© JPK

Timed Automata
Lecture #16 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

January 8, 2006

Advanced model checking

Clock constraints

e Clock constraints over set C' of clocks are defined by:
g ;= Ttlrue ‘ r<c) r—y<c) r<cC) r—y<c) =g) gNg

— where ¢ € Nand clocks x,y € C

— rational constants would do; neither reals nor addition of clocks!

— let CC(C) denote the set of clock constraints over C

— shorthands: =z > cdenotes —(z < c¢)and z € [c1,c2) OFrc¢; < © < ¢
denotes —(z < c1) A (z < ¢2)

e Atomic clock constraints do not contain true, — and A

— let ACC(C') denote the set of atomic clock constraints over C

© JPK 1

Advanced model checking

Timed automaton
A timed automaton is a tuple

TA = (Loc,Act,C,~,Locy, Inv,AP,L) where:
e Loc is a finite set of locations
e Locy C Loc is a set of initial locations
e ('is afinite set of clocks
e L:Loc — 247 is a labeling function for the locations
e ~ C Loc x CC(C) x Act x 2¢ x Loc is a transition relation, and

e Inv:Loc — CC(C) is an invariant-assignment function

© JPK 2

Advanced model checking

Intuitive interpretation

e Edge/ _9:0C" i means:

— action « isenabled once guard g holds
— when moving from location ¢ to ¢, any clock in C’ will be reset to zero

e Inv(¢) constrains the amount of time that may be spent in location /¢

— once the invariant Inv(¢) becomes invalid, the location ¢ must be left
immediately

— if this is not possible — no enabled outgoing transition — no further progress is
possible

© JPK 3

Advanced model checking

Example: the gate

© JPK

Advanced model checking

Clock valuations

e A clock valuation n for set C' of clocks is a function n : C' — R+

— assigns to each clock € C'its current value n(x)

e Clock valuation n+d for d € R is defined by:
— (n+d)(x) = n(x) + dforall clocks z € C

e Clock valuation reset x in n for clock z is defined by:

(resetz inn)(y) = { g(y) :Iz i i

— reset xz in (reset y in n) is abbreviated by reset =, y in n

© JPK 5

Advanced model checking

Semantics of clock constraints

Let = C Eval(C') x CC(C) be defined by:

S IS IS S S I3

— {rue
—r <cC

— r < C

— T —y<c

— T —y<C

-9

=gNg

Iff
Iff
Iff
Iff
Iff
Iff

© JPK

Advanced model checking

Semantics
For timed automaton TA = (Loc,Act, C,~», Locy, Inv, AP,L):

Transition system TS(TA) = (S, Act’, —, I, AP’, L’) where:

e S =Loc x val(C), state s = (¢, n) for location ¢ and clock valuation n
o Act’' = Act U R, (discrete) actions and time passage actions

o [={(ly,no) | lo€Locy N no(x)=0forallz e C}

e AP' = AP U ACC(C)

o L'({¢,n)) =L(¢) U{geACC(C) |[nkg}

e — IS the transition relation defined on the next slide

© JPK .

Advanced model checking

Semantics

The transition relation — is defined by the following two rules:

e Discrete transition: (¢, n) - (¢, /) if all following conditions hold:

— there is an edge labeled (g : o, D) from location £ to ¢’ such that:
— g issatisfied by n,i.e.,n =g

— n' = np with all clocks in D resetto 0, i.e., ' = reset D inn

— 7' fulfills the invariant of location ¢', i.e., n" = Inv(£)

e Delay transition: (¢, n) — (¢, n+d) for positive real d

— if forany 0 < d’ < d the invariant of £ holds for n+d’, i.e. n+d’ = Inv(¥)

© JPK 8

Advanced model checking

Example

© JPK

Advanced model checking

Time divergence

e Letforanyt < d, for fixed d € R+, clock valuation n+t = Inv(¢)

e A possible execution fragment starting from the location 7/ is:

0,n) —2 (0, n+dy) —25 (0, n+di+ds) —25 (0, n+di+dotds) 2 ...

— where d; > 0 and the infinite sequence d; + d» + . .. converges towards d
— such path fragments are called time-convergent
=- time advances only up to a certain value

e Time-convergent execution fragments are unrealistic and ignored

— much like unfair paths (as we will see later on)

© JPK 10

Advanced model checking

Time divergence

e Infinite path fragment = is time-divergent if EzecTime(m) = oo;
e The function ExecTime : Act UR~y — R~ Is defined as:

0O Ifr &€ Act

EzecTime(T) = { d ifr=d¢&Ryg

e For infinite execution fragment p = so — 51 —%+ s5...In TS(TA) let:

ExecTime(p) = Z ExecTime(T;)
i=0

— for path fragment 7 in TS(TA) induced by p: ExecTime(mw) = ExecTime(p)

e For state sin TS(TA): Paths,;,(s) = { ® € Paths(s) | = is time-divergent }

© JPK

11

Advanced model checking

Example: light switch

The path 7 in TS(Switch) in which on- and of-periods of one minute
alternate:

m = (off,0) (off , 1) {on,0) (on, 1) {(off , 1) (off, 2) (on,0) (on, 1) (off,2) ...

s time-divergent as EzecTime(n) =1+14+1+... = .
The path:

7' = {(off,0) (off,1/2) (off,3/4) {off,7/8) {off , 15/16) . ..

