© JPK

Symbolic Model Checking
Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 14, 2006

Advanced model checking

Symbolic model checking

e CTL model checking using ROBDDs

— determine whether I C Sat(®) for transition system TS

e Represent TS by means of ROBDDs

e Represent Sat(V¥) for sub-formula ¥ (of ®) by an ROBDD

— manipulate these ROBDDs to obtain Sat(¥ A ¥'), Sat(O¥), and so on
— most involved cases: until-operator and O

e Check whether I C Sat(®) using their ROBDDs

this approach is also applicable to the p-calculus

© JPK 1

Advanced model checking

Transition systems as boolean functions

e Assume each state is uniquely labeled

e Assume a fixed total order on propositions: a1 < as < ... < ag
e Represent a state by a boolean function
— over the boolean variables x; through x i such that
[s] =] N x5 N ... N T
— where the literal ;7 equals «; if a; € L(s), and — x; otherwise

e Represent I and — by their characteristic (boolean) functions

— fi([s]) =1ifandonlyifs € I
— f=([s],[«],[t]) =1lifandonlyif s =t

© JPK

Advanced model checking

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings x¢,...,x, and yq, ..., y, Of state s and ¢ respectively:
T <Y <2< Y2 < ...< Ty < Yn

e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

g1 <2< ...<Zp <1 <yYy1 <2< yYy2<...<Ty <Yy
encoding of o interleaved order of statea

© JPK

Advanced model checking

Operations on ROBDDs

Algorithm Inputs Output ROBDD

REDUCE B (not reduced) B’ (reduced) with fg = fg
NOT By B-f

APPLY B, By, binary logical operatorop By opg

RESTRICT By, variable z, boolean value b B f[z:=p)

RENAME B, variables = and y B fz:=y

EXISTS By, variable x Bas. ¢

© JPK

Advanced model checking

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

REDUCE B’ (reduced) with fg = for O(|By|-log|Bs|) O(|By|)

NoT B, O(|Bfl) O(1Byl)
APPLY Bfop g O(IBy|-|Bgl) O(IByl-Bgl)
RESTRICT By O(|By]) O(IByl)
RENAME Bjpmy O(IByl) O(IBy)
EXISTS B ¢ O(|Bs|?) O(IBy[?)

operations are only efficient if f (and g) have compact ROBDD representations

© JPK

Advanced model checking

Model checking CTL using ROBDDs

The set of CTL formulas in existential normal form (ENF) is given by:

o

= true | a | Oy A Ps ‘ - ‘ 30 | 3@, Ud,y) | 309

For each CTL formula, there exists an equivalent CTL formula in ENF

© JPK

Advanced model checking

Model checking CTL

e Convert the formula @’ into an equivalent ® in ENF

e How to check whether state TS satisfies ¢?

— compute recursively the set Sat(®) of states that satisfy o
— check whether all initial states belong to Sat(®)

e Recursive bottom-up computation:

— consider the parse-tree of $

— start to compute Sat(a), for all leafs in the tree

— then go one level up in the tree and check the formula of these nodes
— then go one level up and check the formula of these nodes

— and so on....... until the root of the tree (i.e., ®) is checked

© JPK

Advanced model checking

Computing Sat(®) symbolically

Input: CTL-formula ® in ENF

Output: ROBDD B g4 (s)

switch(P):

true

false

a;

W

P, N Dy
=@)%
(P U Dy)

JOWw
end switch

return CoNsT(1);

return CONST(0);

return ROBDD By for f(x1,...,x,) = x;;
return NoT(bddSat(WV))

return APPLY(A, bddSat(®), bddSat(®-))
return bddeX(W);

return bddeU(®, &)

return bddeEG (W)

© JPK

Advanced model checking

The next-step operator

Sat(O®) = {seS|3ds’.s—s"and s’ € Sat(P) }

Input: CTL-formula ® in ENF
Output: ROBDD B g0 a)

B := bddSat(®); (* Sat(®) *)
B := RENAME(B, 1, ..., Zpn, 2], ..., 2));

B := APPLY(A, B_,, B); (* Pre(Sat(®)) *)
return EXists(B, z', ..., z))

© JPK 9

Advanced model checking

Characterization for until and globally

For all C'T'L formulas ¢, ¥ over AP it holds:

e Sat(d(P UW)) is the smallest subset T" of S, such that:
(1) Sat(w) C T and

(2) s € Sat(®) and Post(s) N'T # @ impliess € T

e Sat(JdO®P) is the largest subset T of S, such that:

(3) T C Sat(®) and

(4) s € T implies Post(s) N T # @

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 10

Advanced model checking

switch(®):

a

(P, U Do)

100

end switch

Computation of Sat

return {s € S| a € L(s) };

T := Sat(®P3); (* compute the smallest fixed point *)
while (Sat(®1) \ TN Pre(T) # @) do
let s € Sat(®q) \ 7' N Pre(T);
T:=T U {s}
od;
return 1+

T := Sat(V); (* compute the greatest fixed point *)
while 3s € T. Post(s) N'T = @ do

let s€ {se€ T |Post(s)NT =2 };
T:=T\{s}
od;
return T+

© JPK

11

Advanced model checking

Computing Sat(3(® U ¥)) and Sat(d09)

e Computing Sat(3(® U V)) iteratively:
— Th := Sat(\I!)

