
Timed Automata
Lecture #16 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 8, 2006

c© JPK

Advanced model checking

Clock constraints

• Clock constraints over set C of clocks are defined by:

g ::= true
∣∣∣ x < c

∣∣∣ x − y < c
∣∣∣ x � c

∣∣∣ x − y � c
∣∣∣ ¬g

∣∣∣ g ∧ g

– where c ∈ N and clocks x, y ∈ C

– rational constants would do; neither reals nor addition of clocks!
– let CC(C) denote the set of clock constraints over C

– shorthands: x � c denotes ¬ (x < c) and x ∈ [c1, c2) or c1 � x < c2

denotes ¬(x < c1)∧ (x < c2)

• Atomic clock constraints do not contain true, ¬ and ∧
– let ACC(C) denote the set of atomic clock constraints over C

c© JPK 1

Advanced model checking

Timed automaton
A timed automaton is a tuple

TA =
(
Loc, Act, C,�, Loc0, Inv, AP, L

)
where:

• Loc is a finite set of locations

• Loc0 ⊆ Loc is a set of initial locations

• C is a finite set of clocks

• L : Loc → 2AP is a labeling function for the locations

• � ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation, and

• Inv : Loc → CC(C) is an invariant-assignment function

c© JPK 2

Advanced model checking

Intuitive interpretation

• Edge �
g:α,C′−−−−−→ �′ means:

– action α isenabled once guard g holds
– when moving from location � to �′, any clock in C ′ will be reset to zero

• Inv(�) constrains the amount of time that may be spent in location �

– once the invariant Inv(�) becomes invalid, the location � must be left
immediately

– if this is not possible – no enabled outgoing transition – no further progress is
possible

c© JPK 3

Advanced model checking

Example: the gate

c© JPK 4

Advanced model checking

Clock valuations

• A clock valuation η for set C of clocks is a function η : C −→ R�0

– assigns to each clock x ∈ C its current value η(x)

• Clock valuation η+d for d ∈ R�0 is defined by:

– (η+d)(x) = η(x) + d for all clocks x ∈ C

• Clock valuation reset x in η for clock x is defined by:

(reset x in η)(y) =
{

η(y) if y �= x
0 if y = x

– reset x in (reset y in η) is abbreviated by reset x, y in η

c© JPK 5

Advanced model checking

Semantics of clock constraints

Let |= ⊆ Eval(C) × CC(C) be defined by:

η |= true

η |= x < c iff η(x) < c

η |= x � c iff η(x) � c

η |= x − y < c iff η(x) − η(y) < c

η |= x − y � c iff η(x) − η(y) � c

η |= ¬ g iff η �|= g

η |= g ∧ g′ iff η |= g ∧ η |= g′

c© JPK 6

Advanced model checking

Semantics
For timed automaton TA =

(
Loc, Act, C, �, Loc0, Inv, AP, L

)
:

Transition system TS(TA) = (S, Act′,→, I, AP′, L′) where:

• S = Loc × val(C), state s = 〈�, η〉 for location � and clock valuation η

• Act′ = Act ∪ R�0, (discrete) actions and time passage actions

• I = { 〈�0, η0〉 | �0 ∈ Loc0 ∧ η0(x) = 0 for all x ∈ C }

• AP′ = AP ∪ ACC(C)

• L′(〈�, η〉) = L(�) ∪ { g ∈ ACC(C) | η |= g }

• → is the transition relation defined on the next slide

c© JPK 7

Advanced model checking

Semantics

The transition relation −→ is defined by the following two rules:

• Discrete transition: 〈�, η〉 d−→〈�′, η′〉 if all following conditions hold:

– there is an edge labeled (g : α, D) from location � to �′ such that:
– g is satisfied by η, i.e., η |= g

– η′ = η with all clocks in D reset to 0, i.e., η ′ = reset D in η

– η′ fulfills the invariant of location �′, i.e., η′ |= Inv(�′)

• Delay transition: 〈�, η〉 α−−→〈�, η+d〉 for positive real d

– if for any 0 � d′ � d the invariant of � holds for η+d′, i.e. η+d′ |= Inv(�)

c© JPK 8

Advanced model checking

Example

c© JPK 9

Advanced model checking

Time divergence

• Let for any t < d, for fixed d ∈ R>0, clock valuation η+t |= Inv(�)

• A possible execution fragment starting from the location � is:

〈�, η〉 d1−−→ 〈�, η+d1〉 d2−−→ 〈�, η+d1+d2〉 d3−−→〈�, η+d1+d2+d3〉 d4−−→ . . .