is time-convergent, since EzecTime(n') = 3 ()Z =1< o0

1>1

1
2

© JPK 12

Advanced model checking

Timelock

e State s € TS(TA) contains a timelock if Paths;,(s) = 9

— there is no behavior in s where time can progress ad infinitum

— clearly: any terminal state contains a timelock (but also non-terminal states may
do)

e TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

e Timelocks are considered as modeling flaws that should be avoided

— like deadlocks, we need mechanisms to check their presence

© JPK 13

Advanced model checking

Example

© JPK

14

Advanced model checking

Zenoness

e A TA that performs infinitely many actions in finite time is Zeno

e Path 7w in TS(TA) is Zeno if:
— it is time-convergent, and
— Infinitely many actions o € Act are executed along

e TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

— any 7 in TS(TA) is time-divergent or
— iIs time-convergent with nearly all (i.e., all except for finitely many) transitions
being delay transitions

e Zeno paths are considered as modeling flaws that should be avoided

— like timelocks (and deadlocks), we need mechanisms to check Zenoness

© JPK 15

Advanced model checking

Example

© JPK

16

Advanced model checking

A sufficient criterion for Zenoness

Let TA with set C' of clocks such that for every control cycle:

g1:a1,Cq g2:a9,Co gn:on,Ch
60 s 61 s « o s En

there exists a clock € ' such that:

1. x € C;forsome 0 <7 < n, and

2. for all clock evaluations #:

n(x) < 1 implies (n %= g; or n = Inv(¢;)), for some 0 < j < n

Then: TA IS non-Zeno

© JPK

17

Advanced model checking

Proof

© JPK

18

Advanced model checking

Example

© JPK

19

Advanced model checking

Timelock, time-divergence and Zenoness

e A timed automaton is adequately modeling a time-critical system
whenever it is:

non-Zeno and timelock-free

e Time-divergent paths will be explicitly excluded for analysis purposes

© JPK 20

Advanced model checking

Timed CTL

Syntax of TCTL state-formulas over AP and set C:
O = true ‘ o ‘ p | <I>A<I>‘ ~® ‘ 390“790
where a € AP, g € ACC(C') and ¢ is a path-formula defined by:
pu=<'d

where J C R Is an interval whose bounds are naturals
&7 asserts that a ®-state is reached at time instant t € J
Forms of J: [n,m]|, (n,m], [n,m) or (n,m) forn,m € Nandn < m

for right-open intervals, m = oo is also allowed

© JPK 21

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:

107 = vo/-d and VvO/® = 307 @

J0O07 ® asserts that for some path during the interval J, ® holds
VO’ & requires this to hold for all paths

Standard until-operator is obtained as follows:

OPp =00 and Od =00 ¢

© JPK

22

Advanced model checking

Timed properties in TCTL

© JPK

23

Advanced model checking

Semantics of TCTL

For state s = (¢,n) in TS(TA) the satisfaction relation |~ is defined by:

s = true

s Ea Iff
SEg Iff
sE P Iff
sEPATY ff
s = dp Iff
s = Vo Iff

a € L(/)

nkEg

nots =&

(s =®)and (s = W)

m = ¢ for some 7 € Paths;,(s)

7 = p for all m € Paths g, (s)

path quantification over time-divergent paths only

© JPK

24

Advanced model checking

The = relation
For infinite path fragments in TS(TA) performing co many actions let:

Sog—> 81— S9g——— ... Withdo,dl,dg...>o

denote the equivalence class containing all infinite path fragments
Induced by execution fragments of the form:

1 ko 1 k1 1 ko
dg dy aq dy dy g d3 dy a3
S0 & ... — Sot+dy — S1 ... — S1+d1 — S2 ... — Sotdy —
VO Vo Vo
time passage of time passage of time passage of
dg time-units dq time-units do time-units

where k; € IN, d; € R-y and «; € Act such that Zfizl d{ = d,.

dg dy :
Form € sp==s1== ... we have EzecTime(r) =} .. d;

© JPK 25

Advanced model checking

Semantics of TCTL

. . d d
For time-divergent path 7 € 30—9;» S1== ...

TEO/P
Iff
3i > 0.5;+d |= @ for some d € [0,d;] with Y~ d; +d € J

where for s; = (¢;,n;) we have s;+d = (¢;, n;+d)

© JPK

26

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(¢) = {selLocxEval(lC)|sE=®}

e TA satisfies TCTL-formula @ iff & holds in all initial states of TA:
TAE® ifandonlyif V¢, € Locy. (£g,n9) = P

where ng(xz) =0forallz € C

© JPK 27

Advanced model checking

Example

© JPK

28

Advanced model checking

Timed CTL versus CTL

e Due to ignoring time-convergent paths in TCTL semantics possibly:

J—S(TA) ’:TCTL \V/Qe but IS(TA) I#CTL Vge

TCTL semantics CTL semantics

— CTL semantics considers all paths, timed CTL only time-divergent paths

e For® = VO(on — V<off) and the light switch

TS(Switch) =rer. @ whereas TS(TA) feer @

— there are time-convergent paths on which location on is never left

© JPK 29

Advanced model checking

Characterizing timelock

e TCTL semantics is also well-defined for TA with timelock

e A state is timelock-free if and only if it satisfies d0true

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TA is timelock-free iff Vs € Reach(TS(TA)): s = d0true

e Timelocks can thus be checked by model checking!

path

© JPK

30

