
Timed Automata
Lecture #15 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 18, 2006

c© JPK

Advanced model checking

Time-critical systems

• Timing issues are of crucial importance for many systems, e.g.,

– landing gear controller of an airplane, railway crossing, robot controllers
– steel production controllers, communication protocols

• In time-critical systems correctness depends on:

– not only on the logical result of the computation, but
– also on the time at which the results are produced

• How to model timing issues:

– discrete-time or continuous-time?

c© JPK 1

Advanced model checking

A discrete time domain

• Time has a discrete nature, i.e., time is advanced by discrete steps

– time is modelled by naturals; actions can only happen at natural time values
– a specific tick action is used to model the advance of one time unit

⇒ delay between any two events is always a multiple of the minimal delay of one
time unit

• Properties can be expressed in traditional temporal logic

– the next-operator “measures” time
– two time units after being red, the light is green: �(red ⇒ © ©green)

– within two time units after red, the light is green:

�(red ⇒ (green ∨ © green ∨ © ©green))

• Main application area: synchronous systems, e.g., hardware

c© JPK 2

Advanced model checking

A discrete-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

c© JPK 3

Advanced model checking

A discrete time domain

• Main advantage: conceptual simplicity

– labeled transition systems equipped with a tick actions suffice
– standard temporal logics can be used

⇒ traditional model-checking algorithms suffice

• Main limitations:

– (minimal) delay between any pair of actions is a multiple of an a priori fixed
minimal delay

⇒ difficult (or impossible) to determine this in practice
⇒ limits modeling accuracy
⇒ inadequate for asynchronous systems. e.g., distributed systems

c© JPK 4

Advanced model checking

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

.
t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

within four
time-units is modeled by

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within π time-units?

c© JPK 5

Advanced model checking

Approach
• Restrict expressivity of the property language

– e.g., only allow reference to natural time units

=⇒ Timed CTL

• Model timed systems symbolically rather than explicitly

– in a similar way as program graphs and channel systems

=⇒ Timed Automata

• Consider a finite quotient of the infinite state space on-demand

– i.e., using an equivalence that depends on the property and the timed automaton

=⇒ Region Automata

c© JPK 6

Advanced model checking

What is a timed automaton?

edge
location

off on

• a program graph with locations and edges

• a location is labeled with the valid atomic propositions

• taking an edge is instantaneous, i.e, consumes no time

c© JPK 7

Advanced model checking

What is a timed automaton?

y = 9

x � 2

x � 2

guard

off on

• equipped with real-valued clocks x, y, z, . . .

• clocks advance implicitly, all at the same speed

• logical constraints on clocks can be used as guards of actions

c© JPK 8

Advanced model checking

What is a timed automaton?

x � 2
{x }

clock reset

off on

y = 9
{x }

x � 2
{x, y }

• clocks can be reset when taking an edge

• assumption:
all clocks are zero when entering the initial location initially

c© JPK 9

Advanced model checking

What is a timed automaton?

x � 2
{x }off on

y � 9x � 2

invariant

x � 2
{x, y }

y = 9
{x }

• guards indicate when an edge may be taken

• a location invariant specifies the amount of time that may be spent in
a location

– when a location invariant becomes invalid, an edge must be taken

c© JPK 10

Advanced model checking

A real-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

true
{x }

true
{ x }

x � 10

x � 10 x � 15

x � 15

x = 15
{ x }

x = 15
{ x }

x = 10
{ x }

x = 10
{ x }

c© JPK 11

Advanced model checking

Clock constraints

• Clock constraints over set C of clocks are defined by:

g ::= true
∣∣∣ x < c

∣∣∣ x − y < c
∣∣∣ x � c

∣∣∣ x − y � c
∣∣∣ ¬g

∣∣∣ g ∧ g

– where c ∈ N and clocks x, y ∈ C

– rational constants would do; neither reals nor addition of clocks!
– let CC(C) denote the set of clock constraints over C

– shorthands: x � c denotes ¬ (x < c) and x ∈ [c1, c2) or c1 � x < c2

denotes ¬(x < c1)∧ (x < c2)

• Atomic clock constraints do not contain true, ¬ and ∧
– let ACC(C) denote the set of atomic clock constraints over C

• Diagonal-free constraints do neither contain x − y � q nor x − y < q

– let DCC(C) be the set of diagonal-free clock constraints over C

c© JPK 12

Advanced model checking

Timed automaton
A timed automaton is a tuple

TA =
(
Loc, Act, C, �, Loc0, inv, AP, L

)
where:

• Loc is a finite set of locations.

