

# Timed Automata

## Lecture #15 of Advanced Model Checking

*Joost-Pieter Katoen*

Lehrstuhl 2: Software Modeling & Verification

E-mail: [katoen@cs.rwth-aachen.de](mailto:katoen@cs.rwth-aachen.de)

December 18, 2006

## Time-critical systems

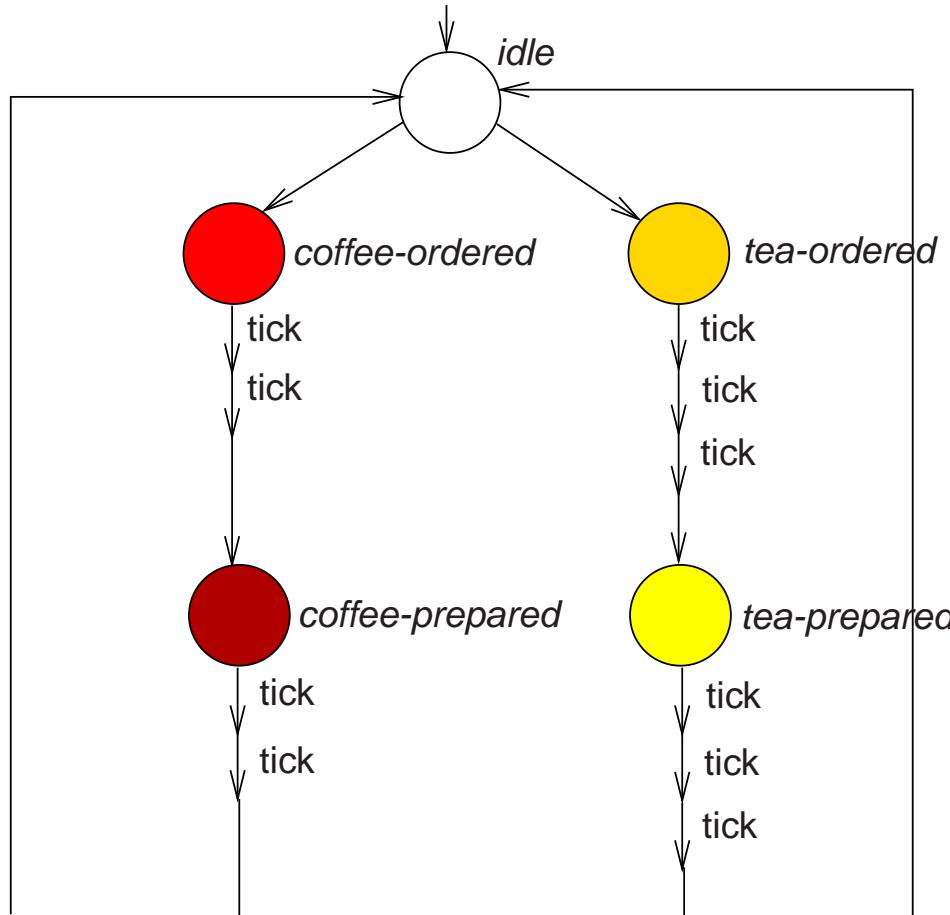
- **Timing issues** are of crucial importance for many systems, e.g.,
  - landing gear controller of an airplane, railway crossing, robot controllers
  - steel production controllers, communication protocols . . . . .
- In **time-critical systems** correctness depends on:
  - not only on the logical result of the computation, but
  - also on **the time** at which the results are produced
- How to **model** timing issues:
  - discrete-time or continuous-time?

## A discrete time domain

- Time has a *discrete* nature, i.e., time is advanced by discrete steps
  - time is modelled by naturals; actions can only happen at natural time values
  - a specific **tick action** is used to model the advance of one time unit

⇒ delay between any two events is always a **multiple of the minimal delay** of one time unit
- Properties can be expressed in traditional temporal logic
  - the next-operator “measures” time
  - two time units after being red, the light is green:  $\square(red \Rightarrow \bigcirc \bigcirc green)$
  - within two time units after red, the light is green:  
$$\square(red \Rightarrow (green \vee \bigcirc green \vee \bigcirc \bigcirc green))$$
- Main application area: **synchronous** systems, e.g., hardware

