

Timed Automata

Lecture #16 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 8, 2006

Clock constraints

- *Clock constraints* over set C of clocks are defined by:

$$g ::= \text{true} \mid x < c \mid x - y < c \mid x \leq c \mid x - y \leq c \mid \neg g \mid g \wedge g$$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let $CC(C)$ denote the set of clock constraints over C
- shorthands: $x \geq c$ denotes $\neg(x < c)$ and $x \in [c_1, c_2]$ or $c_1 \leq x < c_2$ denotes $\neg(x < c_1) \wedge (x < c_2)$
- *Atomic clock constraints* do not contain true , \neg and \wedge
 - let $ACC(C)$ denote the set of atomic clock constraints over C

Timed automaton

A *timed automaton* is a tuple

$$TA = (Loc, Act, C, \sim, Loc_0, Inv, AP, L) \quad \text{where:}$$

- Loc is a finite set of *locations*
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of *clocks*
- $L : Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\sim \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$ is a transition relation, and
- $Inv : Loc \rightarrow CC(C)$ is an *invariant*-assignment function

Intuitive interpretation

- Edge $\ell \xrightarrow{g:\alpha, C'} \ell'$ means:
 - action α is **enabled** once guard g holds
 - when moving from location ℓ to ℓ' , any clock in C' will be **reset** to zero
- $Inv(\ell)$ constrains the amount of time that may be spent in location ℓ
 - once the invariant $Inv(\ell)$ becomes invalid, the location ℓ **must** be left immediately
 - if this is not possible – no enabled outgoing transition – no further progress is possible

Example: the gate

Clock valuations

- A *clock valuation* η for set C of clocks is a function $\eta : C \longrightarrow \mathbb{R}_{\geq 0}$
 - assigns to each clock $x \in C$ its current value $\eta(x)$
- Clock valuation $\eta+d$ for $d \in \mathbb{R}_{\geq 0}$ is defined by:
 - $(\eta+d)(x) = \eta(x) + d$ for all clocks $x \in C$
- Clock valuation reset x in η for clock x is defined by:

$$(\text{reset } x \text{ in } \eta)(y) = \begin{cases} \eta(y) & \text{if } y \neq x \\ 0 & \text{if } y = x \end{cases}$$

- reset x in $(\text{reset } y \text{ in } \eta)$ is abbreviated by reset x, y in η

Semantics of clock constraints

Let $\models \subseteq \text{Eval}(C) \times \text{CC}(C)$ be defined by:

$$\eta \models \text{true}$$

$$\eta \models x < c \quad \text{iff} \quad \eta(x) < c$$

$$\eta \models x \leq c \quad \text{iff} \quad \eta(x) \leq c$$

$$\eta \models x - y < c \quad \text{iff} \quad \eta(x) - \eta(y) < c$$

$$\eta \models x - y \leq c \quad \text{iff} \quad \eta(x) - \eta(y) \leq c$$

$$\eta \models \neg g \quad \text{iff} \quad \eta \not\models g$$

$$\eta \models g \wedge g' \quad \text{iff} \quad \eta \models g \wedge \eta \models g'$$

Semantics

For timed automaton $TA = (Loc, Act, C, \sim, Loc_0, Inv, AP, L)$:

Transition system $TS(TA) = (S, Act', \rightarrow, I, AP', L')$ where:

- $S = Loc \times val(C)$, state $s = \langle \ell, \eta \rangle$ for location ℓ and clock valuation η
- $Act' = Act \cup \mathbb{R}_{\geq 0}$, (discrete) actions and time passage actions
- $I = \{ \langle \ell_0, \eta_0 \rangle \mid \ell_0 \in Loc_0 \wedge \eta_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- $L'(\langle \ell, \eta \rangle) = L(\ell) \cup \{ g \in ACC(C) \mid \eta \models g \}$
- \rightarrow is the transition relation defined on the next slide

Semantics

The transition relation \rightarrow is defined by the following two rules:

- **Discrete** transition: $\langle \ell, \eta \rangle \xrightarrow{d} \langle \ell', \eta' \rangle$ if all following conditions hold:
 - there is an edge labeled $(g : \alpha, D)$ from location ℓ to ℓ' such that:
 - g is satisfied by η , i.e., $\eta \models g$
 - $\eta' = \eta$ with all clocks in D reset to 0, i.e., $\eta' = \text{reset } D \text{ in } \eta$
 - η' fulfills the invariant of location ℓ' , i.e., $\eta' \models \text{Inv}(\ell')$
- **Delay** transition: $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell, \eta+d \rangle$ for positive real d
 - if for **any** $0 \leq d' \leq d$ the invariant of ℓ holds for $\eta+d'$, i.e. $\eta+d' \models \text{Inv}(\ell)$

