) with ni = # state variables in TSi

– and x
(i)
j , y

(i)
j encode the source and target state of a transition in TSi

c© JPK 15

Advanced model checking

The function stable with linear ROBDD
x1

y1 y1

x2

y2 y2

x3

y3

1

y3

The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·n + 2 vertices under interleaving ordering x1 < y1 < . . . < xn < yn

c© JPK 16

Advanced model checking

Example of compositional generation

c© JPK 17

Advanced model checking

Compositional generation of ROBDDs

• The size of TS is exponential in number of concurrent processes

– |TS| = |TS1 ||H TS2| is bounded from above by |S1|·|S2|

• The size of B is linear in number of concurrent processes

– |B| is bounded from above by:

|Act|· `|B1| + |B2| + |Bfstab1 | + |Bfstab2 |
´

– by exploiting the interleaved variable ordering

• Compositional generation of ROBDDs is benificial

– it reduces the peak memory requirements
– size of BDD representation is linear in number of components

c© JPK 18

Advanced model checking

Some experimental results

• Traffic alert and collision avoidance system (TCAS) (1998)

– 277 boolean variables, reachable state space is about 9.61056 states
– |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
– checking ∀�(p → q) takes 290 sec and 717,000 BDD vertices

• Synchronous pipeline circuit (1992)

– pipeline with 12 bits: reachable state space of 1.51029 states
– checking safety property takes about 104 − 105 sec
– |B→| is linear in data path width
– verification of 32 bits (about 10120 states): 1h 25m
– using partitioned transition relations

c© JPK 19

Advanced model checking

Some other types of BDDs

• Zero-suppressed BDDs

– like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted

• Parity BDDs

– like ROBDDs, but non-terminals may be labeled with ⊕; no canonical form

• Edge-valued BDDs

• Multi-terminal BDDs (or: algebraic BDDs)

– like ROBDDs, but terminals have values in R, or N, etc.

• Binary moment diagrams (BMD)

– generalization of ROBDD to linear functions over bool, int and real
– uses edge weights

c© JPK 20

Advanced model checking

Further reading

• R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

• R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992

• M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999

• H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

• K. McMillan: Symbolic model checking, 1992

• Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

c© JPK 21