# A discrete-time coffee machine



## A discrete time domain

- Main advantage: conceptual simplicity
  - labeled transition systems equipped with a tick actions suffice
  - standard temporal logics can be used

⇒ traditional model-checking algorithms suffice
- Main limitations:
  - (minimal) delay between any pair of actions is a multiple of an *a priori* fixed minimal delay

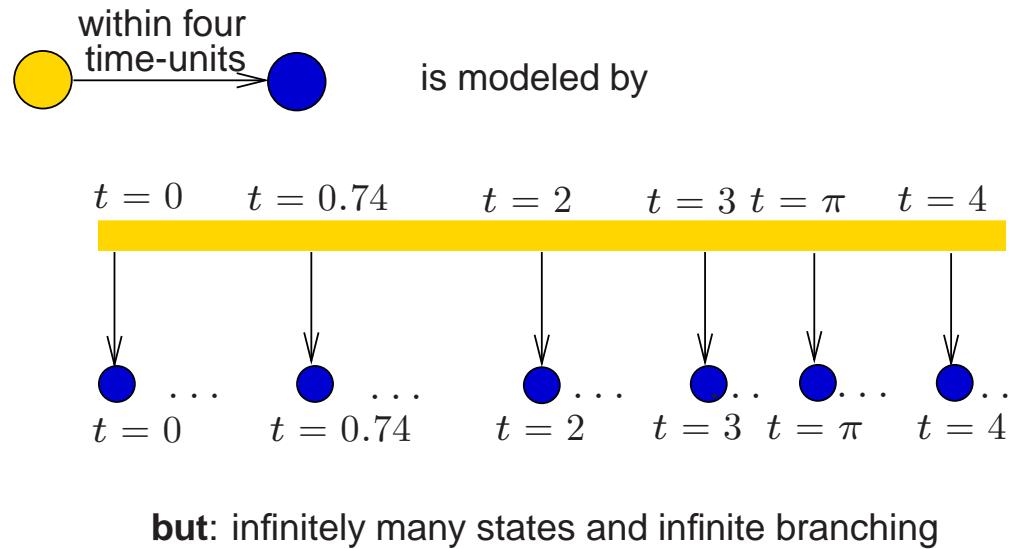
⇒ difficult (or impossible) to determine this in practice

⇒ limits modeling accuracy

⇒ inadequate for *asynchronous* systems. e.g., distributed systems

## A continuous time-domain

If time is continuous, state changes can happen at **any point** in time:



How to check a property like:

once in a yellow state, eventually the system is in a blue state within  $\pi$  time-units?

## Approach

- *Restrict expressivity* of the property language
  - e.g., only allow reference to natural time units

⇒ Timed CTL

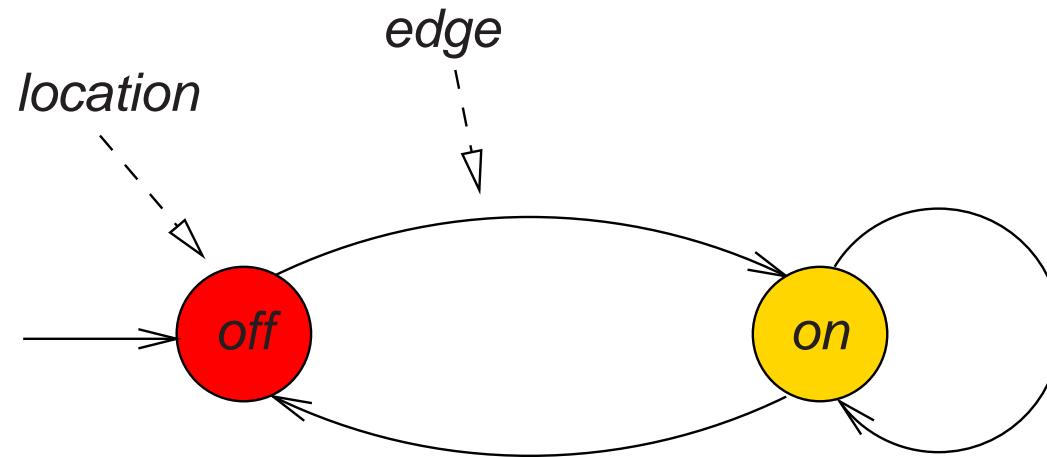
- Model timed systems *symbolically* rather than explicitly
  - in a similar way as program graphs and channel systems