Example

Time divergence

- Let for any $t < d$, for fixed $d \in \mathbb{R}_{>0}$, clock valuation $\eta+t \models \text{Inv}(\ell)$
- A possible execution fragment starting from the location ℓ is:

$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta+d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta+d_1+d_2 \rangle \xrightarrow{d_3} \langle \ell, \eta+d_1+d_2+d_3 \rangle \xrightarrow{d_4} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + \dots$ *converges* towards d
- such path fragments are called *time-convergent*
 \Rightarrow time advances only up to a certain value
- Time-convergent execution fragments are unrealistic and *ignored*
 - much like unfair paths (as we will see later on)

Time divergence

- Infinite path fragment π is *time-divergent* if $ExecTime(\pi) = \infty$;
- The function $ExecTime : Act \cup \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ is defined as:

$$ExecTime(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = d \in \mathbb{R}_{>0} \end{cases}$$

- For infinite execution fragment $\rho = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in $TS(TA)$ let:

$$ExecTime(\rho) = \sum_{i=0}^{\infty} ExecTime(\tau_i)$$

- for path fragment π in $TS(TA)$ induced by ρ : $ExecTime(\pi) = ExecTime(\rho)$
- For state s in $TS(TA)$: $Paths_{div}(s) = \{ \pi \in Paths(s) \mid \pi \text{ is time-divergent} \}$

Example: light switch

The path π in $TS(Switch)$ in which on- and off-periods of one minute alternate:

$$\pi = \langle off, 0 \rangle \langle off, 1 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \langle off, 2 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 2 \rangle \dots$$

is *time-divergent* as $ExecTime(\pi) = 1 + 1 + 1 + \dots = \infty$.

The path:

$$\pi' = \langle off, 0 \rangle \langle off, 1/2 \rangle \langle off, 3/4 \rangle \langle off, 7/8 \rangle \langle off, 15/16 \rangle \dots$$

is *time-convergent*, since $ExecTime(\pi') = \sum_{i \geq 1} \left(\frac{1}{2}\right)^i = 1 < \infty$

Timelock

- State $s \in TS(TA)$ contains a **timelock** if $Paths_{div}(s) = \emptyset$
 - there is no behavior in s where time can progress *ad infinitum*
 - clearly: any terminal state contains a timelock (but also non-terminal states may do)
- TA is **timelock-free** if no state in $Reach(TS(TA))$ contains a timelock
- Timelocks are considered as **modeling flaws** that should be avoided
 - like deadlocks, we need mechanisms to check their presence

Example

Zenoness

- A TA that performs infinitely many actions in finite time is *Zeno*
- Path π in $TS(TA)$ is *Zeno* if:
 - it is time-convergent, and
 - infinitely many actions $\alpha \in Act$ are executed along π
- TA is *non-Zeno* if there does not exist an initial Zeno path in $TS(TA)$
 - any π in $TS(TA)$ is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as *modeling flaws* that should be avoided
 - like timelocks (and deadlocks), we need mechanisms to check Zenoness

Example

A sufficient criterion for Zenoness

Let TA with set C of clocks such that for every control cycle:

$$\ell_0 \xrightarrow{g_1:\alpha_1, C_1} \ell_1 \xrightarrow{g_2:\alpha_2, C_2} \dots \xrightarrow{g_n:\alpha_n, C_n} \ell_n$$

there exists a clock $x \in C$ such that:

1. $x \in C_i$ for some $0 < i \leq n$, and
2. for all clock evaluations η :

$\eta(x) < 1$ implies $(\eta \not\models g_j \text{ or } \eta \not\models \text{Inv}(\ell_j))$, for some $0 < j \leq n$

Then: TA is *non-Zeno*

Proof

Example

Timelock, time-divergence and Zenoness

- A timed automaton is adequately modeling a time-critical system whenever it is:
non-Zeno and timelock-free
- Time-divergent paths will be explicitly excluded for analysis purposes

Timed CTL

Syntax of TCTL *state-formulas* over AP and set C :

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad g \quad | \quad \Phi \wedge \Phi \quad | \quad \neg \Phi \quad | \quad \exists \varphi \quad | \quad \forall \varphi$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path-formula defined by:

$$\varphi ::= \diamond^J \Phi$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals

$\diamond^J \Phi$ asserts that a Φ -state is reached at time instant $t \in J$

Forms of J : $[n, m]$, $(n, m]$, $[n, m)$ or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$

for right-open intervals, $m = \infty$ is also allowed

Some abbreviations

“Always” is obtained in the following way:

$$\exists \square^J \Phi = \neg \forall \diamond^J \neg \Phi \quad \text{and} \quad \forall \square^J \Phi = \neg \exists \diamond^J \neg \Phi$$