– where di > 0 and the infinite sequence d1 + d2 + . . . converges towards d

– such path fragments are called time-convergent
⇒ time advances only up to a certain value

• Time-convergent execution fragments are unrealistic and ignored

– much like unfair paths (as we will see later on)

c© JPK 10

Advanced model checking

Time divergence

• Infinite path fragment π is time-divergent if ExecTime(π) = ∞;

• The function ExecTime : Act ∪ R>0 → R�0 is defined as:

ExecTime(τ) =


0 if τ ∈ Act
d if τ = d ∈ R>0

• For infinite execution fragment ρ = s0
τ1−−→ s1

τ2−−→ s2 . . . in TS(TA) let:

ExecTime(ρ) =
∞X

i=0

ExecTime(τi)

– for path fragment π in TS(TA) induced by ρ: ExecTime(π) = ExecTime(ρ)

• For state s in TS(TA): Pathsdiv(s) = {π ∈ Paths(s) | π is time-divergent }

c© JPK 11

Advanced model checking

Example: light switch

The path π in TS(Switch) in which on- and of-periods of one minute
alternate:

π = 〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 〈off , 2〉 〈on, 0〉 〈on, 1〉 〈off , 2〉 . . .

is time-divergent as ExecTime(π) = 1 + 1 + 1 + . . . = ∞.

The path:

π′ = 〈off , 0〉 〈off , 1/2〉 〈off , 3/4〉 〈off , 7/8〉 〈off , 15/16〉 . . .

is time-convergent, since ExecTime(π′) =
∑
i�1

(
1
2

)i = 1 < ∞

c© JPK 12

Advanced model checking

Timelock

• State s ∈ TS(TA) contains a timelock if Pathsdiv(s) = ∅

– there is no behavior in s where time can progress ad infinitum
– clearly: any terminal state contains a timelock (but also non-terminal states may

do)

• TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

• Timelocks are considered as modeling flaws that should be avoided

– like deadlocks, we need mechanisms to check their presence

c© JPK 13

Advanced model checking

Example

c© JPK 14

Advanced model checking

Zenoness

• A TA that performs infinitely many actions in finite time is Zeno

• Path π in TS(TA) is Zeno if:

– it is time-convergent, and
– infinitely many actions α ∈ Act are executed along π

• TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

– any π in TS(TA) is time-divergent or
– is time-convergent with nearly all (i.e., all except for finitely many) transitions

being delay transitions

• Zeno paths are considered as modeling flaws that should be avoided

– like timelocks (and deadlocks), we need mechanisms to check Zenoness

c© JPK 15

Advanced model checking

Example

c© JPK 16

Advanced model checking

A sufficient criterion for Zenoness

Let TA with set C of clocks such that for every control cycle:

�0
g1:α1,C1

� �1
g2:α2,C2

� . . .
gn:αn,Cn

� �n

there exists a clock x ∈ C such that:

1. x ∈ Ci for some 0 < i � n, and

2. for all clock evaluations η:

η(x) < 1 implies (η �|= gj or η �|= Inv(�j)), for some 0 < j � n

Then: TA is non-Zeno

c© JPK 17

Advanced model checking

Proof

c© JPK 18

Advanced model checking

Example

c© JPK 19

Advanced model checking

Timelock, time-divergence and Zenoness

• A timed automaton is adequately modeling a time-critical system
whenever it is:

non-Zeno and timelock-free

• Time-divergent paths will be explicitly excluded for analysis purposes

c© JPK 20

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ::= true
∣∣∣ a

∣∣∣ g
∣∣∣ Φ∧Φ

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP, g ∈ ACC(C) and ϕ is a path-formula defined by:

ϕ ::= �JΦ

where J ⊆ R�0 is an interval whose bounds are naturals

�JΦ asserts that a Φ-state is reached at time instant t ∈ J

Forms of J : [n, m], (n, m], [n, m) or (n, m) for n, m ∈ N and n � m

for right-open intervals, m = ∞ is also allowed

c© JPK 21

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:

∃�J Φ = ¬∀�J ¬Φ and ∀�J Φ = ¬∃�J ¬Φ

∃�J Φ asserts that for some path during the interval J , Φ holds

∀�J Φ requires this to hold for all paths

Standard until-operator is obtained as follows:

� Φ = �[0,∞) Φ and � Φ = �[0,∞) Φ

c© JPK 22

Advanced model checking

Timed properties in TCTL

c© JPK 23

Advanced model checking

Semantics of TCTL

For state s = 〈�, η〉 in TS(TA) the satisfaction relation |= is defined by:

s |= true

s |= a iff a ∈ L(�)

s |= g iff η |= g

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Pathsdiv(s)

s |= ∀ϕ iff π |= ϕ for all π ∈ Pathsdiv(s)

path quantification over time-divergent paths only

c© JPK 24

Advanced model checking

The ⇒ relation
For infinite path fragments in TS(TA) performing ∞ many actions let:

s0

d0⇒ s1

d1⇒ s2

d2⇒ . . . with d0, d1, d2 . . . � 0

denote the equivalence class containing all infinite path fragments
induced by execution fragments of the form:

s0
d1
0→ . . .

d
k0
0→︸ ︷︷ ︸

time passage of
d0 time-units

s0+d0
α1−→ s1

d1
1→ . . .

d
k1
1→︸ ︷︷ ︸

time passage of
d1 time-units

s1+d1
α2−→ s2

d1
2→ . . .

d
k2
2→︸ ︷︷ ︸

time passage of
d2 time-units

s2+d2
α3−→ . . .

where ki ∈ IN, di ∈ R�0 and αi ∈ Act such that
∑ki

j=1 dj
i = di.

For π ∈ s0

d0⇒ s1

d1⇒ . . . we have ExecTime(π) =
∑

i�0 di

c© JPK 25

Advanced model checking

Semantics of TCTL

For time-divergent path π ∈ s0

d0⇒ s1

d1⇒ . . .:

π |= �JΦ

iff

∃ i � 0. si+d |= Φ for some d ∈ [0, di] with
∑i−1

j=0 dj + d ∈ J

where for si = 〈�i, ηi〉 we have si+d = 〈�i, ηi+d〉

c© JPK 26

Advanced model checking

TCTL-semantics for timed automata

• Let TA be a timed automaton with clocks C and locations Loc

• For TCTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ Loc × Eval(C) | s |= Φ }

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

TA |= Φ if and only if ∀�0 ∈ Loc0. 〈�0, η0〉 |= Φ

where η0(x) = 0 for all x ∈ C

c© JPK 27

Advanced model checking

Example

c© JPK 28

Advanced model checking

Timed CTL versus CTL

• Due to ignoring time-convergent paths in TCTL semantics possibly:

TS(TA) |=TCTL ∀ϕ︸ ︷︷ ︸
TCTL semantics

but TS(TA) �|=CTL ∀ϕ︸ ︷︷ ︸
CTL semantics

– CTL semantics considers all paths, timed CTL only time-divergent paths

• For Φ = ∀�
(
on −→ ∀�off

)
and the light switch

TS(Switch) |=TCTL Φ whereas TS(TA) �|=CTL Φ

– there are time-convergent paths on which location on is never left

c© JPK 29

Advanced model checking

Characterizing timelock

• TCTL semantics is also well-defined for TA with timelock

• A state is timelock-free if and only if it satisfies ∃�true

– some time-divergent path satisfies �true, i.e., there is � 1 time-divergent path
– note: for fair CTL, the states in which a fair path starts also satisfy ∃�true

• TA is timelock-free iff ∀s ∈ Reach(TS(TA)): s |= ∃�true

• Timelocks can thus be checked by model checking!

c© JPK 30