⇒ Timed Automata

- Consider a *finite quotient* of the infinite state space on-demand
  - i.e., using an equivalence that depends on the property and the timed automaton

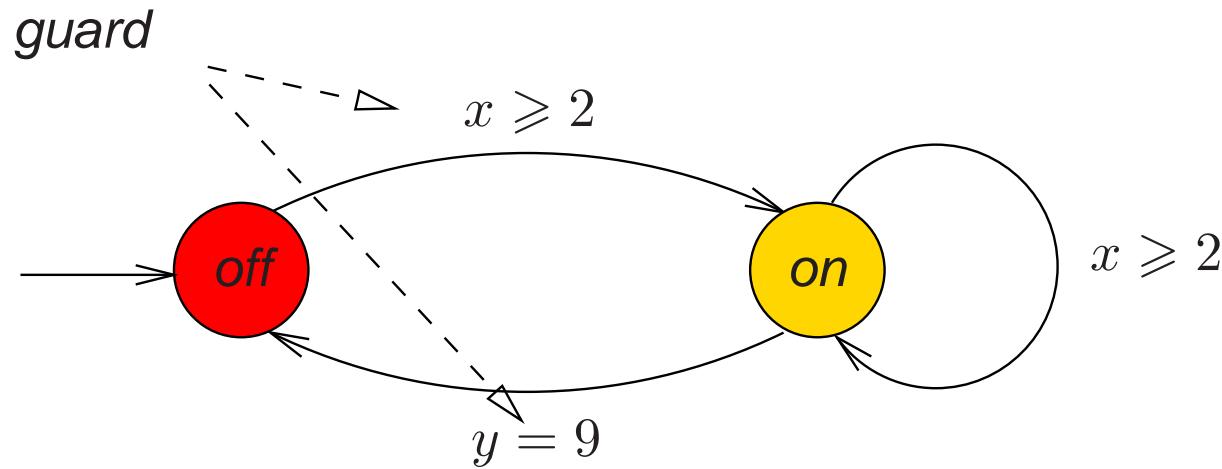
⇒ Region Automata

# What is a timed automaton?



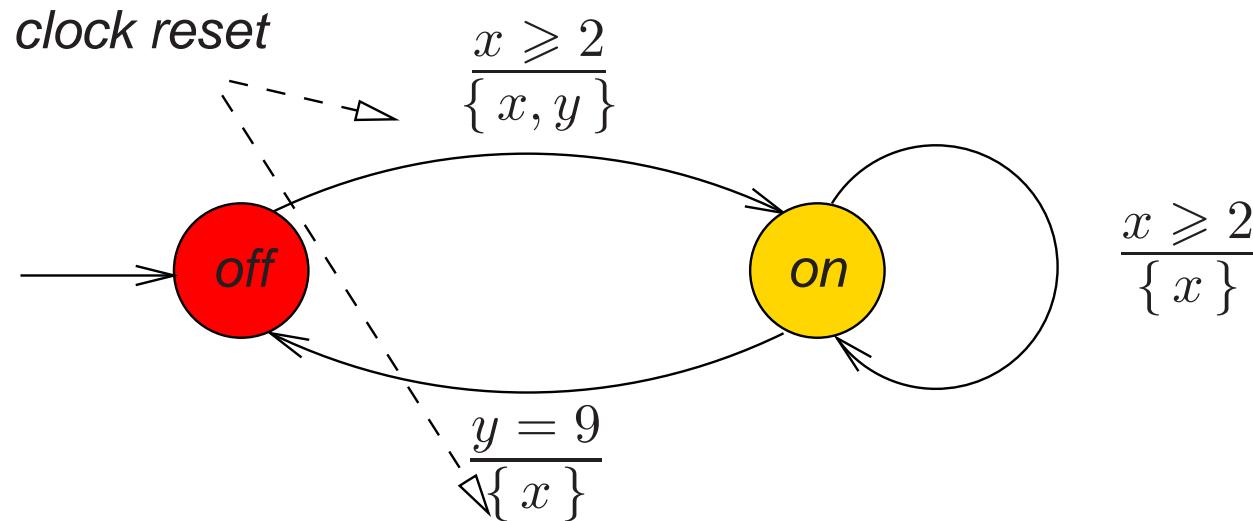
- a program graph with *locations* and *edges*
- a location is labeled with the valid *atomic propositions*
- *taking an edge is instantaneous*, i.e., consumes no time

