© JPK

Timed CTL Model Checking
Lecture #17 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

January 11, 2006

Advanced model checking

Timelock, time-divergence and Zenoness

e A path is time-divergent if its execution time is infinite

d
Execsze(so——Q—>31:> Zd

e TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

e TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions

© JPK 1

Advanced model checking

Timed CTL
Syntax of TCTL state-formulas over AP and set C:
O = true ‘ o ‘ p | <I>/\<I>‘ ~® ‘ 390“790
where a € AP, g € ACC(C') and ¢ is a path-formula defined by:
=< D

where J C R Iis an interval whose bounds are naturals
Forms of J: [n,m]|, (n,m], [n,m) or (n,m) forn,m € Nand n < m

for right-open intervals, m = oo is also allowed

© JPK 2

Advanced model checking

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C' and locations Loc

e For TCTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(¢) = {selLocxEval(lC)|sE=®}

e TA satisfies TCTL-formula @ iff & holds in all initial states of TA:
TAE® ifandonlyif V¢, € Locy. (£g,n9) = P

where ng(xz) =0forallz € C

© JPK 3

Advanced model checking

Characterizing timelock

e A state is timelock-free if and only if it satisfies dJ0Otrue

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent path
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TA is timelock-free iff Vs € Reach(TS(TA)): s = d0true

© JPK 4

Advanced model checking

TCTL model checking
e TCTL model-checking problem: TA = @ for non-Zeno TA

TAE® iff TS(TA) = @
Lol N U

timed automaton infinite transition system

— timelocks in TA are irrelevant as their presence can be checked

e |dea: consider a finite quotient of TS(TA) wrt. a bisimulation

— TS(TA)/ = is a region transition system and denoted RG(TA)
— dependence on & is ignored for the moment . . .

e Transform TCTL formula ¢ into an “equivalent” CTL-formula o

® Then TA ‘:TCTL d |ff RG(TA)):CTL EI\)
N—_——

finite transition system

© JPK 5

Advanced model checking

Eliminating timing parameters

e Eliminate all intervals J # |0, 00) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA
— sl=30'diffresetzins =z € JAD
— deal with 307®, v/ ®, and YO/ ® in a similar way

e Formally: for any state s of TS(TA) it holds:

sk=3070 iff s{z:=0} E3IO((z€J)AP)

~
state in TS(TA @ z)

— where TA @ z is TA (over C) extended with z ¢ C
e E.g., 305? @ yields 30 ((z < 2) — D)

atomic clock constraints are atomic propositions, i.e., a CTL formula results

© JPK

Advanced model checking

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints ¢ in TA
and o:

n=n = (nEg it v E=g)

— no diagonal clock constraints are considered
— all the constraints in TA and & are thus either of the formz < corx < ¢

(B) Time-divergent paths emanating from equivalent states are
“equivalent”

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

© JPK .

Advanced model checking

Clock equivalence

e Correctness criteria (A) and (B) are ensured if equivalent states:

— agree on the integer parts of all clock values, and
— agree on the ordering of the fractional parts of all clocks

= This yields a denumerable infinite set of equivalence classes

e Observe that:

— if clocks exceed the maximal constant with which they are compared their
precise value is not of interest

= The number of equivalence classes is then finite (C)

© JPK 8

Advanced model checking

Basic recipe of TCTL model checking

Input: timed automaton TA and TCTL formula $ (both over AP and C)
Output: TA |= @

® := eliminate the timing parameters from &;

determine the equivalence classes under =;

construct the region transition system TS = RG(TA);

apply the CTL model-checking algorithm to check TS |= D;
TA |= @ if and only if TS = @

how does clock equivalence look like?

© JPK 9

Advanced model checking

First observation

e 1 = x < cwhenever n(z) < ¢, or equivalently, [n(x)] < ¢
— |d|] = max{c € IN | c<d}and frac(d) = d— |d]

e 1 =x < cwhenever |n(x)| <cor|n(z)| =cand frac(x) =0
= 1 = g only depends on [7(x)], and whether frac(n(z)) = 0

e Initial suggestion: clock valuations n and n’ are equivalent if:
(n(z)] = [n'(z)] and frac(n(x)) = 0iff frac(n’(x)) = 0

e Note: itis crucial thatin x < cand z < ¢, cis a natural

© JPK

10

Advanced model checking

Example

© JPK

11

Advanced model checking

Second observation

e Consider location ¢ with Inv(¢) = true and only outgoing transitions:

— one guarded with = > 2 (action «) and y > 1 (action 3)

e Letstate s = ({,n) with1l <n(z) <2and0 < n(y) < 1

— « and 3 are disabled, only time may elapse

e Transition that is enabled next dependsonx < yorxz >y

— e.0,, if frac(n(x)) > frac(n(y)), action « is enabled first

e Suggestion for strengthening of initial proposal for all z,y € C' by:

frac(n(z)) < frac(n(y)) ifandonlyif frac(n'(z)) < frac(n'(y))