• Loc0 ⊆ Loc is a set of initial locations

• C is a finite set of clocks

• L : Loc → 2AP is a labeling function for the locations

• � ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation, and

• inv : Loc → CC(C) is an invariant-assignment function

c© JPK 13

Advanced model checking

Intuitive interpretation

• Edge �
g:α,C′−−−−−→ �′ means:

– action α is enabled once guard g holds
– when moving from location � to �′, any clock in C ′ will be reset to zero

• inv(�) constrains the amount of time that may be spent in location �

– once the invariant inv(�) becomes invalid, the location � must be left immediately
– if this is not possible – no enabled outgoing transition – no further progress is

possible

c© JPK 14

Advanced model checking

Guards versus location invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value
of x

x � 2
{x }

c© JPK 15

Advanced model checking

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value
of x 3

2 � x � 3
{ x }

c© JPK 16

Advanced model checking

Guards versus location invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value
of x

x � 2
{x }

x � 3

3

c© JPK 17

Advanced model checking

Arbitrary clock differences

clock x
clock y

2

4

time

2 4 6 8 10

clock
value

y � 2
{ y }

x � 2
{ x }

This is impossible to model in a discrete-time setting

c© JPK 18

Advanced model checking

A timed mutual exclusion protocol

c© JPK 19

Advanced model checking

Composing timed automata
Let TAi =

(
Loci, Acti, Ci,�i, Loc0,i, invi, AP, Li

)
and H an action-set

TA1 ||H TA2 =
(
Loc, Act1 ∪ Act2, C, �, Loc0, inv, AP, L

)
where:

• Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

• inv(〈�1, �2〉) = inv1(�1) ∧ inv2(�2) and L(〈�1, �2〉) = L1(�1) ∪ L2(�2)

• � is defined by the inference rules: for α ∈ H
�1

g1:α,D1
�1 �

′
1 ∧ �2

g2:α,D2
�2 �

′
2

〈�1, �2〉 g1∧g2:α,D1∪D2
� 〈�′1, �

′
2〉

for α
∈ H:
�1

g:α,D
�1 �′1

〈�1, �2〉 g:α,D
� 〈�′1, �2〉

and
�2

g:α,D
�2 �′2

〈�1, �2〉 g:α,D
� 〈�1, �

′
2〉

c© JPK 20

Advanced model checking

An abstract example

c© JPK 21

Advanced model checking

Example: a railroad crossing

c© JPK 22

Advanced model checking

Clock valuations

• A clock valuation v for set C of clocks is a function v : C −→ R�0

– assigning to each clock x ∈ C its current value v(x)

• Clock valuation v+d for d ∈ R�0 is defined by:

– (v+d)(x) = v(x) + d for all clocks x ∈ C

• Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) =
{

v(y) if y 	= x
0 if y = x.

– reset x in (reset y in v) is abbreviated by reset x, y in v

c© JPK 23

Advanced model checking

Timed automaton semantics
For timed automaton TA =

(
Loc, Act, C, �, Loc0, inv, AP, L

)
:

Transition system TS(TA) = (S, Act′,→, I, AP′, L′) where:

• S = Loc × val(C), state s = 〈�, v〉 for location � and clock valuation v

• Act′ = Act ∪ R�0, (discrete) actions and time passage actions

• I = { 〈�0, v0〉 | �0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }

• AP′ = AP ∪ ACC(C)

• L′(〈�, v〉) = L(�) ∪ { g ∈ ACC(C) | v |= g }

• → is the transition relation defined on the next slide

c© JPK 24

Advanced model checking

Timed automaton semantics

The transition relation −→ is defined by the following two rules:

• Discrete transition: 〈�, v〉 d−→〈�′, v′〉 if all following conditions hold:

– there is an edge labeled (g : α, D) from location � to �′ such that:
– g is satisfied by v, i.e., v |= g

– v′ = v with all clocks in D reset to 0, i.e., v ′ = reset D in v

– v′ fulfills the invariant of location �′, i.e., v′ |= inv(�′)

• Delay transition: 〈�, v〉 d−→〈�, v+d〉 for positive real d

– if for any 0 � d′ � d the invariant of � holds for v+d′, i.e. v+d′ |= inv(�)

c© JPK 25

Advanced model checking

Example

c© JPK 26

Advanced model checking

Merry Xmas and a happy new year

c© JPK 27