# What is a timed automaton?



- equipped with real-valued *clocks*  $x, y, z, \dots$
- clocks advance implicitly, all at the *same speed*
- logical constraints on clocks can be used as *guards* of actions

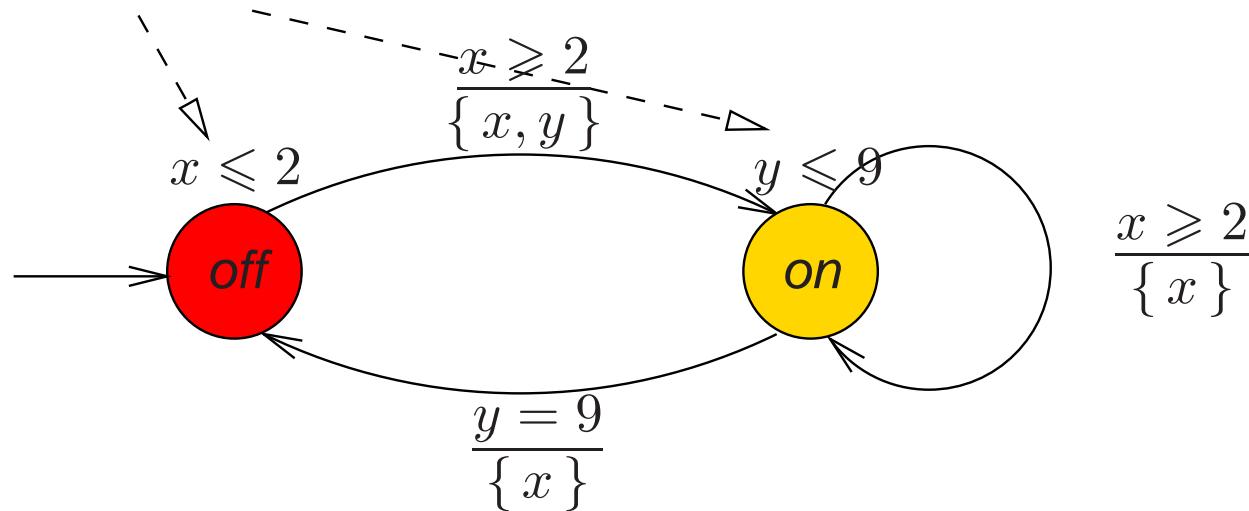
## What is a timed automaton?



- clocks can be *reset* when taking an edge
- assumption:  
*all clocks are zero when entering the initial location initially*

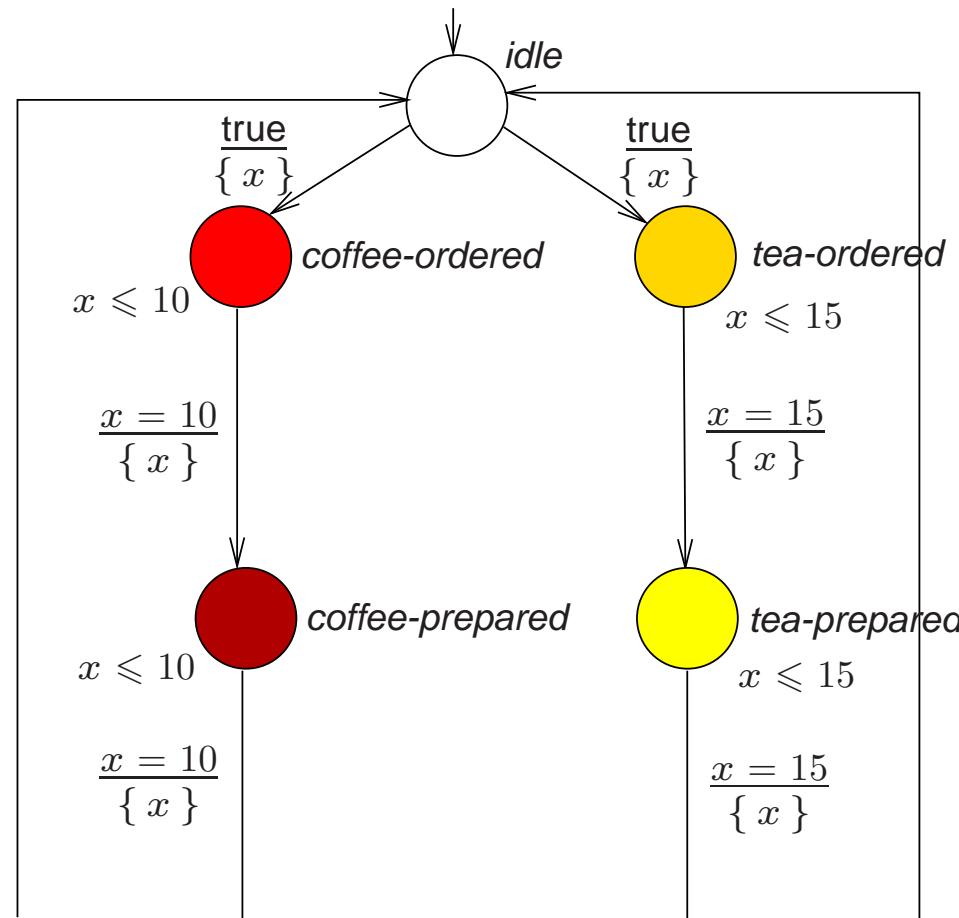
# What is a timed automaton?