— Tiy1:=T; U {s € Sat(d) | Is'.s — s"ands’ € T; }

e Computing Sat(3dO®) iteratively:
— Ty := Sat(CI))

— Ty :=T; N {s € Sat(d) | Is'.s — s'ands’ € T; }

© JPK

12

Advanced model checking

Existential until

Input: CTL-formulas @, ¥ in ENF

Output: ROBDD By, 54 U)

var N, P, B : ROBDD:;
N := bddSat(WV);

P := CoNsT(0);

B := bddSat(®);
while (N # P) do

P = N; (127)
N := RENAME(N, z1, ..., Zn, 2], ..., 2);
N := APPLY(A, B_, N); (* Pre(T;) *)
N := ExisTs(N, z, ...,z);
N := APPLY(A, N, B); (* Pre(T;) N Sat(®) *)
N := APPLY(V, P, N); CTipa=T,U...... *)
od
return N

© JPK 13

Advanced model checking

Possibly always

Input: CTL-formula ® in ENF
Output: ROBDD BSat(EID@)

var N, P, B : ROBDD:;
B := bddSat(®);

N := B;
P := CoNsT(0);
while (N # P) do
P = N; (127)
N := RENAME(N, z1, ..., Zn, 2], ..., 2);
N := APPLY(A, B_, N); (* Pre(T;) *)
N := ExisTs(N, z, ...,z);
N := APPLY(A, N, B); (* Pre(T;) N Sat(®) *)
N := APPLY(A, P, N); CTipa=T,N...... *)
od
return N

© JPK 14

Advanced model checking

Compositional generation of ROBDDs
o LetTS; = (5;,Act,—,, I;,,AP, L;) for : = 1,2 and for H C Act:
TS =TS; ||z TS2 the parallel composition of TS; and TS,
e —, ISrepresented by B, and H by By
e The ROBDD B representing the transition relation of TS is given by:

((BiABx) A (B2ABg)) vV (BiABzABy,,,) V (BaABzABy,,,)

synchronization own mO\‘/g by TSy own mO\‘/g by TSo

— where fgui = /\?il(xy) — y§i)) with n; = # state variables in TS;

— and x§z) yﬁi) encode the source and target state of a transition in TS;

© JPK 15

Advanced model checking

The function stable with linear ROBDD

-

1
The ROBDD of fyu(T,y) = (z1 < y1) A AN (xy < Yn)
has 3-n + 2 vertices under interleaving ordering z1 < y1 < ... < x, < Yn

© JPK

16

Advanced model checking

Example of compositional generation

© JPK

17

Advanced model checking

Compositional generation of ROBDDs

e The size of TS is exponential in number of concurrent processes

— |TS| = |TS1 ||z TS2| is bounded from above by |S1|-|S2|

e The size of B is linear in number of concurrent processes
— |B]| is bounded from above by:
|ACt| (|Bl| + ‘82‘ + ‘sttabl‘ + |Bf3tab2‘)

— by exploiting the interleaved variable ordering

e Compositional generation of ROBDDs is benificial

— it reduces the peak memory requirements
— size of BDD representation is linear in number of components

© JPK 18

Advanced model checking

Some experimental results

e Traffic alert and collision avoidance system (TCAS) (1998)

— 277 boolean variables, reachable state space is about 9.610°° states
— |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
— checking VO (p — q) takes 290 sec and 717,000 BDD vertices

e Synchronous pipeline circuit (1992)

— pipeline with 12 bits: reachable state space of 1.510% states
— checking safety property takes about 10* — 10° sec

— |B_,| is linear in data path width

— verification of 32 bits (about 10'%" states): 1h 25m

— using partitioned transition relations

© JPK

19

Advanced model checking

Some other types of BDDs

e Zero-suppressed BDDs
— like ROBDDs, but non-terminals whose 1-child is leaf O are omitted
e Parity BDDs

— like ROBDDs, but non-terminals may be labeled with &; no canonical form

e Edge-valued BDDs

e Multi-terminal BDDs (or: algebraic BDDs)

— like ROBDDs, but terminals have values in R, or N, etc.

e Binary moment diagrams (BMD)

— generalization of ROBDD to linear functions over bool, int and real
— uses edge weights

© JPK 20

Advanced model checking

Further reading

R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

K. McMillan: Symbolic model checking, 1992

Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

© JPK 21