© JPK 12

Advanced model checking

Example

© JPK

13

Advanced model checking

Final observation

e SO far, clock equivalence yield a denumerable though not finite
guotient

e For TA = @ only the clock constraints in TA and ¢ are relevant

— let ¢, € IN the largest constant with which x is compared in TA or $

= If n(z) > ¢, then the actual value of z is irrelevant

— constraints on = so far are only relevant for clock values of = (y) up to ¢, (cy)

© JPK 14

Advanced model checking

Clock equivalence

Clock valuations 7, " € Eval(C') are equivalent, denoted n = 7/, if:
(1) forany z € C: (n(z) > cz) A (n'(x) > cz) or (n(x) <) A (7 (x) < ¢p)

(2) forany x € C: if n(x),n'(z) < ¢, then:

[n(z)] = n'(x)] and frac(n(z)) = 0iff frac(nz(x)) = 0

(3) forany z,y € C: if n(x),n' (z) < ¢, and n(y),n'(y) < ¢y, then:
frac(n(x)) < frac(n(y)) iff - frac(n'(z)) < frac(n'(y)).

s=s iff £=4 and n=n

© JPK 15

Advanced model checking

Regions

e The clock region of n € Eval(C'), denoted |7], is defined by:

m = {n eEval(C) |n=n}

e The state region of s = (¢,n) € TS(TA) is defined by:

[s] = (&) = {{s;n) [0 €n]'}

© JPK

16

Advanced model checking

Example

© JPK

17

Advanced model checking

Number of regions

The number of clock regions is bounded from below and above by:

|O’!*HC$ < | Bval(0)/= | < C]! % 21C1=1 H(ch—i—Z)

~~

reC number of regions zeC

where for the upper bound it is assumed that c, > 1 forany x € C

the number of state regions is |Loc| times larger

© JPK 18

Advanced model checking

Proof

© JPK

19

Advanced model checking

Preservation of atomic properties

1. Forn,n" € Eval(C) such that n = "

nk=g ifandonlyif » |=gforany gc AP\ AP

2. For s,s" € TS(TA) such that s = ¢’

st=a ifandonlyif s = aforanyac AP’

where AP’ includes all atomic propositions in TA and atomic clock constraints

© JPK 20

Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’

© JPK

21

Advanced model checking

Proof

© JPK

22

Advanced model checking

Region automaton: intuition

© JPK

23

Advanced model checking

Unbounded and successor regions

e Clock region ro, = {1 € Eval(C) | Vx € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted " = succ(r), if either:

1. r=randr =17/, or
2. T £ roe, r £ 1 @nd Vn € r:
Jd € Rug. (n+der’ and YO d <d.n+d €rur’)
e The successor region: succ({{,r)) = (¢, succ(r))

e Note: the location invariants are ignored so far!

© JPK 24

Advanced model checking

Example

© JPK

25

Advanced model checking

Time convergence (no proof)

For non-Zeno TA and m = sg s1 2. .. an initial, infinite path in TS(TA):

(a) wistime-convergent = d state region (¢, r) such that for some j:

s; € (L,ry foralli>j

(b) If 4 state region (¢, r) with » # r., and an index j such that:
s; € (,ry foralli>j
then = Is time-convergent

time-convergent paths are paths that only perform delays from some time instant on

© JPK 26

Advanced model checking

Region automaton
For non-Zeno TA with TS(TA) = (S, Act,—, I, AP, L) let:

RG(TA,®) = (8", Actu {7},—',I,AP’ L") with
e S'=5/=={[s]|seS}tand I'={]s] | s € I}, the state regions
o L'((t,r))=L(£) U{g e AP'\AP |1 =g}

gD =g resetDinr = Inv({)

and
(l,ry =" (¢, reset D inr)

e —'is defined by:

r = Inv(¢) succ(r) = Inv(4)
(0, r) " (£,succ(r))

© JPK 27

Advanced model checking

Example: simple light switch

off off off off off
Xx=0 O<x<l1 x=1 1<x<?2

P
I
N

X
Il
o
JO OTINS

on
X> 2

© JPK

28

Advanced model checking

Correctness theorem

Let TA be a non-Zeno timed automaton and & a TCTL formula. Then:

TA=® iff RG(TA,®) = @
N — N _

~
TCTL semantics CTL semantics

© JPK 29

Advanced model checking

Proof

© JPK

30

Advanced model checking

Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal

© JPK

31

Advanced model checking

© JPK 32

Advanced model checking

Overview TCTL model checking

Input: timed automaton TA and TCTL formula $ (both over AP and C)
Output: TA |= @

A~

® := eliminate the timing parameters from ®;

determine the equivalence classes under =;

construct the region transition system TS = RG(TA);

apply the CTL model-checking algorithm to check TS |= D;

TA |= @ if and only if TS = @

© JPK

33

Advanced model checking

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. The model-checking problem for timed LTL (and TCTL") is
undecidable

3. The satisfaction problem for TCTL is undecidable

all facts without proof

© JPK 34