*invariant*



- guards indicate when an edge *may* be taken
- a location invariant specifies the *amount of time that may be spent in a location*
  - when a *location invariant* becomes invalid, an edge must be taken

# A real-time coffee machine



# Clock constraints

- *Clock constraints* over set  $C$  of clocks are defined by:

$$g ::= \text{true} \mid x < c \mid x - y < c \mid x \leq c \mid x - y \leq c \mid \neg g \mid g \wedge g$$

- where  $c \in \mathbb{N}$  and clocks  $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let  $CC(C)$  denote the set of clock constraints over  $C$
- shorthands:  $x \geq c$  denotes  $\neg(x < c)$  and  $x \in [c_1, c_2]$  or  $c_1 \leq x < c_2$  denotes  $\neg(x < c_1) \wedge (x < c_2)$
- *Atomic clock constraints* do not contain  $\text{true}$ ,  $\neg$  and  $\wedge$ 
  - let  $ACC(C)$  denote the set of atomic clock constraints over  $C$
- *Diagonal-free constraints* do neither contain  $x - y \leq q$  nor  $x - y < q$ 
  - let  $DCC(C)$  be the set of diagonal-free clock constraints over  $C$

## Timed automaton

A *timed automaton* is a tuple

$$TA = (Loc, Act, C, \sim, Loc_0, inv, AP, L) \quad \text{where:}$$

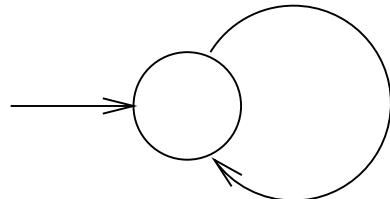
- $Loc$  is a finite set of locations.
- $Loc_0 \subseteq Loc$  is a set of initial locations
- $C$  is a finite set of clocks
- $L : Loc \rightarrow 2^{AP}$  is a labeling function for the locations
- $\sim \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$  is a transition relation, and
- $inv : Loc \rightarrow CC(C)$  is an invariant-assignment function