$\exists \square^J \Phi$ asserts that for some path during the interval J , Φ holds

$\forall \square^J \Phi$ requires this to hold for all paths

Standard until-operator is obtained as follows:

$$\diamond \Phi = \diamond^{[0, \infty)} \Phi \quad \text{and} \quad \square \Phi = \square^{[0, \infty)} \Phi$$

Timed properties in TCTL

Semantics of TCTL

For state $s = \langle \ell, \eta \rangle$ in $TS(TA)$ the satisfaction relation \models is defined by:

$$s \models \text{true}$$

$$s \models a \quad \text{iff} \quad a \in L(\ell)$$

$$s \models g \quad \text{iff} \quad \eta \models g$$

$$s \models \neg \Phi \quad \text{iff} \quad \text{not } s \models \Phi$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \text{ and } (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some } \pi \in \text{Paths}_{\text{div}}(s)$$

$$s \models \forall \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for all } \pi \in \text{Paths}_{\text{div}}(s)$$

path quantification over time-divergent paths only

The \Rightarrow relation

For infinite path fragments in $TS(TA)$ performing ∞ many actions let:

$$s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots \quad \text{with } d_0, d_1, d_2, \dots \geq 0$$

denote the equivalence class containing all infinite path fragments induced by execution fragments of the form:

$$s_0 \xrightarrow{\underbrace{d_0^1}_{\substack{\text{time passage of} \\ d_0 \text{ time-units}}} \dots \xrightarrow{\underbrace{d_0^{k_0}}_{\substack{\text{time passage of} \\ d_0 \text{ time-units}}}} s_0 + d_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\underbrace{d_1^1}_{\substack{\text{time passage of} \\ d_1 \text{ time-units}}} \dots \xrightarrow{\underbrace{d_1^{k_1}}_{\substack{\text{time passage of} \\ d_1 \text{ time-units}}}} s_1 + d_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\underbrace{d_2^1}_{\substack{\text{time passage of} \\ d_2 \text{ time-units}}} \dots \xrightarrow{\underbrace{d_2^{k_2}}_{\substack{\text{time passage of} \\ d_2 \text{ time-units}}}} s_2 + d_2 \xrightarrow{\alpha_3} \dots$$

where $k_i \in \mathbb{N}$, $d_i \in \mathbb{R}_{\geq 0}$ and $\alpha_i \in Act$ such that $\sum_{j=1}^{k_i} d_i^j = d_i$.

For $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \dots$ we have $ExecTime(\pi) = \sum_{i \geq 0} d_i$

Semantics of TCTL

For time-divergent path $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \dots$:

$$\pi \models \diamond^J \Phi$$

iff

$$\exists i \geq 0. s_i + d \models \Phi \text{ for some } d \in [0, d_i] \text{ with } \sum_{j=0}^{i-1} d_j + d \in J$$

where for $s_i = \langle \ell_i, \eta_i \rangle$ we have $s_i + d = \langle \ell_i, \eta_i + d \rangle$

TCTL-semantics for timed automata

- Let TA be a timed automaton with clocks C and locations Loc
- For TCTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}$$

- TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA :

$$TA \models \Phi \quad \text{if and only if} \quad \forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \Phi$$

where $\eta_0(x) = 0$ for all $x \in C$

Example

Timed CTL versus CTL

- Due to ignoring time-convergent paths in TCTL semantics possibly:

$$\underbrace{TS(TA) \models_{TCTL} \forall \varphi}_{\text{TCTL semantics}} \quad \text{but} \quad \underbrace{TS(TA) \not\models_{CTL} \forall \varphi}_{\text{CTL semantics}}$$

- CTL semantics considers all paths, timed CTL only time-divergent paths
- For $\Phi = \forall \square (on \longrightarrow \forall \diamond off)$ and the light switch

$$TS(Switch) \models_{TCTL} \Phi \quad \text{whereas} \quad TS(TA) \not\models_{CTL} \Phi$$

- there are time-convergent paths on which location *on* is never left

Characterizing timelock

- TCTL semantics is also well-defined for TA with timelock
- A state is *timelock-free* if and only if it satisfies $\exists \Box \text{true}$
 - some time-divergent path satisfies $\Box \text{true}$, i.e., there is ≥ 1 time-divergent path
 - note: for fair CTL, the states in which a fair path starts also satisfy $\exists \Box \text{true}$
- TA is timelock-free iff $\forall s \in \text{Reach}(\text{TS}(\text{TA})) : s \models \exists \Box \text{true}$
- Timelocks can thus be checked by model checking!