## Intuitive interpretation

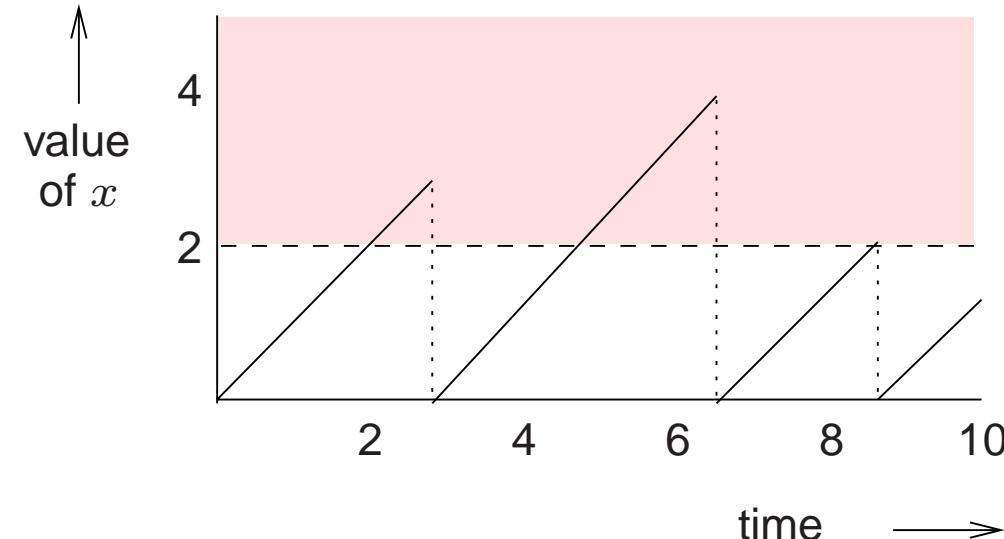
- Edge  $\ell \xrightarrow{g:\alpha, C'} \ell'$  means:
  - action  $\alpha$  is enabled once guard  $g$  holds
  - when moving from location  $\ell$  to  $\ell'$ , any clock in  $C'$  will be reset to zero
- $inv(\ell)$  constrains the amount of time that may be spent in location  $\ell$ 
  - once the invariant  $inv(\ell)$  becomes invalid, the location  $\ell$  **must** be left immediately
  - if this is not possible – no enabled outgoing transition – no further progress is possible

## Guards versus location invariants

The effect of a lowerbound guard:

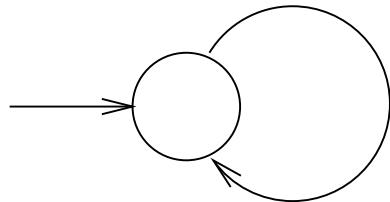


$$\frac{x \geq 2}{\{x\}}$$

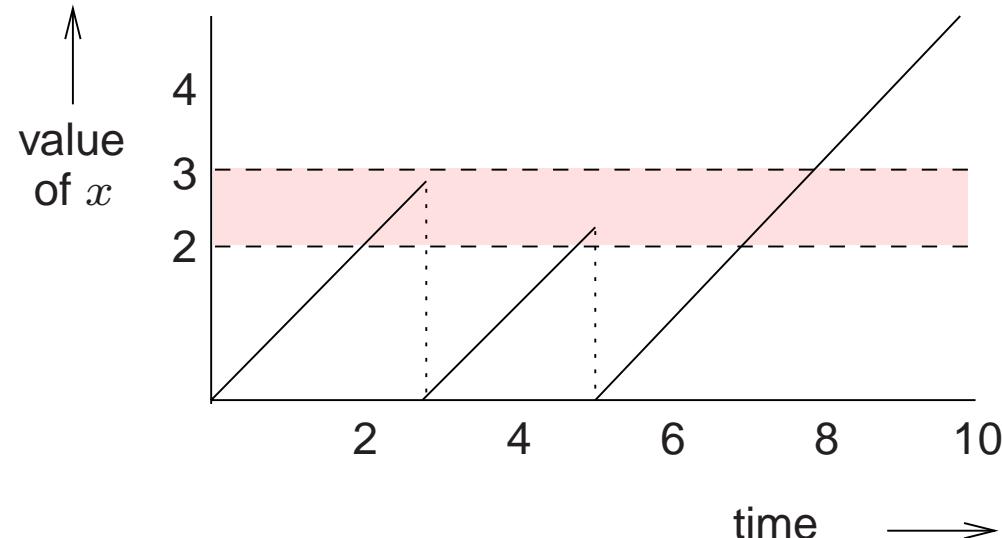


## Guards versus location invariants

The effect of a lowerbound and upperbound guard:

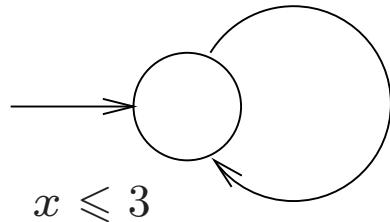


$$\frac{2 \leqslant x \leqslant 3}{\{ x \}}$$

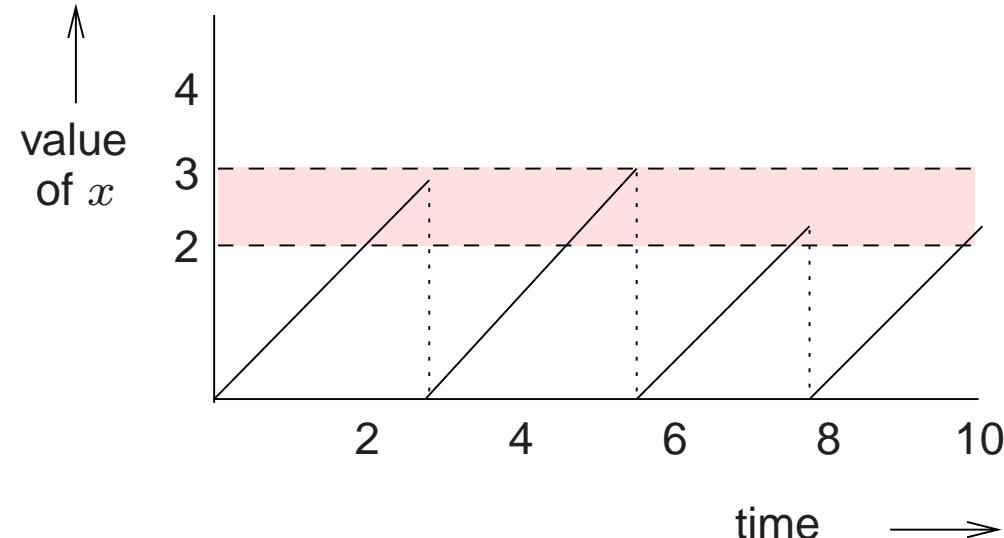


## Guards versus location invariants

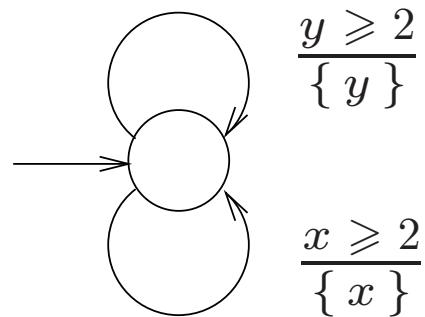
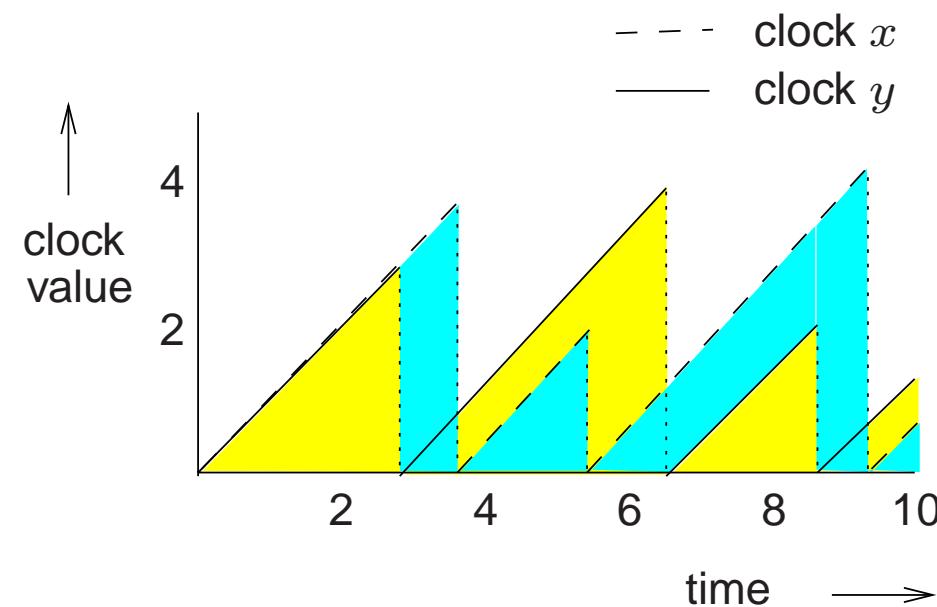
The effect of a guard and an invariant:



$$\frac{x \geq 2}{\{ x \}}$$



## Arbitrary clock differences



This is impossible to model in a discrete-time setting

# A timed mutual exclusion protocol

## Composing timed automata

Let  $TA_i = (Loc_i, Act_i, C_i, \sim_i, Loc_{0,i}, inv_i, AP, L_i)$  and  $H$  an action-set

$TA_1 \parallel_H TA_2 = (Loc, Act_1 \cup Act_2, C, \sim, Loc_0, inv, AP, L)$  where:

- $Loc = Loc_1 \times Loc_2$  and  $Loc_0 = Loc_{0,1} \times Loc_{0,2}$  and  $C = C_1 \cup C_2$
- $inv(\langle \ell_1, \ell_2 \rangle) = inv_1(\ell_1) \wedge inv_2(\ell_2)$  and  $L(\langle \ell_1, \ell_2 \rangle) = L_1(\ell_1) \cup L_2(\ell_2)$
- $\sim$  is defined by the inference rules: for  $\alpha \in H$ 

$$\frac{\ell_1 \xrightarrow{g_1:\alpha, D_1} \ell'_1 \wedge \ell_2 \xrightarrow{g_2:\alpha, D_2} \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g_1 \wedge g_2:\alpha, D_1 \cup D_2} \langle \ell'_1, \ell'_2 \rangle}$$
- for  $\alpha \notin H$ :
$$\frac{\ell_1 \xrightarrow{g:\alpha, D} \ell'_1}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha, D} \langle \ell'_1, \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \xrightarrow{g:\alpha, D} \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha, D} \langle \ell_1, \ell'_2 \rangle}$$

# An abstract example

## Example: a railroad crossing

## Clock valuations

- A *clock valuation*  $v$  for set  $C$  of clocks is a function  $v : C \longrightarrow \mathbb{R}_{\geq 0}$ 
  - assigning to each clock  $x \in C$  its current value  $v(x)$
- Clock valuation  $v+d$  for  $d \in \mathbb{R}_{\geq 0}$  is defined by:
  - $(v+d)(x) = v(x) + d$  for all clocks  $x \in C$
- Clock valuation reset  $x$  in  $v$  for clock  $x$  is defined by:

$$(\text{reset } x \text{ in } v)(y) = \begin{cases} v(y) & \text{if } y \neq x \\ 0 & \text{if } y = x. \end{cases}$$

- reset  $x$  in  $(\text{reset } y \text{ in } v)$  is abbreviated by reset  $x, y$  in  $v$

## Timed automaton semantics

For timed automaton  $TA = (Loc, Act, C, \sim, Loc_0, inv, AP, L)$ :

Transition system  $TS(TA) = (S, Act', \rightarrow, I, AP', L')$  where:

- $S = Loc \times val(C)$ , state  $s = \langle \ell, v \rangle$  for location  $\ell$  and clock valuation  $v$
- $Act' = Act \cup \mathbb{R}_{\geq 0}$ , (discrete) actions and time passage actions
- $I = \{ \langle \ell_0, v_0 \rangle \mid \ell_0 \in Loc_0 \wedge v_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- $L'(\langle \ell, v \rangle) = L(\ell) \cup \{ g \in ACC(C) \mid v \models g \}$
- $\rightarrow$  is the transition relation defined on the next slide

## Timed automaton semantics

The transition relation  $\rightarrow$  is defined by the following two rules:

- **Discrete** transition:  $\langle \ell, v \rangle \xrightarrow{d} \langle \ell', v' \rangle$  if all following conditions hold:
  - there is an edge labeled  $(g : \alpha, D)$  from location  $\ell$  to  $\ell'$  such that:
  - $g$  is satisfied by  $v$ , i.e.,  $v \models g$
  - $v' = v$  with all clocks in  $D$  reset to 0, i.e.,  $v' = \text{reset } D \text{ in } v$
  - $v'$  fulfills the invariant of location  $\ell'$ , i.e.,  $v' \models \text{inv}(\ell')$
- **Delay** transition:  $\langle \ell, v \rangle \xrightarrow{d} \langle \ell, v+d \rangle$  for positive real  $d$ 
  - if for **any**  $0 \leq d' \leq d$  the invariant of  $\ell$  holds for  $v+d'$ , i.e.  $v+d' \models \text{inv}(\ell)$

# Example

Merry Xmas and a happy new year

